1932

Abstract

Classically, skin was considered a mere structural barrier protecting organisms from a diversity of environmental insults. In recent decades, the cutaneous immune system has become recognized as a complex immunologic barrier involved in both antimicrobial immunity and homeostatic processes like wound healing. To sense a variety of chemical, mechanical, and thermal stimuli, the skin harbors one of the most sophisticated sensory networks in the body. However, recent studies suggest that the cutaneous nervous system is highly integrated with the immune system to encode specific sensations into evolutionarily conserved protective behaviors. In addition to directly sensing pathogens, neurons employ novel neuroimmune mechanisms to provide host immunity. Therefore, given that sensation underlies various physiologies through increasingly complex reflex arcs, a much more dynamic picture is emerging of the skin as a truly systemic organ with highly coordinated physical, immunologic, and neural functions in barrier immunology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101719-113805
2021-04-26
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-101719-113805.html?itemId=/content/journals/10.1146/annurev-immunol-101719-113805&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Gorer PA. 1936. The detection of antigenic differences in mouse erythrocytes by the employment of immune sera. Br. J. Exp. Pathol. 17:42–50
    [Google Scholar]
  2. 2. 
    Gorer PA. 1937. The genetic and antigenic basis of tumour transplantation. J. Pathol. Bacteriol. 44:691–97
    [Google Scholar]
  3. 3. 
    Medawar PB. 1944. The behaviour and fate of skin autografts and skin homografts in rabbits: a report to the War Wounds Committee of the Medical Research Council. J. Anat. 78:176–99
    [Google Scholar]
  4. 4. 
    Gorer PA, Lyman S, Snell GD 1948. Studies on the genetic and antigenic basis of tumour transplantation: linkage between a histocompatibility gene and ‘fused’ in mice. Proc. R. Soc. B 135:499–505
    [Google Scholar]
  5. 5. 
    Zinkernagel RM, Doherty PC. 1974. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248:701–2
    [Google Scholar]
  6. 6. 
    Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F et al. 2013. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501:52–57Staphylococcus aureus–induced activation of sensory neurons leads to pain sensation.
    [Google Scholar]
  7. 7. 
    Kashem SW, Igyarto BZ, Gerami-Nejad M, Kumamoto Y, Mohammed JA et al. 2015. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42:356–66
    [Google Scholar]
  8. 8. 
    Blake KJ, Baral P, Voisin T, Lubkin A, Pinho-Ribeiro FA et al. 2018. Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nat. Commun. 9:37
    [Google Scholar]
  9. 9. 
    Pinho-Ribeiro FA, Baddal B, Haarsma R, O'Seaghdha M, Yang NJ et al. 2018. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173:1083–97.e22
    [Google Scholar]
  10. 10. 
    Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J et al. 2019. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat. Immunol. 20:1435–43
    [Google Scholar]
  11. 11. 
    Ruhl CR, Pasko BL, Khan HS, Kindt LM, Stamm CE et al. 2020. Mycobacterium tuberculosis sulfolipid-1 activates nociceptive neurons and induces cough. Cell 181:293–305.e11
    [Google Scholar]
  12. 12. 
    Cohen JA, Edwards TN, Liu AW, Hirai T, Jones MR et al. 2019. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell 178:919–32.e14Selective activation of TRPV1+ neurons via optogenetic stimulation generates anticipatory immunity through an axon reflex.
    [Google Scholar]
  13. 13. 
    Gibbons CH 2019. Basics of autonomic nervous system function. Clinical Neurophysiology: Basis and Technical Aspects K Levin, P Chauvel 407–18 Handb. Clin. Neurol. 160 Amsterdam: Elsevier
    [Google Scholar]
  14. 14. 
    Green HD, Kepchar JH. 1959. Control of peripheral resistance in major systemic vascular beds. Physiol. Rev. 39:617–86
    [Google Scholar]
  15. 15. 
    Fox RH, Edholm OG. 1963. Nervous control of the cutaneous circulation. Br. Med. Bull. 19:110–14
    [Google Scholar]
  16. 16. 
    Foster KG, Weiner JS. 1970. Effects of cholinergic and adrenergic blocking agents on the activity of the eccrine sweat glands. J. Physiol. 210:883–95
    [Google Scholar]
  17. 17. 
    Ekenvall L, Lindblad LE, Norbeck O, Etzell BM. 1988. α-Adrenoceptors and cold-induced vasoconstriction in human finger skin. Am. J. Physiol. 255:H1000–3
    [Google Scholar]
  18. 18. 
    Freedman RR, Sabharwal SC, Moten M, Migaly P. 1992. Local temperature modulates α1- and α2-adrenergic vasoconstriction in men. Am. J. Physiol. 263:H1197–200
    [Google Scholar]
  19. 19. 
    Pergola PE, Kellogg DL Jr., Johnson JM, Kosiba WA, Solomon DE. 1993. Role of sympathetic nerves in the vascular effects of local temperature in human forearm skin. Am. J. Physiol. 265:H785–92
    [Google Scholar]
  20. 20. 
    Lamotte RH, Dong X, Ringkamp M. 2014. Sensory neurons and circuits mediating itch. Nat. Rev. Neurosci. 15:19–31
    [Google Scholar]
  21. 21. 
    Abraira VE, Ginty DD. 2013. The sensory neurons of touch. Neuron 79:618–39
    [Google Scholar]
  22. 22. 
    Smith ESJ, Lewin GR. 2009. Nociceptors: a phylogenetic view. . J. Comp. Physiol. A 195:121089–106
    [Google Scholar]
  23. 23. 
    Julius D 2013. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29:355–84
    [Google Scholar]
  24. 24. 
    Ahern CA, Payandeh J, Bosmans F, Chanda B 2016. The hitchhiker's guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol. 147:1–24
    [Google Scholar]
  25. 25. 
    Ferreira SH, Lorenzetti BB, Bristow AF, Poole S. 1988. Interleukin-1β as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 334:698–700First study to demonstrate that a cytokine (IL-1β) can directly influence nociception.
    [Google Scholar]
  26. 26. 
    Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH. 1992. The pivotal role of tumour necrosis factor α in the development of inflammatory hyperalgesia. Br. J. Pharmacol. 107:660–64
    [Google Scholar]
  27. 27. 
    Pinto LG, Cunha TM, Vieira SM, Lemos HP, Verri WA Jr. et al. 2010. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain 148:247–56
    [Google Scholar]
  28. 28. 
    Sorkin LS, Xiao WH, Wagner R, Myers RR. 1997. Tumour necrosis factor-α induces ectopic activity in nociceptive primary afferent fibres. Neuroscience 81:255–62
    [Google Scholar]
  29. 29. 
    Nicol GD, Lopshire JC, Pafford CM. 1997. Tumor necrosis factor enhances the capsaicin sensitivity of rat sensory neurons. J. Neurosci. 17:975–82
    [Google Scholar]
  30. 30. 
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–24
    [Google Scholar]
  31. 31. 
    Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J et al. 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–13
    [Google Scholar]
  32. 32. 
    Oprée A, Kress M. 2000. Involvement of the proinflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J. Neurosci. 20:6289–93
    [Google Scholar]
  33. 33. 
    Hensellek S, Brell P, Schaible HG, Brauer R, Segond von Banchet G. 2007. The cytokine TNFα increases the proportion of DRG neurones expressing the TRPV1 receptor via the TNFR1 receptor and ERK activation. Mol. Cell Neurosci. 36:381–91
    [Google Scholar]
  34. 34. 
    Obreja O, Biasio W, Andratsch M, Lips KS, Rathee PK et al. 2005. Fast modulation of heat-activated ionic current by proinflammatory interleukin 6 in rat sensory neurons. Brain 128:1634–41
    [Google Scholar]
  35. 35. 
    Jin X, Gereau RW IV 2006. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-α. J. Neurosci. 26:246–55
    [Google Scholar]
  36. 36. 
    Liu L, Yang TM, Liedtke W, Simon SA. 2006. Chronic IL-1β signaling potentiates voltage-dependent sodium currents in trigeminal nociceptive neurons. J. Neurophysiol. 95:1478–90
    [Google Scholar]
  37. 37. 
    Binshtok AM, Wang H, Zimmermann K, Amaya F, Vardeh D et al. 2008. Nociceptors are interleukin-1β sensors. J. Neurosci. 28:14062–73
    [Google Scholar]
  38. 38. 
    Mailhot B, Christin M, Tessandier N, Sotoudeh C, Bretheau F et al. 2020. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. J. Exp. Med. 217:9e20191430
    [Google Scholar]
  39. 39. 
    McNamee KE, Alzabin S, Hughes JP, Anand P, Feldmann M et al. 2011. IL-17 induces hyperalgesia via TNF-dependent neutrophil infiltration. Pain 152:1838–45
    [Google Scholar]
  40. 40. 
    Richter F, Natura G, Ebbinghaus M, Segond von Banchet G, Hensellek S et al. 2012. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum 64:4125–34
    [Google Scholar]
  41. 41. 
    Segond von Banchet G, Boettger MK, König C, Iwakura Y, Bräuer R, Schaible H-G. 2013. Neuronal IL-17 receptor upregulates TRPV4 but not TRPV1 receptors in DRG neurons and mediates mechanical but not thermal hyperalgesia. Mol. Cell. Neurosci. 52:152–60
    [Google Scholar]
  42. 42. 
    Snyder SH. 2009. Neurotransmitters, receptors, and second messengers galore in 40 years. J. Neurosci. 29:12717–21
    [Google Scholar]
  43. 43. 
    Altan-Bonnet G, Mukherjee R 2019. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat. Rev. Immunol. 19:205–17
    [Google Scholar]
  44. 44. 
    Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K et al. 1989. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58:573–81
    [Google Scholar]
  45. 45. 
    März P, Otten U, Rose-John S. 1999. Neural activities of IL-6-type cytokines often depend on soluble cytokine receptors: IL-6 cytokine activity depends on soluble receptors. Eur. J. Neurosci. 11:2995–3004
    [Google Scholar]
  46. 46. 
    Laumet G, Bavencoffe A, Edralin JD, Huo XJ, Walters ET et al. 2020. Interleukin-10 resolves pain hypersensitivity induced by cisplatin by reversing sensory neuron hyperexcitability. Pain 161:2344–52
    [Google Scholar]
  47. 47. 
    Walters ET, Williams ACC. 2019. Evolution of mechanisms and behaviour important for pain. Philos. Trans. R. Soc. Lond. B 374:20190275
    [Google Scholar]
  48. 48. 
    Esancy K, Condon L, Feng J, Kimball C, Curtright A, Dhaka A. 2018. A zebrafish and mouse model for selective pruritus via direct activation of TRPA1. eLife 7:e32036
    [Google Scholar]
  49. 49. 
    Hachisuka J, Chiang MC, Ross SE. 2018. Itch and neuropathic itch. Pain 159:603–9
    [Google Scholar]
  50. 50. 
    Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M et al. 2004. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat. Immunol. 5:752–60Discovery of the first cytokine pruritogen, IL-31.
    [Google Scholar]
  51. 51. 
    Arai I, Tsuji M, Takeda H, Akiyama N, Saito S. 2013. A single dose of interleukin-31 (IL-31) causes continuous itch-associated scratching behaviour in mice. Exp. Dermatol. 22:669–71
    [Google Scholar]
  52. 52. 
    Cevikbas F, Wang X, Akiyama T, Kempkes C, Savinko T et al. 2014. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J. Allergy Clin. Immunol. 133:448–60Demonstration that IL-31 functions as a bona fide pruritogen.
    [Google Scholar]
  53. 53. 
    Sonkoly E, Muller A, Lauerma AI, Pivarcsi A, Soto H et al. 2006. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J. Allergy Clin. Immunol. 117:411–17
    [Google Scholar]
  54. 54. 
    Ruzicka T, Hanifin JM, Furue M, Pulka G, Mlynarczyk I et al. 2017. Anti–interleukin-31 receptor A antibody for atopic dermatitis. N. Engl. J. Med. 376:826–35
    [Google Scholar]
  55. 55. 
    Stander S, Yosipovitch G, Legat FJ, Lacour JP, Paul C et al. 2020. Trial of nemolizumab in moderate-to-severe prurigo nodularis. N. Engl. J. Med. 382:706–16
    [Google Scholar]
  56. 56. 
    Yamaoka K, Okayama Y, Kaminuma O, Katayama K, Mori A et al. 2009. Proteomic approach to FcεRI aggregation-initiated signal transduction cascade in human mast cells. Int. Arch. Allergy Immunol. 149:Suppl. 173–76
    [Google Scholar]
  57. 57. 
    Cheung PF, Wong CK, Ho AW, Hu S, Chen DP, Lam CW. 2010. Activation of human eosinophils and epidermal keratinocytes by Th2 cytokine IL-31: implication for the immunopathogenesis of atopic dermatitis. Int. Immunol. 22:453–67
    [Google Scholar]
  58. 58. 
    Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H et al. 2017. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 171:217–28.e13Identification of neuron-specific IL-4Rα and downstream JAK signaling as key mediators of itch.
    [Google Scholar]
  59. 59. 
    Campion M, Smith L, Gatault S, Metais C, Buddenkotte J, Steinhoff M. 2019. Interleukin-4 and interleukin-13 evoke scratching behaviour in mice. Exp. Dermatol. 28:1501–4
    [Google Scholar]
  60. 60. 
    Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A et al. 2016. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N. Engl. J. Med. 375:2335–48
    [Google Scholar]
  61. 61. 
    Wollenberg A, Howell MD, Guttman-Yassky E, Silverberg JI, Kell C et al. 2018. Treatment of atopic dermatitis with tralokinumab, an anti-IL-13 monoclonal antibody. J. Allergy Clin. Immunol. 143:135–41
    [Google Scholar]
  62. 62. 
    Guttman-Yassky E, Blauvelt A, Eichenfield LF, Paller AS, Armstrong AW et al. 2020. Efficacy and safety of lebrikizumab, a high-affinity interleukin 13 inhibitor, in adults with moderate to severe atopic dermatitis: a phase 2b randomized clinical trial. JAMA Dermatol 156:411–20
    [Google Scholar]
  63. 63. 
    O'Sullivan LA, Liongue C, Lewis RS, Stephenson SEM, Ward AC. 2007. Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease. Mol. Immunol. 44:2497–506
    [Google Scholar]
  64. 64. 
    Muller R. 2019. JAK inhibitors in 2019, synthetic review in 10 points. Eur. J. Intern. Med. 66:9–17
    [Google Scholar]
  65. 65. 
    Fukuyama T, Ehling S, Cook E, Baumer W. 2015. Topically administered Janus-kinase inhibitors tofacitinib and oclacitinib display impressive antipruritic and anti-inflammatory responses in a model of allergic dermatitis. J. Pharmacol. Exp. Ther. 354:394–405
    [Google Scholar]
  66. 66. 
    Hashimoto T, Sakai K, Sanders KM, Yosipovitch G, Akiyama T. 2018. Antipruritic effects of Janus kinase inhibitor tofacitinib in a mouse model of psoriasis. Acta Dermato-Venereol 99:298–303
    [Google Scholar]
  67. 67. 
    Kim BS, Sun K, Papp K, Venturanza M, Nasir A, Kuligowski ME. 2020. Effects of ruxolitinib cream on pruritus and quality of life in atopic dermatitis: results from a phase 2, randomized, dose-ranging, vehicle- and active-controlled study. J. Am. Acad. Dermatol. 82:1305–13
    [Google Scholar]
  68. 68. 
    Nakagawa H, Nemoto O, Igarashi A, Saeki H, Kaino H, Nagata T. 2020. Delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with moderate to severe atopic dermatitis: a phase 3, randomized, double-blind, vehicle-controlled study and an open-label, long-term extension study. J. Am. Acad. Dermatol. 82:823–31
    [Google Scholar]
  69. 69. 
    Guttman-Yassky E, Thaci D, Pangan AL, Hong HC, Papp KA et al. 2020. Upadacitinib in adults with moderate to severe atopic dermatitis: 16-week results from a randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 145:877–84
    [Google Scholar]
  70. 70. 
    Simpson EL, Lacour JP, Spelman L, Galimberti R, Eichenfield LF et al. 2020. Baricitinib in patients with moderate-to-severe atopic dermatitis and inadequate response to topical corticosteroids: results from two randomized monotherapy phase III trials. Br. J. Dermatol. 183:242–55
    [Google Scholar]
  71. 71. 
    Fukuyama T, Ganchingco JR, Mishra SK, Olivry T, Rzagalinski I et al. 2017. Janus-kinase inhibitors display broad anti-itch properties—a possible link via the TRPV1 receptor. J. Allergy Clin. Immunol. 140:306–9.e3
    [Google Scholar]
  72. 72. 
    Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G et al. 2002. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3:673–80
    [Google Scholar]
  73. 73. 
    Yoo J, Omori M, Gyarmati D, Zhou B, Aye T et al. 2005. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 202:541–49
    [Google Scholar]
  74. 74. 
    He R, Oyoshi MK, Garibyan L, Kumar L, Ziegler SF, Geha RS 2008. TSLP acts on infiltrating effector T cells to drive allergic skin inflammation. PNAS 105:11875–80
    [Google Scholar]
  75. 75. 
    Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB et al. 2011. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477:229–33
    [Google Scholar]
  76. 76. 
    Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA et al. 2013. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med. 5:170ra16
    [Google Scholar]
  77. 77. 
    Wilson SR, Thé L, Batia LM, Beattie K, Katibah GE et al. 2013. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155:285–95First demonstration that an epithelial cell–derived cytokine can directly stimulate sensory neurons and induce itch.
    [Google Scholar]
  78. 78. 
    Simpson EL, Parnes JR, She D, Crouch S, Rees W et al. 2019. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial. J. Am. Acad. Dermatol. 80:1013–21
    [Google Scholar]
  79. 79. 
    Coyle AJ, Lloyd C, Tian J, Nguyen T, Erikkson C et al. 1999. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2–mediated lung mucosal immune responses. J. Exp. Med. 190:895–902
    [Google Scholar]
  80. 80. 
    Schmitz J, Owyang A, Oldham E, Song Y, Murphy E et al. 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–90
    [Google Scholar]
  81. 81. 
    Imai Y, Yasuda K, Sakaguchi Y, Haneda T, Mizutani H et al. 2013. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. PNAS 110:13921–26
    [Google Scholar]
  82. 82. 
    Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D et al. 2013. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210:2939–50
    [Google Scholar]
  83. 83. 
    Liu B, Tai Y, Achanta S, Kaelberer MM, Caceres AI et al. 2016. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. PNAS 113:E7572–79
    [Google Scholar]
  84. 84. 
    Du L, Hu X, Yang W, Yasheng H, Liu S et al. 2019. Spinal IL-33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2-STAT3 cascade. Glia 67:1680–93
    [Google Scholar]
  85. 85. 
    Chen YL, Gutowska-Owsiak D, Hardman CS, Westmoreland M, MacKenzie T et al. 2019. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci. Transl. Med. 11:515eaax2945
    [Google Scholar]
  86. 86. 
    Heine H, Forster FJ. 1975. Histophysiology of mast cells in skin and other organs. Arch. Dermatol. Res. 253:225–28
    [Google Scholar]
  87. 87. 
    Arizono N, Matsuda S, Hattori T, Kojima Y, Maeda T, Galli SJ. 1990. Anatomical variation in mast cell nerve associations in the rat small intestine, heart, lung, and skin—similarities of distances between neural processes and mast cells, eosinophils, or plasma cells in the jejunal lamina propria. Lab. Investig. 62:626–34
    [Google Scholar]
  88. 88. 
    Egan CL, Viglione-Schneck MJ, Walsh LJ, Green B, Trojanowski JQ et al. 1998. Characterization of unmyelinated axons uniting epidermal and dermal immune cells in primate and murine skin. J. Cutan. Pathol. 25:20–29
    [Google Scholar]
  89. 89. 
    Ishizaka K, Ishizaka T. 1967. Identification of γE-antibodies as a carrier of reaginic activity. J. Immunol. 99:1187–98
    [Google Scholar]
  90. 90. 
    Ishizaka T, Ishizaka K, Tomioka H. 1972. Release of histamine and slow reacting substance of anaphylaxis (SRS-A) by IgE-anti-IgE reactions on monkey mast cells. J. Immunol. 108:513–20
    [Google Scholar]
  91. 91. 
    van Zuuren EJ, Apfelbacher CJ, Fedorowicz Z, Jupiter A, Matterne U, Weisshaar E. 2014. No high level evidence to support the use of oral H1 antihistamines as monotherapy for eczema: a summary of a Cochrane systematic review. Syst. Rev. 3:25
    [Google Scholar]
  92. 92. 
    Matterne U, Bohmer MM, Weisshaar E, Jupiter A, Carter B, Apfelbacher CJ. 2019. Oral H1 antihistamines as ‘add-on’ therapy to topical treatment for eczema. Cochrane Database Syst. Rev. 1:CD012167
    [Google Scholar]
  93. 93. 
    Andrade A, Kuah CY, Martin-Lopez JE, Chua S, Shpadaruk V et al. 2020. Interventions for chronic pruritus of unknown origin. Cochrane Database Syst. Rev. 1:CD013128
    [Google Scholar]
  94. 94. 
    Kellaway CH, Trethewie ER. 1940. The liberation of a slow-reacting smooth muscle-stimulating substance in anaphylaxis. Q. J. Exp. Physiol. Cognate Med. Sci. 30:121–45
    [Google Scholar]
  95. 95. 
    Sjoerdsma A, Waalkes TP, Weissbach H. 1957. Serotonin and histamine in mast cells. Science 125:1202–3
    [Google Scholar]
  96. 96. 
    Glenner GG, Cohen LA. 1960. Histochemical demonstration of a species-specific trypsin-like enzyme in mast cells. Nature 185:846–47
    [Google Scholar]
  97. 97. 
    Schechter NM, Choi JK, Slavin DA, Deresienski DT, Sayama S et al. 1986. Identification of a chymotrypsin-like proteinase in human mast cells. J. Immunol. 137:962–70
    [Google Scholar]
  98. 98. 
    Gordon JR, Galli SJ. 1990. Mast cells as a source of both preformed and immunologically inducible TNF-α/cachectin. Nature 346:274–76
    [Google Scholar]
  99. 99. 
    Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S et al. 1994. Mast cells synthesize, store, and release nerve growth factor.. PNAS 91:3739–43
    [Google Scholar]
  100. 100. 
    Solinski HJ, Kriegbaum MC, Tseng PY, Earnest TW, Gu X et al. 2019. Nppb neurons are sensors of mast cell-induced itch. Cell Rep 26:3561–73.e4
    [Google Scholar]
  101. 101. 
    Mishra SK, Hoon MA. 2013. The cells and circuitry for itch responses in mice. Science 340:968–71Identification of a novel itch-sensory-mediated brain natriuretic peptide (BNP).
    [Google Scholar]
  102. 102. 
    Liu XY, Wan L, Huo FQ, Barry DM, Li H et al. 2014. B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway. Mol. Pain 10:4
    [Google Scholar]
  103. 103. 
    McNeil BD, Pundir P, Meeker S, Han L, Undem BJ et al. 2015. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519:237–41
    [Google Scholar]
  104. 104. 
    Gaudenzio N, Sibilano R, Marichal T, Starkl P, Reber LL et al. 2016. Different activation signals induce distinct mast cell degranulation strategies. J. Clin. Investig. 126:3981–98
    [Google Scholar]
  105. 105. 
    Meixiong J, Anderson M, Limjunyawong N, Sabbagh MF, Hu E et al. 2019. Activation of mast-cell-expressed Mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity 50:1163–71.e5
    [Google Scholar]
  106. 106. 
    Siracusa MC, Kim BS, Spergel JM, Artis D. 2013. Basophils and allergic inflammation. J. Allergy Clin. Immunol. 132:789–801
    [Google Scholar]
  107. 107. 
    Brunner T, Heusser CH, Dahinden CA. 1993. Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J. Exp. Med. 177:605–11
    [Google Scholar]
  108. 108. 
    Gibbs BF, Haas H, Falcone FH, Albrecht C, Vollrath IB et al. 1996. Purified human peripheral blood basophils release interleukin-13 and preformed interleukin-4 following immunological activation. Eur. J. Immunol. 26:2493–98
    [Google Scholar]
  109. 109. 
    Raap U, Gehring M, Kleiner S, Rudrich U, Eiz-Vesper B et al. 2017. Human basophils are a source of—and are differentially activated by—IL-31. Clin. Exp. Allergy 47:499–508
    [Google Scholar]
  110. 110. 
    Ito Y, Satoh T, Takayama K, Miyagishi C, Walls AF, Yokozeki H. 2011. Basophil recruitment and activation in inflammatory skin diseases. Allergy 66:1107–13
    [Google Scholar]
  111. 111. 
    Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY et al. 1998. Interleukin-13: central mediator of allergic asthma. Science 282:2258–61
    [Google Scholar]
  112. 112. 
    Grünig G, Warnock M, Wakil AE, Venkayya R, Brombacher F et al. 1998. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282:2261–63
    [Google Scholar]
  113. 113. 
    Urban JF Jr., Noben-Trauth N, Donaldson DD, Madden KB, Morris SC et al. 1998. IL-13, IL-4Rα, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8:255–64
    [Google Scholar]
  114. 114. 
    Dabbagh K, Takeyama K, Lee HM, Ueki IF, Lausier JA, Nadel JA. 1999. IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J. Immunol. 162:6233–37
    [Google Scholar]
  115. 115. 
    Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A et al. 2006. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203:1105–16
    [Google Scholar]
  116. 116. 
    von Frey M. 1922. Zur physiologie der juckempfindung. Arch. Néerl. Physiol. 7:142–45
    [Google Scholar]
  117. 117. 
    Schmelz M, Schmidt R, Bickel A, Handwerker HO, Torebjork HE. 1997. Specific C-receptors for itch in human skin. J. Neurosci. 17:8003–8
    [Google Scholar]
  118. 118. 
    Sun YG, Chen ZF. 2007. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 448:700–3The discovery of the first itch-specific receptor, gastrin-releasing peptide receptor (GRPR).
    [Google Scholar]
  119. 119. 
    Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ. 2001. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–32
    [Google Scholar]
  120. 120. 
    Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN et al. 2009. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus.. Cell 139:1353–65Establishment of Mrgprs as critical itch-specific receptors in the periphery.
    [Google Scholar]
  121. 121. 
    Han SK, Dong X, Hwang JI, Zylka MJ, Anderson DJ, Simon MI 2002. Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Gαq/11 pathway.. PNAS 99:14740–45
    [Google Scholar]
  122. 122. 
    Sikand P, Dong X, LaMotte RH. 2011. BAM8–22 peptide produces itch and nociceptive sensations in humans independent of histamine release. J. Neurosci. 31:7563–67
    [Google Scholar]
  123. 123. 
    Liu Q, Sikand P, Ma C, Tang Z, Han L et al. 2012. Mechanisms of itch evoked by β-alanine. J. Neurosci. 32:14532–37
    [Google Scholar]
  124. 124. 
    Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P et al. 2015. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18:145–53
    [Google Scholar]
  125. 125. 
    Li CL, Li KC, Wu D, Chen Y, Luo H et al. 2016. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res 26:183–102
    [Google Scholar]
  126. 126. 
    Li C, Wang S, Chen Y, Zhang X. 2018. Somatosensory neuron typing with high-coverage single-cell RNA sequencing and functional analysis. Neurosci. Bull. 34:200–7
    [Google Scholar]
  127. 127. 
    Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F et al. 2018. Molecular architecture of the mouse nervous system. Cell 174:999–1014.e22
    [Google Scholar]
  128. 128. 
    Snider WD, McMahon SB. 1998. Tackling pain at the source: new ideas about nociceptors. Neuron 20:629–32
    [Google Scholar]
  129. 129. 
    Braz JM, Nassar MA, Wood JN, Basbaum AI. 2005. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47:787–93
    [Google Scholar]
  130. 130. 
    Zylka MJ, Rice FL, Anderson DJ. 2005. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45:17–25
    [Google Scholar]
  131. 131. 
    Zylka MJ, Dong X, Southwell AL, Anderson DJ 2003. Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. PNAS 100:10043–48
    [Google Scholar]
  132. 132. 
    Li L, Rutlin M, Abraira VE, Cassidy C, Kus L et al. 2011. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147:1615–27
    [Google Scholar]
  133. 133. 
    Lallemend F, Ernfors P. 2012. Molecular interactions underlying the specification of sensory neurons. Trends Neurosci 35:373–81
    [Google Scholar]
  134. 134. 
    Kleij HP, Bienenstock J. 2005. Significance of conversation between mast cells and nerves. Allergy Asthma Clin. Immunol. 1:65–80
    [Google Scholar]
  135. 135. 
    Buhner S, Schemann M. 2012. Mast cell–nerve axis with a focus on the human gut. Biochim. Biophys. Acta Mol. Basis Dis. 1822:85–92
    [Google Scholar]
  136. 136. 
    Gupta K, Harvima IT. 2018. Mast cell-neural interactions contribute to pain and itch. Immunol. Rev. 282:168–87
    [Google Scholar]
  137. 137. 
    Green DP, Limjunyawong N, Gour N, Pundir P, Dong X. 2019. A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron 101:412–20.e3
    [Google Scholar]
  138. 138. 
    Löfström B, Pernow B, Wahren J. 1965. Vasodilating action of substance P in the human forearm. Acta Physiol. Scand. 63:311–24
    [Google Scholar]
  139. 139. 
    Hagermark O, Hokfelt T, Pernow B. 1978. Flare and itch induced by substance P in human skin. J. Investig. Dermatol. 71:233–35
    [Google Scholar]
  140. 140. 
    Brain SD, Tippins JR, Morris HR, MacIntyre I, Williams TJ. 1986. Potent vasodilator activity of calcitonin gene-related peptide in human skin. J. Investig. Dermatol. 87:533–36
    [Google Scholar]
  141. 141. 
    Flower RJ, Harvey EA, Kingston WP. 1976. Inflammatory effects of prostaglandin D2 in rat and human skin. Br. J. Pharmacol. 56:229–33
    [Google Scholar]
  142. 142. 
    Gulati OP, Malmsten C, Ponard G, Gulati N. 1983. The local edemogenic effects of leukotriene C4 and prostaglandin E2 in rats. Prostaglandins Leukot. Med. 10:11–17
    [Google Scholar]
  143. 143. 
    Bowden JJ, Baluk P, Lefevre PM, Vigna SR, McDonald DM. 1996. Substance P (NK1) receptor immunoreactivity on endothelial cells of the rat tracheal mucosa. Am. J. Physiol. 270:L404–14
    [Google Scholar]
  144. 144. 
    Columbo M, Horowitz EM, Kagey-Sobotka A, Lichtenstein LM. 1996. Substance P activates the release of histamine from human skin mast cells through a pertussis toxin-sensitive and protein kinase C-dependent mechanism. Clin. Immunol. Immunopathol. 81:68–73
    [Google Scholar]
  145. 145. 
    Gibbins IL, Furness JB, Costa M, MacIntyre I, Hillyard CJ, Girgis S. 1985. Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci. Lett. 57:125–30
    [Google Scholar]
  146. 146. 
    Lundberg JM, Franco-Cereceda A, Hua X, Hokfelt T, Fischer JA. 1985. Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. Eur. J. Pharmacol. 108:315–19
    [Google Scholar]
  147. 147. 
    Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I. 1985. Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56
    [Google Scholar]
  148. 148. 
    McCulloch J, Uddman R, Kingman TA, Edvinsson L 1986. Calcitonin gene-related peptide: functional role in cerebrovascular regulation.. PNAS 83:5731–35
    [Google Scholar]
  149. 149. 
    Russell FA, King R, Smillie SJ, Kodji X, Brain SD. 2014. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev. 94:1099–142
    [Google Scholar]
  150. 150. 
    Sternini C. 1992. Enteric and visceral afferent CGRP neurons: targets of innervation and differential expression patterns. Ann. N. Y. Acad. Sci. 657:170–86
    [Google Scholar]
  151. 151. 
    Anand P, Bloom SR, McGregor GP. 1983. Topical capsaicin pretreatment inhibits axon reflex vasodilatation caused by somatostatin and vasoactive intestinal polypeptide in human skin. Br. J. Pharmacol. 78:665–69
    [Google Scholar]
  152. 152. 
    Lowman MA, Benyon RC, Church MK. 1988. Characterization of neuropeptide-induced histamine release from human dispersed skin mast cells. Br. J. Pharmacol. 95:121–30
    [Google Scholar]
  153. 153. 
    Gonzalez C, Barroso C, Martin C, Gulbenkian S, Estrada C. 1997. Neuronal nitric oxide synthase activation by vasoactive intestinal peptide in bovine cerebral arteries. J. Cereb. Blood Flow Metab. 17:977–84
    [Google Scholar]
  154. 154. 
    Dewing SB. 1971. Remission of psoriasis associated with cutaneous nerve section. Arch. Dermatol. 104:220–21
    [Google Scholar]
  155. 155. 
    Farber EM, Lanigan SW, Boer J. 1990. The role of cutaneous sensory nerves in the maintenance of psoriasis. Int. J. Dermatol. 29:418–20
    [Google Scholar]
  156. 156. 
    Raychaudhuri SP, Farber EM. 1993. Are sensory nerves essential for the development of psoriatic lesions?. J. Am. Acad. Dermatol. 28:488–89
    [Google Scholar]
  157. 157. 
    Amon U, Wolff HH. 1994. Healing of chronic atopic dermatitis lesions in skin areas of paraplegia after trauma. J. Dermatol. 21:982–83
    [Google Scholar]
  158. 158. 
    Joseph T, Kurian J, Warwick DJ, Friedmann PS. 2005. Unilateral remission of psoriasis following traumatic nerve palsy. Br. J. Dermatol. 152:185–86
    [Google Scholar]
  159. 159. 
    Kane D, Lockhart JC, Balint PV, Mann C, Ferrell WR, McInnes IB. 2005. Protective effect of sensory denervation in inflammatory arthritis (evidence of regulatory neuroimmune pathways in the arthritic joint). Ann. Rheum. Dis. 64:325–27
    [Google Scholar]
  160. 160. 
    Kecici AS, Goktay F, Tutkavul K, Gunes P, Yasar S. 2018. Unilateral improvement of nail psoriasis with denervation injury. Clin. Exp. Dermatol. 43:339–41
    [Google Scholar]
  161. 161. 
    Ostrowski SM, Belkadi A, Loyd CM, Diaconu D, Ward NL. 2011. Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J. Investig. Dermatol. 131:1530–38Early demonstration that cutaneous nerves regulate psoriasiform inflammation of the skin via neuropeptides.
    [Google Scholar]
  162. 162. 
    Roggenkamp D, Kopnick S, Stab F, Wenck H, Schmelz M, Neufang G. 2013. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J. Investig. Dermatol. 133:1620–28
    [Google Scholar]
  163. 163. 
    Kodali S, Ding W, Huang J, Seiffert K, Wagner JA, Granstein RD. 2004. Vasoactive intestinal peptide modulates Langerhans cell immune function. J. Immunol. 173:6082–88
    [Google Scholar]
  164. 164. 
    Ding W, Stohl LL, Wagner JA, Granstein RD. 2008. Calcitonin gene-related peptide biases Langerhans cells toward Th2-type immunity. J. Immunol. 181:6020–26
    [Google Scholar]
  165. 165. 
    Ding W, Manni M, Stohl LL, Zhou XK, Wagner JA, Granstein RD. 2012. Pituitary adenylate cyclase-activating peptide and vasoactive intestinal polypeptide bias Langerhans cell Ag presentation toward Th17 cells. Eur. J. Immunol. 42:901–11
    [Google Scholar]
  166. 166. 
    Riol-Blanco L, Ordovas-Montanes J, Perro M, Naval E, Thiriot A et al. 2014. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510:157–61
    [Google Scholar]
  167. 167. 
    Langley JN. 1900. On axon-reflexes in the pre-ganglionic fibres of the sympathetic system. J. Physiol. 25:364–98
    [Google Scholar]
  168. 168. 
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI et al. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–62
    [Google Scholar]
  169. 169. 
    Pavlov VA, Tracey KJ. 2017. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat. Neurosci. 20:156–66
    [Google Scholar]
  170. 170. 
    Pavlov VA, Chavan SS, Tracey KJ. 2018. Molecular and functional neuroscience in immunity. Annu. Rev. Immunol. 36:783–812
    [Google Scholar]
  171. 171. 
    Talbot S, Abdulnour RE, Burkett PR, Lee S, Cronin SJ et al. 2015. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 87:341–54
    [Google Scholar]
  172. 172. 
    Cardoso V, Chesne J, Ribeiro H, Garcia-Cassani B, Carvalho T et al. 2017. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549:277–81
    [Google Scholar]
  173. 173. 
    Klose CSN, Mahlakoiv T, Moeller JB, Rankin LC, Flamar AL et al. 2017. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549:282–86
    [Google Scholar]
  174. 174. 
    Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour R-EE, Nyman J et al. 2017. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549:351–56
    [Google Scholar]
  175. 175. 
    Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A et al. 2013. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502:245–48
    [Google Scholar]
  176. 176. 
    Suzuki K, Hayano Y, Nakai A, Furuta F, Noda M. 2016. Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J. Exp. Med. 213:2567–74
    [Google Scholar]
  177. 177. 
    Seillet C, Luong K, Tellier J, Jacquelot N, Shen RD et al. 2020. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat. Immunol. 21:2168–77 Erratum. 2020. Nat. Immunol. 21(3):354
    [Google Scholar]
  178. 178. 
    Baral P, Umans BD, Li L, Wallrapp A, Bist M et al. 2018. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 24:417–26
    [Google Scholar]
  179. 179. 
    Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A et al. 2020. Gut-innervating nociceptor neurons regulate Peyer's patch microfold cells and SFB levels to mediate Salmonella host defense. Cell 180:33–49.e22
    [Google Scholar]
  180. 180. 
    Morrison SF, Nakamura K. 2011. Central neural pathways for thermoregulation. Front. Biosci. 16:74–104
    [Google Scholar]
  181. 181. 
    Bryan CP. 1930. Ancient Egyptian Medicine: The Papyrus Ebers. Chicago: Ares
  182. 182. 
    Astyrakaki E, Papaioannou A, Askitopoulou H. 2010. References to anesthesia, pain, and analgesia in the Hippocratic Collection. Anesth. Analg. 110:188–94
    [Google Scholar]
  183. 183. 
    Unschuld PU, Tessenow H. 2011. Huang Di nei jing su wen: An Annotated Translation of Huang Di's Inner Classic—Basic Questions. Berkeley: Univ. Calif. Press
  184. 184. 
    Sgantzos M, Tsoucalas G, Karamanou M, Giatsiou S, Tsoukalas I, Androutsos G. 2015. Hippocrates on pediatric dermatology. Pediatr. Dermatol. 32:600–3
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101719-113805
Loading
/content/journals/10.1146/annurev-immunol-101719-113805
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error