1932

Abstract

Many of the pathways that underlie the diversification of naive T cells into effector and memory subsets, and the maintenance of these populations, remain controversial. In recent years a variety of experimental tools have been developed that allow us to follow the fates of cells and their descendants. In this review we describe how mathematical models provide a natural language for describing the growth, loss, and differentiation of cell populations. By encoding mechanistic descriptions of cell behavior, models can help us interpret these new datasets and reveal the rules underpinning T cell fate decisions, both at steady state and during immune responses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101721-040924
2023-04-26
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101721-040924.html?itemId=/content/journals/10.1146/annurev-immunol-101721-040924&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kaech SM, Wherry EJ. 2007. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27:3393–405
    [Google Scholar]
  2. 2.
    Ahmed R, Bevan MJ, Reiner SL, Fearon DT. 2009. The precursors of memory: models and controversies. Nat. Rev. Immunol. 9:9662–68
    [Google Scholar]
  3. 3.
    Chang JT, Wherry EJ, Goldrath AW. 2014. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol. 15:121104–15
    [Google Scholar]
  4. 4.
    Jameson SC, Masopust D. 2018. Understanding subset diversity in T cell memory. Immunity 48:2214–26
    [Google Scholar]
  5. 5.
    Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA et al. 1998. Helper T cell differentiation is controlled by the cell cycle. Immunity 9:2229–37
    [Google Scholar]
  6. 6.
    Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B et al. 2013. Disparate individual fates compose robust CD8+ T cell immunity. Science 340:6132630–35
    [Google Scholar]
  7. 7.
    Gerlach C, Rohr JC, Perié L, van Rooij N, van Heijst JWJ et al. 2013. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340:6132635–39
    [Google Scholar]
  8. 8.
    Plambeck M, Kazeroonian A, Loeffler D, Kretschmer L, Salinno C et al. 2022. Heritable changes in division speed accompany the diversification of single T cell fate. PNAS 119:9e2116260119
    [Google Scholar]
  9. 9.
    Stemberger C, Huster K, Koffler M, Anderl F, Schiemann M et al. 2007. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27:6985–97
    [Google Scholar]
  10. 10.
    Buchholz VR, Schumacher TNM, Busch DH. 2016. T cell fate at the single-cell level. Annu. Rev. Immunol. 34:65–92
    [Google Scholar]
  11. 11.
    De Boer RJ, Perelson AS. 2013. Quantifying T lymphocyte turnover. J. Theor. Biol. 327:45–87
    [Google Scholar]
  12. 12.
    Hogan T, Yates A, Seddon B. 2017. Generation of busulfan chimeric mice for the analysis of T cell population dynamics. Bio-protocol 4:24e2650
    [Google Scholar]
  13. 13.
    Hogan T, Gossel G, Yates AJ, Seddon B. 2015. Temporal fate mapping reveals age-linked heterogeneity in naive T lymphocytes in mice. PNAS 112:50E6917–26
    [Google Scholar]
  14. 14.
    Asquith B, Debacq C, Macallan DC, Willems L, Bangham CR. 2002. Lymphocyte kinetics: the interpretation of labelling data. Trends Immunol. 23:12596–601
    [Google Scholar]
  15. 15.
    Hogan T, Nowicka M, Cownden D, Pearson CF, Yates AJ, Seddon B. 2019. Differential impact of self and environmental antigens on the ontogeny and maintenance of CD4+ T cell memory. eLife 8:e48901
    [Google Scholar]
  16. 16.
    Rane S, Hogan T, Seddon B, Yates AJ. 2018. Age is not just a number: Naive T cells increase their ability to persist in the circulation over time. PLOS Biol. 16:4e2003949
    [Google Scholar]
  17. 17.
    Rane S, Hogan T, Lee E, Seddon B, Yates AJ. 2022. Towards a unified model of naive T cell dynamics across the lifespan. eLife 11:e78168
    [Google Scholar]
  18. 18.
    Tsukamoto H, Clise-Dwyer K, Huston GE, Duso DK, Buck AL et al. 2009. Age-associated increase in lifespan of naive CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects. PNAS 106:4318333–38
    [Google Scholar]
  19. 19.
    Houston EG Jr., Higdon LE, Fink PJ. 2011. Recent thymic emigrants are preferentially incorporated only into the depleted T-cell pool. PNAS 108:135366–71
    [Google Scholar]
  20. 20.
    den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R et al. 2012. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36:2288–97
    [Google Scholar]
  21. 21.
    Gossel G, Hogan T, Cownden D, Seddon B, Yates AJ. 2017. Memory CD4 T cell subsets are kinetically heterogeneous and replenished from naive T cells at high levels. eLife 6:e23013
    [Google Scholar]
  22. 22.
    Kawabe T, Jankovic D, Kawabe S, Huang Y, Lee PH et al. 2017. Memory-phenotype CD4+ T cells spontaneously generated under steady-state conditions exert innate TH1-like effector function. Sci. Immunol. 2:12eaam9304
    [Google Scholar]
  23. 23.
    van Hoeven V, Drylewicz J, Westera L, den Braber I, Mugwagwa T et al. 2017. Dynamics of recent thymic emigrants in young adult mice. Front. Immunol. 8:933
    [Google Scholar]
  24. 24.
    Younes SA, Punkosdy G, Caucheteux S, Chen T, Grossman Z, Paul WE. 2011. Memory phenotype CD4 T cells undergoing rapid, nonburst-like, cytokine-driven proliferation can be distinguished from antigen-experienced memory cells. PLOS Biol. 9:10e1001171
    [Google Scholar]
  25. 25.
    Aghajani K, Keerthivasan S, Yu Y, Gounari F. 2012. Generation of CD4CreERT2 transgenic mice to study development of peripheral CD4-T-cells. Genesis 50:12908–13
    [Google Scholar]
  26. 26.
    Reynaldi A, Smith NL, Schlub TE, Tabilas C, Venturi V et al. 2019. Fate mapping reveals the age structure of the peripheral T cell compartment. PNAS 116:103974–81
    [Google Scholar]
  27. 27.
    Smith NL, Patel RK, Reynaldi A, Grenier JK, Wang J et al. 2018. Developmental origin governs CD8+ T cell fate decisions during infection. Cell 174:1117–30.e14
    [Google Scholar]
  28. 28.
    Macallan DC, Borghans JAM, Asquith B. 2017. Human T cell memory: a dynamic view. Vaccines 5:15
    [Google Scholar]
  29. 29.
    Fearon DT, Manders P, Wagner SD. 2001. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293:5528248–50
    [Google Scholar]
  30. 30.
    Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS et al. 2009. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15:7808–13
    [Google Scholar]
  31. 31.
    Westera L, Drylewicz J, den Braber I, Mugwagwa T, van der Maas I et al. 2013. Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans. Blood 122:132205–12
    [Google Scholar]
  32. 32.
    Ganusov VV, Borghans JAM, De Boer RJ. 2010. Explicit kinetic heterogeneity: mathematical models for interpretation of deuterium labeling of heterogeneous cell populations. PLOS Comput. Biol. 6:2e1000666
    [Google Scholar]
  33. 33.
    Zarnitsyna VI, Akondy RS, Ahmed H, McGuire DJ, Zarnitsyn VG et al. 2021. Dynamics and turnover of memory CD8 T cell responses following yellow fever vaccination. PLOS Comput. Biol. 17:10e1009468
    [Google Scholar]
  34. 34.
    Teunis PFM, van Eijkeren JCH, de Graaf WF, Marinović AB, Kretzschmar MEE. 2016. Linking the seroresponse to infection to within-host heterogeneity in antibody production. Epidemics 16:33–39
    [Google Scholar]
  35. 35.
    Restifo NP, Gattinoni L. 2013. Lineage relationship of effector and memory T cells. Curr. Opin. Immunol. 25:5556–63
    [Google Scholar]
  36. 36.
    Costa Del Amo P, Beneytez JL, Boelen L, Ahmed R, Miners KL et al. 2018. Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness. PLOS Biol. 16:61–22
    [Google Scholar]
  37. 37.
    Costa Del Amo P, Debebe B, Razavi-Mohseni M, Nakaoka S, Worth A et al. 2020. The rules of human T cell fate in vivo. Front. Immunol. 11:573
    [Google Scholar]
  38. 38.
    Perelson AS. 2002. Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2:128–36
    [Google Scholar]
  39. 39.
    Perelson AS, Ribeiro RM. 2013. Modeling the within-host dynamics of HIV infection. BMC Biol. 11:96
    [Google Scholar]
  40. 40.
    De Boer RJ, Ganusov VV, Milutinovic D, Hodgkin PD, Perelson AS. 2006. Estimating lymphocyte division and death rates from CFSE data. Bull. Math. Biol. 68:51011–31
    [Google Scholar]
  41. 41.
    Ganusov VV, Pilyugin SS, de Boer RJ, Murali-Krishna K, Ahmed R, Antia R 2005. Quantifying cell turnover using CFSE data. J. Immunol. Methods 298:1–2183–200
    [Google Scholar]
  42. 42.
    Smith JA, Martin L. 1973. Do cells cycle?. PNAS 70:41263–67
    [Google Scholar]
  43. 43.
    Gett AV, Hodgkin PD. 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1:3239–44
    [Google Scholar]
  44. 44.
    Yates A, Stark J, Klein N, Antia R, Callard R. 2007. Understanding the slow depletion of memory CD4+ T cells in HIV infection. PLOS Med. 4:5e177
    [Google Scholar]
  45. 45.
    Nolz JC, Rai D, Badovinac VP, Harty JT. 2012. Division-linked generation of death-intermediates regulates the numerical stability of memory CD8 T cells. PNAS 109:166199–204
    [Google Scholar]
  46. 46.
    Van Stipdonk MJ, Lemmens EE, Schoenberger SP. 2001. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2:423–29
    [Google Scholar]
  47. 47.
    De Boer RJ, Oprea M, Antia R, Murali-Krishna K, Ahmed R, Perelson AS 2001. Recruitment times, proliferation, and apoptosis rates during the CD8+ T-cell response to lymphocytic choriomeningitis virus. J. Virol. 75:10663–69
    [Google Scholar]
  48. 48.
    De Boer RJ, Homann D, Perelson AS. 2003. Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol. 171:3928–35
    [Google Scholar]
  49. 49.
    Antia R, Ganusov VV, Ahmed R 2005. The role of models in understanding CD8+ T-cell memory. Nat. Rev. Immunol. 5:2101–11
    [Google Scholar]
  50. 50.
    Kohler B. 2007. Mathematically modeling dynamics of T cell responses: predictions concerning the generation of memory cells. J. Theor. Biol. 245:4669–76
    [Google Scholar]
  51. 51.
    Antia R, Bergstrom CT, Pilyugin SS, Kaech SM, Ahmed R 2003. Models of CD8+ responses: 1. What is the antigen-independent proliferation program. J. Theor. Biol. 221:4585–98
    [Google Scholar]
  52. 52.
    De Boer RJ, Perelson AS. 2013. Antigen-stimulated CD4 T cell expansion can be limited by their grazing of peptide-MHC complexes. J. Immunol. 190:115454–58
    [Google Scholar]
  53. 53.
    Ganusov VV, Milutinovic D, De Boer RJ. 2007. IL-2 regulates expansion of CD4+ T cell populations by affecting cell death: insights from modeling CFSE data. J. Immunol. 179:2950–57
    [Google Scholar]
  54. 54.
    Joshi NS, Cui W, Chandele A, Lee HK, Urso DR et al. 2007. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27:2281–95
    [Google Scholar]
  55. 55.
    Pais Ferreira D, Silva JG, Wyss T, Fuertes Marraco SA, Scarpellino L et al. 2020. Central memory CD8+ T cells derive from stem-like Tcf7hi effector cells in the absence of cytotoxic differentiation. Immunity 53:5985–1000
    [Google Scholar]
  56. 56.
    Kretschmer L, Flossdorf M, Mir J, Cho YL, Plambeck M et al. 2020. Differential expansion of T central memory precursor and effector subsets is regulated by division speed. Nat. Commun. 11:1113
    [Google Scholar]
  57. 57.
    Johnnidis JB, Muroyama Y, Ngiow SF, Chen Z, Manne S et al. 2021. Inhibitory signaling sustains a distinct early memory CD8+ T cell precursor that is resistant to DNA damage. Sci. Immunol. 6:551563–73
    [Google Scholar]
  58. 58.
    Bresser K, Kok L, Swain AC, King LA, Jacobs L et al. 2022. Replicative history marks transcriptional and functional disparity in the CD8+ T cell memory pool. Nat. Immunol. 23:5791–801
    [Google Scholar]
  59. 59.
    Youngblood B, Hale JS, Kissick HT, Ahn E, Xu X et al. 2017. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552:7685404–9
    [Google Scholar]
  60. 60.
    Sarkar S, Kalia V, Haining WN, Konieczny BT, Subramaniam S, Ahmed R 2008. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J. Exp. Med. 205:3625–40
    [Google Scholar]
  61. 61.
    Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA, Ahmed R 2010. Prolonged interleukin-2Rα expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32:191–103
    [Google Scholar]
  62. 62.
    Pandit A, De Boer RJ. 2019. Stochastic inheritance of division and death times determines the size and phenotype of CD8+ T cell families. Front. Immunol. 10:436
    [Google Scholar]
  63. 63.
    Deenick EK, Gett AV, Hodgkin PD. 2003. Stochastic model of T cell proliferation: a calculus revealing IL-2 Regulation of precursor frequencies, cell cycle time, and survival. J. Immunol. 170:104963–72
    [Google Scholar]
  64. 64.
    Dowling MR, Milutinović D, Hodgkin PD. 2005. Modelling cell lifespan and proliferation: Is likelihood to die or to divide independent of age?. J. R. Soc. Interface 2:5517–26
    [Google Scholar]
  65. 65.
    Hawkins ED, Turner ML, Dowling MR, van Gend C, Hodgkin PD. 2007. A model of immune regulation as a consequence of randomized lymphocyte division and death times. PNAS 104:125032–37
    [Google Scholar]
  66. 66.
    Dowling MR, Hodgkin PD. 2009. Modelling naive T-cell homeostasis: consequences of heritable cellular lifespan during ageing. Immunol. Cell Biol. 87:6445–56
    [Google Scholar]
  67. 67.
    Duffy KR, Hodgkin PD. 2012. Intracellular competition for fates in the immune system. Trends Cell Biol. 22:9457–64
    [Google Scholar]
  68. 68.
    Marchingo JM, Kan A, Sutherland RM, Duffy KR, Wellard CJ et al. 2014. Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion. Science 346:62131123–27
    [Google Scholar]
  69. 69.
    Heinzel S, Binh Giang T, Kan A, Marchingo JM, Lye BK et al. 2017. A Myc-dependent division timer complements a cell-death timer to regulate T cell and B cell responses. Nat. Immunol. 18:196–103
    [Google Scholar]
  70. 70.
    Cheon H, Kan A, Prevedello G, Oostindie SC, Dovedi SJ et al. 2021. Cyton2: a model of immune cell population dynamics that includes familial instructional inheritance. Front. Bioinformat. 1:723337
    [Google Scholar]
  71. 71.
    Marchingo JM, Prevedello G, Kan A, Heinzel S, Hodgkin PD, Duffy KR. 2016. T-cell stimuli independently sum to regulate an inherited clonal division fate. Nat. Commun. 7:13540
    [Google Scholar]
  72. 72.
    Grassmann S, Mihatsch L, Mir J, Kazeroonian A, Rahimi R et al. 2020. Early emergence of T central memory precursors programs clonal dominance during chronic viral infection. Nat. Immunol. 21:121563–73
    [Google Scholar]
  73. 73.
    Milutinović D, De Boer RJ. 2007. Process noise: an explanation for the fluctuations in the immune response during acute viral infection. Biophys. J. 92:103358–67
    [Google Scholar]
  74. 74.
    Subramanian VG, Duffy KR, Turner ML, Hodgkin PD. 2008. Determining the expected variability of immune responses using the cyton model. J. Math. Biol. 56:6861–92
    [Google Scholar]
  75. 75.
    Hawkins ED, Markham JF, McGuinness LP, Hodgkin PD. 2009. A single-cell pedigree analysis of alternative stochastic lymphocyte fates. PNAS 106:3213457–62
    [Google Scholar]
  76. 76.
    Markham JF, Wellard CJ, Hawkins ED, Duffy KR, Hodgkin PD. 2010. A minimum of two distinct heritable factors are required to explain correlation structures in proliferating lymphocytes. J. R. Soc. Interface 7:481049–59
    [Google Scholar]
  77. 77.
    Duffy KR, Wellard CJ, Markham JF, Zhou JH, Holmberg R et al. 2012. Activation-induced B cell fates are selected by intracellular stochastic competition. Science 335:6066338–41
    [Google Scholar]
  78. 78.
    Hodgkin PD. 2018. Modifying clonal selection theory with a probabilistic cell. Immunol. Rev. 285:1249–62
    [Google Scholar]
  79. 79.
    Asquith B, De Boer RJ. 2016. How lymphocytes add up. Nat. Immunol. 18:112–13
    [Google Scholar]
  80. 80.
    Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K et al. 2015. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162:61322–37
    [Google Scholar]
  81. 81.
    Brewitz A, Eickhoff S, Dähling S, Quast T, Bedoui S et al. 2017. CD8+ T cells orchestrate pDC-XCR1+ dendritic cell spatial and functional cooperativity to optimize priming. Immunity 46:2205–19
    [Google Scholar]
  82. 82.
    De Boer RJ, Perelson AS. 2005. Estimating division and death rates from CFSE data. J. Comp. Appl. Math. 184:140–64
    [Google Scholar]
  83. 83.
    Yoon H, Legge KL, Sung SS, Braciale TJ. 2007. Sequential activation of CD8+ T cells in the draining lymph nodes in response to pulmonary virus infection. J. Immunol. 179:1391–99
    [Google Scholar]
  84. 84.
    Yoon H, Kim TS, Braciale TJ. 2010. The cell cycle time of CD8+ T cells responding in vivo is controlled by the type of antigenic stimulus. PLOS ONE 5:11e15423
    [Google Scholar]
  85. 85.
    Kretschmer L, Buchholz VR. 2022. T cell memories of past divisions. Nat. Immunol. 23:5646–47
    [Google Scholar]
  86. 86.
    Henning AN, Roychoudhuri R, Restifo NP. 2018. Epigenetic control of CD8+ T cell differentiation. Nat. Rev. Immunol. 18:5340–56
    [Google Scholar]
  87. 87.
    Weber TS, Perie L, Duffy KR. 2016. Inferring average generation via division-linked labeling. J. Math. Biol. 73:2491–523
    [Google Scholar]
  88. 88.
    Schlub TE, Venturi V, Kedzierska K, Wellard C, Doherty PC et al. 2009. Division-linked differentiation can account for CD8+ T-cell phenotype in vivo. Eur. J. Immunol. 39:167–77
    [Google Scholar]
  89. 89.
    Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H et al. 2003. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J. Immunol. 170:42022–29
    [Google Scholar]
  90. 90.
    Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C et al. 2005. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 202:5673–85
    [Google Scholar]
  91. 91.
    Kratchmarov R, Magun AM, Reiner SL. 2018. TCF1 expression marks self-renewing human CD8+T cells. Blood Adv. 2:141685–90
    [Google Scholar]
  92. 92.
    Zhou X, Yu S, Zhao DM, Harty JT, Badovinac VP, Xue HH. 2010. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33:2229–40
    [Google Scholar]
  93. 93.
    Jeannet G, Boudousquié C, Gardiol N, Kang J, Huelsken J, Held W. 2010. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. PNAS 107:219777–82
    [Google Scholar]
  94. 94.
    Akondy RS, Johnson PL, Nakaya HI, Edupuganti S, Mulligan MJ et al. 2015. Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination. PNAS 112:103050–55
    [Google Scholar]
  95. 95.
    Smith CJ, Venturi V, Quigley MF, Turula H, Gostick E et al. 2020. Stochastic expansions maintain the clonal stability of CD8+ T cell populations undergoing memory inflation driven by murine cytomegalovirus. J. Immunol. 204:1112–21
    [Google Scholar]
  96. 96.
    Yates AJ. 2014. Theories and quantification of thymic selection. Front. Immunol. 5:13
    [Google Scholar]
  97. 97.
    Crowl JT, Heeg M, Ferry A, Milner JJ, Omilusik KD et al. 2022. Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. Nat. Immunol. 23:71121–31
    [Google Scholar]
  98. 98.
    Milner JJ, Toma C, Yu B, Zhang K, Omilusik K et al. 2017. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552:7684253–57
    [Google Scholar]
  99. 99.
    Szabo PA, Miron M, Farber DL. 2019. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4:34eaas9673
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101721-040924
Loading
/content/journals/10.1146/annurev-immunol-101721-040924
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error