1932

Abstract

A large body of evidence generated in the last two and a half years addresses the roles of T cells in SARS-CoV-2 infection and following vaccination. Infection or vaccination induces multi-epitope CD4 and CD8 T cell responses with polyfunctionality. Early T cell responses have been associated with mild COVID-19 outcomes. In concert with animal model data, these results suggest that while antibody responses are key to prevent infection, T cell responses may also play valuable roles in reducing disease severity and controlling infection. T cell memory after vaccination is sustained for at least six months. While neutralizing antibody responses are impacted by SARS-CoV-2 variants, most CD4 and CD8 T cell responses are preserved. This review highlights the extensive progress made, and the data and knowledge gaps that remain, in our understanding of T cell responses to SARS-CoV-2 and COVID-19 vaccines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101721-061120
2023-04-26
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101721-061120.html?itemId=/content/journals/10.1146/annurev-immunol-101721-061120&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Moss P. 2022. The T cell immune response against SARS-CoV-2. Nat. Immunol. 23:186–93
    [Google Scholar]
  2. 2.
    Niessl J, Sekine T, Buggert M. 2021. T cell immunity to SARS-CoV-2. Semin. Immunol. 55:101505
    [Google Scholar]
  3. 3.
    Jarjour NN, Masopust D, Jameson SC. 2021. T cell memory: understanding COVID-19. Immunity 54:14–18
    [Google Scholar]
  4. 4.
    Noh JY, Jeong HW, Kim JH, Shin EC. 2021. T cell-oriented strategies for controlling the COVID-19 pandemic. Nat. Rev. Immunol. 21:687–88
    [Google Scholar]
  5. 5.
    Sette A, Crotty S. 2021. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184:861–80
    [Google Scholar]
  6. 6.
    Altmann DM, Boyton RJ. 2022. COVID-19 vaccination: the road ahead. Science 375:1127–32
    [Google Scholar]
  7. 7.
    Vardhana S, Baldo L, Morice WG 2nd, Wherry EJ. 2022. Understanding T cell responses to COVID-19 is essential for informing public health strategies. Sci. Immunol. 7:eabo1303
    [Google Scholar]
  8. 8.
    Tomalka JA, Suthar MS, Deeks SG, Sekaly RP. 2022. Fighting the SARS-CoV-2 pandemic requires a global approach to understanding the heterogeneity of vaccine responses. Nat. Immunol. 23:360–70
    [Google Scholar]
  9. 9.
    Bertoletti A, Le Bert N, Qui M, Tan AT 2021. SARS-CoV-2-specific T cells in infection and vaccination. Cell Mol. Immunol. 18:2307–12
    [Google Scholar]
  10. 10.
    Grifoni A, Sidney J, Vita R, Peters B, Crotty S et al. 2021. SARS-CoV-2 human T cell epitopes: adaptive immune response against COVID-19. Cell Host Microbe 29:1076–92
    [Google Scholar]
  11. 11.
    Sette A, Crotty S. 2022. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol. Rev. 310:127–46
    [Google Scholar]
  12. 12.
    Goldblatt D, Alter G, Crotty S, Plotkin SA. 2022. Correlates of protection against SARS-CoV-2 infection and COVID-19 disease. Immunol. Rev. 310:16–26
    [Google Scholar]
  13. 13.
    Wherry EJ, Barouch DH. 2022. T cell immunity to COVID-19 vaccines. Science 377:821–22
    [Google Scholar]
  14. 14.
    Sallusto F, Lanzavecchia A, Araki K, Ahmed R 2010. From vaccines to memory and back. Immunity 33:451–63
    [Google Scholar]
  15. 15.
    Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. 2020. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20:363–74
    [Google Scholar]
  16. 16.
    Merad M, Martin JC. 2020. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20:355–62
    [Google Scholar]
  17. 17.
    Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. 2020. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe 27:671–80.e2
    [Google Scholar]
  18. 18.
    Ahmed SF, Quadeer AA, McKay MR. 2020. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 12:254
    [Google Scholar]
  19. 19.
    Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM et al. 2020. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181:1489–501.e15
    [Google Scholar]
  20. 20.
    Peeples L. 2020. News feature: avoiding pitfalls in the pursuit of a COVID-19 vaccine. PNAS 117:8218–21
    [Google Scholar]
  21. 21.
    Bolles M, Deming D, Long K, Agnihothram S, Whitmore A et al. 2011. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85:12201–15
    [Google Scholar]
  22. 22.
    Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. 2018. CD4 T cells in protection from influenza virus: viral antigen specificity and functional potential. Immunol. Rev. 284:91–105
    [Google Scholar]
  23. 23.
    Grant EJ, Quiñones-Parra SM, Clemens EB, Kedzierska K 2016. Human influenza viruses and CD8+ T cell responses. Curr. Opin. Virol. 16:132–42
    [Google Scholar]
  24. 24.
    Wu T, Guan J, Handel A, Tscharke DC, Sidney J et al. 2019. Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses. Nat. Commun. 10:2846
    [Google Scholar]
  25. 25.
    Rivino L, Kumaran EA, Jovanovic V, Nadua K, Teo EW et al. 2013. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J. Virol. 87:2693–706
    [Google Scholar]
  26. 26.
    Weiskopf D, Cerpas C, Angelo MA, Bangs DJ, Sidney J et al. 2015. Human CD8+ T-cell responses against the 4 dengue virus serotypes are associated with distinct patterns of protein targets. J. Infect. Dis. 212:1743–51
    [Google Scholar]
  27. 27.
    Tarke A, Sidney J, Kidd CK, Dan JM, Ramirez SI et al. 2021. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep. Med. 2:100204
    [Google Scholar]
  28. 28.
    Ferretti AP, Kula T, Wang Y, Nguyen DMV, Weinheimer A et al. 2020. Unbiased screens show CD8+ T cells of COVID-19 patients recognize shared epitopes in SARS-CoV-2 that largely reside outside the spike protein. Immunity 53:1095–107.e3
    [Google Scholar]
  29. 29.
    Cohen KW, Linderman SL, Moodie Z, Czartoski J, Lai L et al. 2021. Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Rep. Med. 2:100354
    [Google Scholar]
  30. 30.
    Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED et al. 2021. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371:eabf4063
    [Google Scholar]
  31. 31.
    Sette A, Saphire EO. 2022. Inducing broad-based immunity against viruses with pandemic potential. Immunity 55:738–48
    [Google Scholar]
  32. 32.
    Quadeer AA, Ahmed SF, McKay MR. 2021. Landscape of epitopes targeted by T cells in 852 individuals recovered from COVID-19: meta-analysis, immunoprevalence, and web platform. Cell Rep. Med. 2:100312
    [Google Scholar]
  33. 33.
    Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S et al. 2019. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47:D339–43
    [Google Scholar]
  34. 34.
    Lang-Meli J, Luxenburger H, Wild K, Karl V, Oberhardt V et al. 2022. SARS-CoV-2-specific T-cell epitope repertoire in convalescent and mRNA-vaccinated individuals. Nat. Microbiol. 7:675–79
    [Google Scholar]
  35. 35.
    Paul S, Weiskopf D, Angelo MA, Sidney J, Peters B, Sette A. 2013. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J. Immunol. 191:5831–39
    [Google Scholar]
  36. 36.
    Hensen L, Illing PT, Rowntree LC, Davies J, Miller A et al. 2022. T cell epitope discovery in the context of distinct and unique indigenous HLA profiles. Front. Immunol. 13:812393
    [Google Scholar]
  37. 37.
    Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A et al. 2020. Genomewide association study of severe Covid-19 with respiratory failure. N. Engl. J. Med. 383:1522–34
    [Google Scholar]
  38. 38.
    Horowitz JE, Kosmicki JA, Damask A, Sharma D, Roberts GHL et al. 2022. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat. Genet. 54:382–92
    [Google Scholar]
  39. 39.
    COVID-19 Host Genet. Initiat 2021. Mapping the human genetic architecture of COVID-19. Nature 600:472–77
    [Google Scholar]
  40. 40.
    Shelton JF, Shastri AJ, Ye C, Weldon CH, Filshtein-Sonmez T et al. 2021. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat. Genet. 53:801–8
    [Google Scholar]
  41. 41.
    Sacco K, Castagnoli R, Vakkilainen S, Liu C, Delmonte OM et al. 2022. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. Nat. Med. 28:1050–62
    [Google Scholar]
  42. 42.
    Wagner KI, Mateyka LM, Jarosch S, Grass V, Weber S et al. 2022. Recruitment of highly cytotoxic CD8+ T cell receptors in mild SARS-CoV-2 infection. Cell Rep. 38:110214
    [Google Scholar]
  43. 43.
    Hu C, Shen M, Han X, Chen Q, Li L et al. 2022. Identification of cross-reactive CD8+ T cell receptors with high functional avidity to a SARS-CoV-2 immunodominant epitope and its natural mutant variants. Genes Dis. 9:216–29
    [Google Scholar]
  44. 44.
    Rowntree LC, Petersen J, Juno JA, Chaurasia P, Wragg K et al. 2021. SARS-CoV-2-specific CD8+ T-cell responses and TCR signatures in the context of a prominent HLA-A*24:02 allomorph. Immunol. Cell Biol. 99:990–1000
    [Google Scholar]
  45. 45.
    Low JS, Vaqueirinho D, Mele F, Foglierini M, Jerak J et al. 2021. Clonal analysis of immunodominance and cross-reactivity of the CD4 T cell response to SARS-CoV-2. Science 372:1336–41
    [Google Scholar]
  46. 46.
    Habel JR, Nguyen THO, van de Sandt CE, Juno JA, Chaurasia P et al. 2020. Suboptimal SARS-CoV-2-specific CD8+ T cell response associated with the prominent HLA-A*02:01 phenotype. PNAS 117:24384–91
    [Google Scholar]
  47. 47.
    Somogyi E, Csiszovszki Z, Molnar L, Lorincz O, Toth J et al. 2021. A peptide vaccine candidate tailored to individuals' genetics mimics the multi-targeted T cell immunity of COVID-19 convalescent subjects. Front. Genet. 12:684152
    [Google Scholar]
  48. 48.
    Johansson AM, Malhotra U, Kim YG, Gomez R, Krist MP et al. 2021. Cross-reactive and mono-reactive SARS-CoV-2 CD4+ T cells in prepandemic and COVID-19 convalescent individuals. PLOS Pathog. 17:e1010203
    [Google Scholar]
  49. 49.
    Gangaev A, Ketelaars SLC, Isaeva OI, Patiwael S, Dopler A et al. 2021. Identification and characterization of a SARS-CoV-2 specific CD8+ T cell response with immunodominant features. Nat. Commun. 12:2593
    [Google Scholar]
  50. 50.
    Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z et al. 2020. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 21:1336–45
    [Google Scholar]
  51. 51.
    Tarke A, Coelho CH, Zhang Z, Dan JM, Yu ED et al. 2022. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185:847–59.e11
    [Google Scholar]
  52. 52.
    Saini SK, Hersby DS, Tamhane T, Povlsen HR, Amaya Hernandez SP et al. 2021. SARS-CoV-2 genome-wide T cell epitope mapping reveals immunodominance and substantial CD8+ T cell activation in COVID-19 patients. Sci. Immunol. 6:eabf7550
    [Google Scholar]
  53. 53.
    Prakash S, Srivastava R, Coulon PG, Dhanushkodi NR, Chentoufi AA et al. 2021. Genome-wide B cell, CD4+, and CD8+ T cell epitopes that are highly conserved between human and animal coronaviruses, identified from SARS-CoV-2 as targets for preemptive pan-coronavirus vaccines. J. Immunol. 206:2566–82
    [Google Scholar]
  54. 54.
    Weingarten-Gabbay S, Klaeger S, Sarkizova S, Pearlman LR, Chen DY et al. 2021. Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs. Cell 184:3962–80.e17
    [Google Scholar]
  55. 55.
    Murugesan K, Jagannathan P, Pham TD, Pandey S, Bonilla HF et al. 2021. Interferon-γ release assay for accurate detection of severe acute respiratory syndrome coronavirus 2 T-cell response. Clin. Infect. Dis. 73:e3130–32
    [Google Scholar]
  56. 56.
    Goletti D, Petrone L, Manissero D, Bertoletti A, Rao S et al. 2021. The potential clinical utility of measuring severe acute respiratory syndrome coronavirus 2-specific T-cell responses. Clin. Microbiol. Infect. 27:1784–89
    [Google Scholar]
  57. 57.
    Petrone L, Petruccioli E, Vanini V, Cuzzi G, Najafi Fard S et al. 2021. A whole blood test to measure SARS-CoV-2-specific response in COVID-19 patients. Clin. Microbiol. Infect. 27:286.e7–13
    [Google Scholar]
  58. 58.
    Tan AT, Lim JM, Le Bert N, Kunasegaran K, Chia A et al. 2021. Rapid measurement of SARS-CoV-2 spike T cells in whole blood from vaccinated and naturally infected individuals. J. Clin. Investig. 131:e152379
    [Google Scholar]
  59. 59.
    Törnell A, Grauers Wiktorin H, Ringlander J, Arabpour M, Nilsson MR et al. 2022. Rapid cytokine release assays for analysis of severe acute respiratory syndrome coronavirus 2–specific T cells in whole blood. J. Infect. Dis. 226:2208–16
    [Google Scholar]
  60. 60.
    Huzly D, Panning M, Smely F, Enders M, Komp J et al. 2022. Accuracy and real life performance of a novel interferon-γ release assay for the detection of SARS-CoV2 specific T cell response. J. Clin. Virol. 148:105098
    [Google Scholar]
  61. 61.
    Scurr MJ, Zelek WM, Lippiatt G, Somerville M, Burnell SEA et al. 2022. Whole blood-based measurement of SARS-CoV-2-specific T cells reveals asymptomatic infection and vaccine immunogenicity in healthy subjects and patients with solid-organ cancers. Immunology 165:250–59
    [Google Scholar]
  62. 62.
    Fernández-González M, Agulló V, Padilla S, García JA, García-Abellán J et al. 2022. Clinical performance of a standardized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interferon-γ release assay for simple detection of T-cell responses after infection or vaccination. Clin. Infect. Dis. 75:1e338–46
    [Google Scholar]
  63. 63.
    Kruttgen A, Klingel H, Haase G, Haefner H, Imohl M, Kleines M. 2021. Evaluation of the QuantiFERON SARS-CoV-2 interferon-γ release assay in mRNA-1273 vaccinated health care workers. J. Virol. Methods 298:114295
    [Google Scholar]
  64. 64.
    Martínez-Gallo M, Esperalba J, Pujol-Borrell R, Sandá V, Arrese-Muñoz I et al. 2022. Commercialized kits to assess T-cell responses against SARS-CoV-2 S peptides: a pilot study in health care workers. Med. Clín. 159:3116–23 ( from Spanish )
    [Google Scholar]
  65. 65.
    Mangsbo SM, Havervall S, Laurén I, Lindsay R, Jernbom Falk A et al. 2021. An evaluation of a FluoroSpot assay as a diagnostic tool to determine SARS-CoV-2 specific T cell responses. PLOS ONE 16:e0258041
    [Google Scholar]
  66. 66.
    Kruse M, Dark C, Aspden M, Cochrane D, Competiello R et al. 2021. Performance of the T-SPOT(®).COVID test for detecting SARS-CoV-2-responsive T cells. Int. J. Infect. Dis. 113:155–61
    [Google Scholar]
  67. 67.
    Schwarz M, Torre D, Lozano-Ojalvo D, Tan AT, Tabaglio T et al. 2022. Rapid, scalable assessment of SARS-CoV-2 cellular immunity by whole-blood PCR. Nat. Biotechnol. 40:1680–89
    [Google Scholar]
  68. 68.
    Ogbe A, Kronsteiner B, Skelly DT, Pace M, Brown A et al. 2021. T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nat. Commun. 12:2055
    [Google Scholar]
  69. 69.
    Renaudineau Y, Abravanel F, Izopet J, Bost C, Treiner E et al. 2022. Novel T cell interferon gamma release assay (IGRA) using spike recombinant protein for COVID19 vaccine response and Nucleocapsid for SARS-Cov2 response. Clin. Immunol. 237:108979
    [Google Scholar]
  70. 70.
    Yu ED, Wang E, Garrigan E, Goodwin B, Sutherland A et al. 2022. Development of a T cell-based immunodiagnostic system to effectively distinguish SARS-CoV-2 infection and COVID-19 vaccination status. Cell Host Microbe 30:388–99.e3
    [Google Scholar]
  71. 71.
    Zhao J, Zhao J, Mangalam AK, Channappanavar R, Fett C et al. 2016. Airway memory CD4+ T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 44:1379–91
    [Google Scholar]
  72. 72.
    Channappanavar R, Fett C, Zhao J, Meyerholz DK, Perlman S. 2014. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J. Virol. 88:11034–44
    [Google Scholar]
  73. 73.
    Zhuang Z, Lai X, Sun J, Chen Z, Zhang Z et al. 2021. Mapping and role of T cell response in SARS-CoV-2-infected mice. J. Exp. Med. 218:e20202187
    [Google Scholar]
  74. 74.
    Pardieck IN, van der Sluis TC, van der Gracht ETI, Veerkamp DMB, Behr FM et al. 2022. A third vaccination with a single T cell epitope confers protection in a murine model of SARS-CoV-2 infection. Nat. Commun. 13:3966
    [Google Scholar]
  75. 75.
    McMahan K, Yu J, Mercado NB, Loos C, Tostanoski LH et al. 2021. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 590:630–34
    [Google Scholar]
  76. 76.
    Chandrashekar A, Yu J, McMahan K, Jacob-Dolan C, Liu J et al. 2022. Vaccine protection against the SARS-CoV-2 Omicron variant in macaques. Cell 185:1549–55.e11
    [Google Scholar]
  77. 77.
    Hasenkrug KJ, Feldmann F, Myers L, Santiago ML, Guo K et al. 2021. Recovery from acute SARS-CoV-2 infection and development of anamnestic immune responses in T cell-depleted rhesus macaques. mBio 12:e0150321
    [Google Scholar]
  78. 78.
    Ishii H, Nomura T, Yamamoto H, Nishizawa M, Thu Hau TT et al. 2022. Neutralizing-antibody-independent SARS-CoV-2 control correlated with intranasal-vaccine-induced CD8+ T cell responses. Cell Rep. Med. 3:100520
    [Google Scholar]
  79. 79.
    Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM et al. 2020. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 183:996–1012.e19
    [Google Scholar]
  80. 80.
    Oja AE, Saris A, Ghandour CA, Kragten NAM, Hogema BM et al. 2020. Divergent SARS-CoV-2-specific T- and B-cell responses in severe but not mild COVID-19 patients. Eur. J. Immunol. 50:1998–2012
    [Google Scholar]
  81. 81.
    Tarke A, Potesta M, Varchetta S, Fenoglio D, Iannetta M et al. 2022. Early and polyantigenic CD4 T cell responses correlate with mild disease in acute COVID-19 donors. Int. J. Mol. Sci. 23:7155
    [Google Scholar]
  82. 82.
    Mallajosyula V, Ganjavi C, Chakraborty S, McSween AM, Pavlovitch-Bedzyk AJ et al. 2021. CD8+ T cells specific for conserved coronavirus epitopes correlate with milder disease in COVID-19 patients. Sci. Immunol. 6:eabg5669
    [Google Scholar]
  83. 83.
    Tan AT, Linster M, Tan CW, Le Bert N, Chia WN et al. 2021. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. 34:108728
    [Google Scholar]
  84. 84.
    Chandran A, Rosenheim J, Nageswaran G, Swadling L, Pollara G et al. 2022. Rapid synchronous type 1 IFN and virus-specific T cell responses characterize first wave non-severe SARS-CoV-2 infections. Cell Rep. Med. 3:100557
    [Google Scholar]
  85. 85.
    Perez-Gomez A, Gasca-Capote C, Vitalle J, Ostos FJ, Serna-Gallego A et al. 2022. Deciphering the quality of SARS-CoV-2 specific T-cell response associated with disease severity, immune memory and heterologous response. Clin. Transl. Med. 12:e802
    [Google Scholar]
  86. 86.
    Kusnadi A, Ramírez-Suástegui C, Fajardo V, Chee SJ, Meckiff BJ et al. 2021. Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8+ T cells. Sci. Immunol. 6:eabe4782
    [Google Scholar]
  87. 87.
    Files JK, Boppana S, Perez MD, Sarkar S, Lowman KE et al. 2021. Sustained cellular immune dysregulation in individuals recovering from SARS-CoV-2 infection. J. Clin. Investig. 131:e140491
    [Google Scholar]
  88. 88.
    Bergamaschi L, Mescia F, Turner L, Hanson AL, Kotagiri P et al. 2021. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity 54:1257–75.e8
    [Google Scholar]
  89. 89.
    Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR et al. 2020. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369:eabc8511
    [Google Scholar]
  90. 90.
    Rha MS, Jeong HW, Ko JH, Choi SJ, Seo IH et al. 2021. PD-1-expressing SARS-CoV-2-specific CD8+ T cells are not exhausted, but functional in patients with COVID-19. Immunity 54:44–52.e3
    [Google Scholar]
  91. 91.
    Zhou R, To KK, Wong YC, Liu L, Zhou B et al. 2020. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity 53:864–77.e5
    [Google Scholar]
  92. 92.
    Arunachalam PS, Wimmers F, Mok CKP, Perera R, Scott M et al. 2020. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369:1210–20
    [Google Scholar]
  93. 93.
    Wong LR, Perlman S. 2022. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses—are we our own worst enemy?. Nat. Rev. Immunol. 22:47–56
    [Google Scholar]
  94. 94.
    Zhang Q, Bastard P, COVID Hum. Genet. Effort, Cobat A, Casanova JL 2022. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 603:587–98
    [Google Scholar]
  95. 95.
    Flemming A. 2022. First glimpses into the mechanisms of Long COVID. Nat. Rev. Immunol. 22:146
    [Google Scholar]
  96. 96.
    Cheon IS, Li C, Son YM, Goplen NP, Wu Y et al. 2021. Immune signatures underlying post-acute COVID-19 lung sequelae. Sci. Immunol. 6:eabk1741
    [Google Scholar]
  97. 97.
    Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML et al. 2022. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 23:210–16
    [Google Scholar]
  98. 98.
    Vijayakumar B, Boustani K, Ogger PP, Papadaki A, Tonkin J et al. 2022. Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity 55:542–56.e5
    [Google Scholar]
  99. 99.
    Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, Okba NMA et al. 2020. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol. 5:eabd2071
    [Google Scholar]
  100. 100.
    Meckiff BJ, Ramírez-Suástegui C, Fajardo V, Chee SJ, Kusnadi A et al. 2020. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4+ T cells in COVID-19. Cell 183:1340–53.e16
    [Google Scholar]
  101. 101.
    Szabo PA, Dogra P, Gray JI, Wells SB, Connors TJ et al. 2021. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 54:797–814.e6
    [Google Scholar]
  102. 102.
    Liao M, Liu Y, Yuan J, Wen Y, Xu G et al. 2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26:842–44
    [Google Scholar]
  103. 103.
    Grant RA, Morales-Nebreda L, Markov NS, Swaminathan S, Querrey M et al. 2021. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature 590:635–41
    [Google Scholar]
  104. 104.
    Desai N, Neyaz A, Szabolcs A, Shih AR, Chen JH et al. 2020. Temporal and spatial heterogeneity of host response to SARS-CoV-2 pulmonary infection. Nat. Commun. 11:16319
    [Google Scholar]
  105. 105.
    Melms JC, Biermann J, Huang H, Wang Y, Nair A et al. 2021. A molecular single-cell lung atlas of lethal COVID-19. Nature 595:7865114–19
    [Google Scholar]
  106. 106.
    Li S, Jiang L, Li X, Lin F, Wang Y et al. 2020. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight 5:e138070
    [Google Scholar]
  107. 107.
    Masso-Silva JA, Moshensky A, Lam MTY, Odish MF, Patel A et al. 2022. Increased peripheral blood neutrophil activation phenotypes and neutrophil extracellular trap formation in critically ill coronavirus disease 2019 (COVID-19) patients: a case series and review of the literature. Clin. Infect. Dis. 74:479–89
    [Google Scholar]
  108. 108.
    Schurink B, Roos E, Radonic T, Barbe E, Bouman CSC et al. 2020. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe 1:e290–99
    [Google Scholar]
  109. 109.
    Radermecker C, Detrembleur N, Guiot J, Cavalier E, Henket M et al. 2020. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med. 217:e20201012
    [Google Scholar]
  110. 110.
    Domizio JD, Gulen MF, Saidoune F, Thacker VV, Yatim A et al. 2022. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 603:145–51
    [Google Scholar]
  111. 111.
    Le Bert N, Clapham HE, Tan AT, Chia WN, Tham CYL et al. 2021. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J. Exp. Med. 218:e20202617
    [Google Scholar]
  112. 112.
    Boyton RJ, Altmann DM. 2021. The immunology of asymptomatic SARS-CoV-2 infection: What are the key questions?. Nat. Rev. Immunol. 21:762–68
    [Google Scholar]
  113. 113.
    Reynolds CJ, Swadling L, Gibbons JM, Pade C, Jensen MP et al. 2020. Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Sci. Immunol. 5:eabf3698
    [Google Scholar]
  114. 114.
    Sekine T, Perez-Potti A, Rivera-Ballesteros O, Strålin K, Gorin JB et al. 2020. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 183:158–68.e14
    [Google Scholar]
  115. 115.
    Gallais F, Velay A, Nazon C, Wendling MJ, Partisani M et al. 2021. Intrafamilial exposure to SARS-CoV-2 associated with cellular immune response without seroconversion, France. Emerg. Infect. Dis. 27:113–21
    [Google Scholar]
  116. 116.
    Wang Z, Yang X, Zhong J, Zhou Y, Tang Z et al. 2021. Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nat. Commun. 12:1724
    [Google Scholar]
  117. 117.
    Kundu R, Narean JS, Wang L, Fenn J, Pillay T et al. 2022. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Nat. Commun. 13:80
    [Google Scholar]
  118. 118.
    Swadling L, Diniz MO, Schmidt NM, Amin OE, Chandran A et al. 2022. Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature 601:110–17
    [Google Scholar]
  119. 119.
    Stephenson E, Reynolds G, Botting RA, Calero-Nieto FJ, Morgan MD et al. 2021. Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 27:904–16
    [Google Scholar]
  120. 120.
    Nelson RW, Chen Y, Venezia OL, Majerus RM, Shin DS et al. 2022. SARS-CoV-2 epitope-specific CD4+ memory T cell responses across COVID-19 disease severity and antibody durability. Sci. Immunol. 7:73eabl9464
    [Google Scholar]
  121. 121.
    Balachandran H, Phetsouphanh C, Agapiou D, Adhikari A, Rodrigo C et al. 2022. Maintenance of broad neutralizing antibodies and memory B cells 1 year post-infection is predicted by SARS-CoV-2-specific CD4+ T cell responses. Cell Rep. 38:110345
    [Google Scholar]
  122. 122.
    Kroemer M, Boullerot L, Ramseyer M, Spehner L, Barisien C et al. 2022. The quality of anti-SARS-CoV-2 T cell responses predicts the neutralizing antibody titer in convalescent plasma donors. Front. Public Health 10:816848
    [Google Scholar]
  123. 123.
    Liu C, Martins AJ, Lau WW, Rachmaninoff N, Chen J et al. 2021. Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19. Cell 184:1836–57.e22
    [Google Scholar]
  124. 124.
    Palmos AB, Millischer V, Menon DK, Nicholson TR, Taams LS et al. 2022. Proteome-wide Mendelian randomization identifies causal links between blood proteins and severe COVID-19. PLOS Genet. 18:e1010042
    [Google Scholar]
  125. 125.
    COvid-19 Multi-omics Blood ATlas (COMBAT) Consort 2022. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell 185:916–38.e58
    [Google Scholar]
  126. 126.
    Unterman A, Sumida TS, Nouri N, Yan X, Zhao AY et al. 2022. Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nat. Commun. 13:440
    [Google Scholar]
  127. 127.
    Wang L, Balmat TJ, Antonia AL, Constantine FJ, Henao R et al. 2021. An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility. Genome Med. 13:83
    [Google Scholar]
  128. 128.
    Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K et al. 2021. Genetic mechanisms of critical illness in COVID-19. Nature 591:92–98
    [Google Scholar]
  129. 129.
    Schmiedel BJ, Rocha J, Gonzalez-Colin C, Bhattacharyya S, Madrigal A et al. 2021. COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types. Nat. Commun. 12:6760
    [Google Scholar]
  130. 130.
    Kousathanas A, Pairo-Castineira E, Rawlik K, Stuckey A, Odhams CA et al. 2022. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature 607:97–103
    [Google Scholar]
  131. 131.
    Yoshida M, Worlock KB, Huang N, Lindeboom RGH, Butler CR et al. 2022. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature 602:321–27
    [Google Scholar]
  132. 132.
    Brodin P. 2021. Immune determinants of COVID-19 disease presentation and severity. Nat. Med. 27:28–33
    [Google Scholar]
  133. 133.
    Chou J, Thomas PG, Randolph AG. 2022. Immunology of SARS-CoV-2 infection in children. Nat. Immunol. 23:177–85
    [Google Scholar]
  134. 134.
    Dowell AC, Butler MS, Jinks E, Tut G, Lancaster T et al. 2022. Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nat. Immunol. 23:40–49
    [Google Scholar]
  135. 135.
    Cohen CA, Li APY, Hachim A, Hui DSC, Kwan MYW et al. 2021. SARS-CoV-2 specific T cell responses are lower in children and increase with age and time after infection. Nat. Commun. 12:4678
    [Google Scholar]
  136. 136.
    Pruner KB, Pepper M. 2021. Local memory CD4 T cell niches in respiratory viral infection. J. Exp. Med. 218:e20201733
    [Google Scholar]
  137. 137.
    Mettelman RC, Allen EK, Thomas PG 2022. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 55:749–80
    [Google Scholar]
  138. 138.
    Roukens AHE, Pothast CR, König M, Huisman W, Dalebout T et al. 2022. Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8+ T cell responses following COVID-19. Nat. Immunol. 23:23–32
    [Google Scholar]
  139. 139.
    Lim JME, Tan AT, Bert NL, Hang SK, Low JGH, Bertoletti A. 2022. SARS-CoV-2 breakthrough infection in vaccinees induces virus-specific nasal-resident CD8+ and CD4+ T cells of broad specificity. J. Exp. Med. 219:10e20220780
    [Google Scholar]
  140. 140.
    Zens KD, Chen JK, Farber DL. 2016. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 1:10e85832
    [Google Scholar]
  141. 141.
    Grau-Expósito J, Sánchez-Gaona N, Massana N, Suppi M, Astorga-Gamaza A et al. 2021. Peripheral and lung resident memory T cell responses against SARS-CoV-2. Nat. Commun. 12:3010
    [Google Scholar]
  142. 142.
    Poon MML, Rybkina K, Kato Y, Kubota M, Matsumoto R et al. 2021. SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Sci. Immunol. 6:eabl9105
    [Google Scholar]
  143. 143.
    Tang J, Zeng C, Cox TM, Li C, Son YM et al. 2022. Respiratory mucosal immunity against SARS-CoV-2 following mRNA vaccination. Sci. Immunol. 7:76eadd4853
    [Google Scholar]
  144. 144.
    Juno JA, Tan HX, Lee WS, Reynaldi A, Kelly HG et al. 2020. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat. Med. 26:1428–34
    [Google Scholar]
  145. 145.
    Wragg KM, Lee WS, Koutsakos M, Tan HX, Amarasena T et al. 2022. Establishment and recall of SARS-CoV-2 spike epitope-specific CD4+ T cell memory. Nat. Immunol. 23:768–80
    [Google Scholar]
  146. 146.
    Painter MM, Mathew D, Goel RR, Apostolidis SA, Pattekar A et al. 2021. Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity 54:2133–42.e3
    [Google Scholar]
  147. 147.
    Kaneko N, Kuo HH, Boucau J, Farmer JR, Allard-Chamard H et al. 2020. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell 183:143–57.e13
    [Google Scholar]
  148. 148.
    Röltgen K, Nielsen SCA, Silva O, Younes SF, Zaslavsky M et al. 2022. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 185:1025–40.e14
    [Google Scholar]
  149. 149.
    Breton G, Mendoza P, Hägglöf T, Oliveira TY, Schaefer-Babajew D et al. 2021. Persistent cellular immunity to SARS-CoV-2 infection. J. Exp. Med. 218:e20202515
    [Google Scholar]
  150. 150.
    Zuo J, Dowell AC, Pearce H, Verma K, Long HM et al. 2021. Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection. Nat. Immunol. 22:620–26
    [Google Scholar]
  151. 151.
    Rodda LB, Netland J, Shehata L, Pruner KB, Morawski PA et al. 2021. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Cell 184:169–83.e17
    [Google Scholar]
  152. 152.
    Mak WA, Koeleman JGM, van der Vliet M, Keuren F, Ong DSY. 2022. SARS-CoV-2 antibody and T cell responses one year after COVID-19 and the booster effect of vaccination: a prospective cohort study. J. Infect. 84:171–78
    [Google Scholar]
  153. 153.
    Kedl RM. 2021. Down but far from out: the durability of SARS-CoV-2 immunity after asymptomatic infection. J. Exp. Med. 218:e20210359
    [Google Scholar]
  154. 154.
    Ng OW, Chia A, Tan AT, Jadi RS, Leong HN et al. 2016. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 34:2008–14
    [Google Scholar]
  155. 155.
    Li CK, Wu H, Yan H, Ma S, Wang L et al. 2008. T cell responses to whole SARS coronavirus in humans. J. Immunol. 181:5490–500
    [Google Scholar]
  156. 156.
    Mallapaty S, Callaway E, Kozlov M, Ledford H, Pickrell J, Van Noorden R. 2021. How COVID vaccines shaped 2021 in eight powerful charts. Nature 600:580–83
    [Google Scholar]
  157. 157.
    Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. 2022. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int. J. Infect. Dis. 114:252–60
    [Google Scholar]
  158. 158.
    Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. 2022. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect. Dis. 22:91293–302
    [Google Scholar]
  159. 159.
    Ewer KJ, Barrett JR, Belij-Rammerstorfer S, Sharpe H, Makinson R et al. 2021. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat. Med. 27:270–78
    [Google Scholar]
  160. 160.
    Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM et al. 2021. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 397:881–91
    [Google Scholar]
  161. 161.
    Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM et al. 2021. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet 396:1979–93
    [Google Scholar]
  162. 162.
    Flaxman A, Marchevsky NG, Jenkin D, Aboagye J, Aley PK et al. 2021. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). Lancet 398:981–90
    [Google Scholar]
  163. 163.
    Banki Z, Mateus J, Rossler A, Schafer H, Bante D et al. 2022. Heterologous ChAdOx1/BNT162b2 vaccination induces stronger immune response than homologous ChAdOx1 vaccination: the pragmatic, multi-center, three-arm, partially randomized HEVACC trial. EBioMedicine 80:104073
    [Google Scholar]
  164. 164.
    Stephenson KE, Le Gars M, Sadoff J, de Groot AM, Heerwegh D et al. 2021. Immunogenicity of the Ad26.COV2.S vaccine for COVID-19. JAMA 325:1535–44
    [Google Scholar]
  165. 165.
    Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C et al. 2021. Interim results of a phase 1–2a trial of Ad26.COV2.S Covid-19 vaccine. N. Engl. J. Med. 384:1824–35
    [Google Scholar]
  166. 166.
    Zhang Z, Mateus J, Coelho CH, Dan JM, Moderbacher CR et al. 2022. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 185:2434–51.e17
    [Google Scholar]
  167. 167.
    Barouch DH, Stephenson KE, Sadoff J, Yu J, Chang A et al. 2021. Durable humoral and cellular immune responses 8 months after Ad26.COV2.S vaccination. N. Engl. J. Med. 385:951–53
    [Google Scholar]
  168. 168.
    Li Z, Xiang T, Liang B, Deng H, Wang H et al. 2021. Characterization of SARS-CoV-2-specific humoral and cellular immune responses induced by inactivated COVID-19 vaccines in a real-world setting. Front. Immunol. 12:802858
    [Google Scholar]
  169. 169.
    Bueno SM, Abarca K, González PA, Gálvez NMS, Soto JA et al. 2022. Safety and immunogenicity of an inactivated severe acute respiratory syndrome coronavirus 2 vaccine in a subgroup of healthy adults in Chile. Clin. Infect. Dis. 75:1e792–804
    [Google Scholar]
  170. 170.
    Vikkurthi R, Ansari A, Pai AR, Jha SN, Sachan S et al. 2022. Inactivated whole-virion vaccine BBV152/Covaxin elicits robust cellular immune memory to SARS-CoV-2 and variants of concern. Nat. Microbiol. 7:974–85
    [Google Scholar]
  171. 171.
    Sahin U, Muik A, Vogler I, Derhovanessian E, Kranz LM et al. 2021. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 595:572–77
    [Google Scholar]
  172. 172.
    Payne RP, Longet S, Austin JA, Skelly DT, Dejnirattisai W et al. 2021. Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell 184:5699–714.e11
    [Google Scholar]
  173. 173.
    Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC et al. 2020. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med. 383:2427–38
    [Google Scholar]
  174. 174.
    Mateus J, Dan JM, Zhang Z, Rydyznski Moderbacher C, Lammers M et al. 2021. Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science 374:eabj9853
    [Google Scholar]
  175. 175.
    Goel RR, Painter MM, Apostolidis SA, Mathew D, Meng W et al. 2021. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 374:abm0829
    [Google Scholar]
  176. 176.
    Kondo H, Kageyama T, Tanaka S, Otsuka K, Tsukumo SI et al. 2022. Markers of memory CD8 T cells depicting the effect of the BNT162b2 mRNA COVID-19 vaccine in Japan. Front. Immunol. 13:836923
    [Google Scholar]
  177. 177.
    Kalimuddin S, Tham CYL, Qui M, de Alwis R, Sim JXY et al. 2021. Early T cell and binding antibody responses are associated with COVID-19 RNA vaccine efficacy onset. Medicine 2:682–88.e4
    [Google Scholar]
  178. 178.
    Sadarangani M, Marchant A, Kollmann TR. 2021. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat. Rev. Immunol. 21:475–84
    [Google Scholar]
  179. 179.
    Oberhardt V, Luxenburger H, Kemming J, Schulien I, Ciminski K et al. 2021. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature 597:268–73
    [Google Scholar]
  180. 180.
    Mudd PA, Minervina AA, Pogorelyy MV, Turner JS, Kim W et al. 2022. SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell 185:603–13.e15
    [Google Scholar]
  181. 181.
    Lederer K, Bettini E, Parvathaneni K, Painter MM, Agarwal D et al. 2022. Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals. Cell 185:1008–24.e15
    [Google Scholar]
  182. 182.
    Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D et al. 2021. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N. Engl. J. Med. 385:1172–83
    [Google Scholar]
  183. 183.
    Keech C, Albert G, Cho I, Robertson A, Reed P et al. 2020. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med. 383:2320–32
    [Google Scholar]
  184. 184.
    Rydyznski Moderbacher C, Kim C, Mateus J, Plested J, Zhu M et al. 2022. NVX-CoV2373 vaccination induces functional SARS-CoV-2–specific CD4+ and CD8+ T cell responses. J. Clin. Investig. 132:19e160898
    [Google Scholar]
  185. 185.
    Chiuppesi F, Zaia JA, Frankel PH, Stan R, Drake J et al. 2022. Safety and immunogenicity of a synthetic multiantigen modified vaccinia virus Ankara-based COVID-19 vaccine (COH04S1): an open-label and randomised, phase 1 trial. Lancet Microbe 3:e252–64
    [Google Scholar]
  186. 186.
    Heitmann JS, Bilich T, Tandler C, Nelde A, Maringer Y et al. 2022. A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature 601:617–22
    [Google Scholar]
  187. 187.
    Naranbhai V, Garcia-Beltran WF, Chang CC, Mairena CB, Thierauf JC et al. 2021. Comparative immunogenicity and effectiveness of mRNA-1273, BNT162b2 and Ad26.COV2.S COVID-19 vaccines. J. Infect. Dis. 225:1141–50
    [Google Scholar]
  188. 188.
    Lafon E, Jager M, Bauer A, Reindl M, Bellmann-Weiler R et al. 2022. Comparative analyses of IgG/IgA neutralizing effects induced by three COVID-19 vaccines against variants of concern. J. Allergy Clin. Immunol. 149:1242–52.e12
    [Google Scholar]
  189. 189.
    van Gils MJ, Lavell A, van der Straten K, Appelman B, Bontjer I et al. 2022. Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the Netherlands: a prospective cohort study. PLOS Med. 19:e1003991
    [Google Scholar]
  190. 190.
    Steensels D, Pierlet N, Penders J, Mesotten D, Heylen L. 2021. Comparison of SARS-CoV-2 antibody response following vaccination with BNT162b2 and mRNA-1273. JAMA 326:1533–35
    [Google Scholar]
  191. 191.
    Dashdorj NJ, Wirz OF, Roltgen K, Haraguchi E, Buzzanco AS 3rd et al. 2021. Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia. Cell Host Microbe 29:1738–43.e4
    [Google Scholar]
  192. 192.
    Israel A, Shenhar Y, Green I, Merzon E, Golan-Cohen A et al. 2021. Large-scale study of antibody titer decay following BNT162b2 mRNA vaccine or SARS-CoV-2 infection. Vaccines 10:64
    [Google Scholar]
  193. 193.
    Richardson JR, Gotz R, Mayr V, Lohse MJ, Holthoff HP, Ungerer M. 2022. SARS-CoV2 wild type and mutant specific humoral and T cell immunity is superior after vaccination than after natural infection. PLOS ONE 17:e0266701
    [Google Scholar]
  194. 194.
    Collier AY, Yu J, McMahan K, Liu J, Chandrashekar A et al. 2021. Differential kinetics of immune responses elicited by Covid-19 vaccines. N. Engl. J. Med. 385:2010–12
    [Google Scholar]
  195. 195.
    Atmar RL, Lyke KE, Deming ME, Jackson LA, Branche AR et al. 2022. Homologous and heterologous Covid-19 booster vaccinations. N. Engl. J. Med. 386:1046–57
    [Google Scholar]
  196. 196.
    Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M et al. 2020. An mRNA vaccine against SARS-CoV-2: preliminary report. N. Engl. J. Med. 383:1920–31
    [Google Scholar]
  197. 197.
    Barros-Martins J, Hammerschmidt SI, Cossmann A, Odak I, Stankov MV et al. 2021. Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nat. Med. 27:1525–29
    [Google Scholar]
  198. 198.
    Sablerolles RSG, Rietdijk WJR, Goorhuis A, Postma DF, Visser LG et al. 2022. Immunogenicity and reactogenicity of vaccine boosters after Ad26.COV2.S priming. N. Engl. J. Med. 386:951–63
    [Google Scholar]
  199. 199.
    Peng Q, Zhou R, Wang Y, Zhao M, Liu N et al. 2022. Waning immune responses against SARS-CoV-2 variants of concern among vaccinees in Hong Kong. EBioMedicine 77:103904
    [Google Scholar]
  200. 200.
    Lim JME, Hang SK, Hariharaputran S, Chia A, Tan N et al. 2022. Omicron reactive multi protein specific CD4 T cells defines cellular immune response induced by inactivated virus vaccines. medRxiv 2022.05.25.22275616, May 27
  201. 201.
    Zuo F, Abolhassani H, Du L, Piralla A, Bertoglio F et al. 2022. Heterologous immunization with inactivated vaccine followed by mRNA-booster elicits strong immunity against SARS-CoV-2 Omicron variant. Nat. Commun. 13:2670
    [Google Scholar]
  202. 202.
    Islam N, Sheils NE, Jarvis MS, Cohen K. 2022. Comparative effectiveness over time of the mRNA-1273 (Moderna) vaccine and the BNT162b2 (Pfizer-BioNTech) vaccine. Nat. Commun. 13:2377
    [Google Scholar]
  203. 203.
    Kato H, Miyakawa K, Ohtake N, Yamaoka Y, Yajima S et al. 2022. Vaccine-induced humoral response against SARS-CoV-2 dramatically declined but cellular immunity possibly remained at 6 months post BNT162b2 vaccination. Vaccine 40:2652–55
    [Google Scholar]
  204. 204.
    Gallagher KME, Leick MB, Larson RC, Berger TR, Katsis K et al. 2022. Differential T-cell immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mRNA-1273- and BNT162b2-vaccinated individuals. Clin. Infect. Dis. 75:1e869–73
    [Google Scholar]
  205. 205.
    Angyal A, Longet S, Moore SC, Payne RP, Harding A et al. 2022. T-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort study. Lancet Microbe 3:e21–31
    [Google Scholar]
  206. 206.
    Crotty S. 2021. Hybrid immunity. Science 372:1392–93
    [Google Scholar]
  207. 207.
    Walls AC, Sprouse KR, Bowen JE, Joshi A, Franko N et al. 2022. SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses. Cell 185:872–80.e3
    [Google Scholar]
  208. 208.
    Altarawneh HN, Chemaitelly H, Hasan MR, Ayoub HH, Qassim S et al. 2022. Protection against the Omicron variant from previous SARS-CoV-2 infection. N. Engl. J. Med. 386:1288–90
    [Google Scholar]
  209. 209.
    Danza P, Koo TH, Haddix M, Fisher R, Traub E et al. 2022. SARS-CoV-2 infection and hospitalization among adults aged ≥18 years, by vaccination status, before and during SARS-CoV-2 B.1.1.529 (Omicron) variant predominance: Los Angeles County, California, November 7, 2021–January 8, 2022. Morb. Mortal. Wkly. Rep. 71:177–81
    [Google Scholar]
  210. 210.
    Gilbert PB, Montefiori DC, McDermott AB, Fong Y, Benkeser D et al. 2022. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science 375:43–50
    [Google Scholar]
  211. 211.
    See KC. 2022. Vaccination for the prevention of infection among immunocompromised patients: a concise review of recent systematic reviews. Vaccines 10:800
    [Google Scholar]
  212. 212.
    Qui M, Le Bert N, Chan WPW, Tan M, Hang SK et al. 2022. Favorable vaccine-induced SARS-CoV-2-specific T cell response profile in patients undergoing immune-modifying therapies. J. Clin. Investig. 132:e159500
    [Google Scholar]
  213. 213.
    Petrone L, Picchianti-Diamanti A, Sebastiani GD, Aiello A, Lagana B et al. 2022. Humoral and cellular responses to spike of δ SARS-CoV-2 variant in vaccinated patients with immune-mediated inflammatory diseases. Int. J. Infect. Dis. 121:24–30
    [Google Scholar]
  214. 214.
    Boland BS, Goodwin B, Zhang Z, Bloom N, Kato Y et al. 2022. Preserved SARS-CoV-2 vaccine cell-mediated immunogenicity in patients with inflammatory bowel disease on immune-modulating therapies. Clin. Transl. Gastroenterol. 13:e00484
    [Google Scholar]
  215. 215.
    Fabris M, De Marchi G, Domenis R, Caponnetto F, Guella S et al. 2022. High T-cell response rate after COVID-19 vaccination in belimumab and rituximab recipients. J. Autoimmun. 129:102827
    [Google Scholar]
  216. 216.
    Zabalza A, Arrambide G, Tagliani P, Cardenas-Robledo S, Otero-Romero S et al. 2022. Humoral and cellular responses to SARS-CoV-2 in convalescent COVID-19 patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 9:e1143
    [Google Scholar]
  217. 217.
    Bajwa HM, Novak F, Nilsson AC, Nielsen C, Holm DK et al. 2022. Persistently reduced humoral and sustained cellular immune response from first to third SARS-CoV-2 mRNA vaccination in anti-CD20-treated multiple sclerosis patients. Mult. Scler. Relat. Disord. 60:103729
    [Google Scholar]
  218. 218.
    Madelon N, Heikkila N, Sabater Royo I, Fontannaz P, Breville G et al. 2022. Omicron-specific cytotoxic T-cell responses after a third dose of mRNA COVID-19 vaccine among patients with multiple sclerosis treated with ocrelizumab. JAMA Neurol. 79:399–404
    [Google Scholar]
  219. 219.
    Tortorella C, Aiello A, Gasperini C, Agrati C, Castilletti C et al. 2022. Humoral- and T-cell-specific immune responses to SARS-CoV-2 mRNA vaccination in patients with MS using different disease-modifying therapies. Neurology 98:e541–54
    [Google Scholar]
  220. 220.
    Sabatino JJ Jr., Mittl K, Rowles WM, McPolin K, Rajan JV et al. 2022. Multiple sclerosis therapies differentially affect SARS-CoV-2 vaccine-induced antibody and T cell immunity and function. JCI Insight 7:e156978
    [Google Scholar]
  221. 221.
    Apostolidis SA, Kakara M, Painter MM, Goel RR, Mathew D et al. 2021. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat. Med. 27:1990–2001
    [Google Scholar]
  222. 222.
    Schwarz T, Otto C, Jones TC, Pache F, Schindler P et al. 2022. Preserved T cell responses to SARS-CoV-2 in anti-CD20 treated multiple sclerosis. Mult. Scler. 28:1041–50
    [Google Scholar]
  223. 223.
    Palomares Cabeza V, Kummer LYL, Wieske L, Hagen RR, Duurland M et al. 2022. Longitudinal T-cell responses after a third SARS-CoV-2 vaccination in patients with multiple sclerosis on ocrelizumab or fingolimod. Neurol. Neuroimmunol. Neuroinflamm. 9:e1178 Erratum. 2022 Neurol. Neuroimmunol. Neuroinflamm. 9:6e200036
    [Google Scholar]
  224. 224.
    Madelon N, Lauper K, Breville G, Sabater Royo I, Goldstein R et al. 2022. Robust T-cell responses in anti-CD20-treated patients following COVID-19 vaccination: a prospective cohort study. Clin. Infect. Dis. 75:1e1037–45
    [Google Scholar]
  225. 225.
    Graves JS, Killestein J. 2022. Reading the “T” leaves of COVID-19 vaccine responses in multiple sclerosis. Neurology 98:177–78
    [Google Scholar]
  226. 226.
    Hall VG, Ferreira VH, Ku T, Ierullo M, Majchrzak-Kita B et al. 2021. Randomized trial of a third dose of mRNA-1273 vaccine in transplant recipients. N. Engl. J. Med. 385:1244–46
    [Google Scholar]
  227. 227.
    Espi M, Charmetant X, Barba T, Mathieu C, Pelletier C et al. 2022. A prospective observational study for justification, safety, and efficacy of a third dose of mRNA vaccine in patients receiving maintenance hemodialysis. Kidney Int. 101:390–402
    [Google Scholar]
  228. 228.
    Fendler A, de Vries EGE, GeurtsvanKessel CH, Haanen JB, Wormann B et al. 2022. COVID-19 vaccines in patients with cancer: immunogenicity, efficacy and safety. Nat. Rev. Clin. Oncol. 19:385–401
    [Google Scholar]
  229. 229.
    Waickman AT, Lu J, Chase C, Fang H, McDowell E et al. 2022. Systemic cancer therapy does not significantly impact early vaccine-elicited SARS-CoV-2 immunity in patients with solid tumors. Vaccines 10:738
    [Google Scholar]
  230. 230.
    Piechotta V, Mellinghoff SC, Hirsch C, Brinkmann A, Iannizzi C et al. 2022. Effectiveness, immunogenicity, and safety of COVID-19 vaccines for individuals with hematological malignancies: a systematic review. Blood Cancer J. 12:86
    [Google Scholar]
  231. 231.
    Riise J, Meyer S, Blaas I, Chopra A, Tran TT et al. 2022. Rituximab-treated patients with lymphoma develop strong CD8 T-cell responses following COVID-19 vaccination. Br. J. Haematol. 197:697–708
    [Google Scholar]
  232. 232.
    Lee CY, Shah MK, Hoyos D, Solovyov A, Douglas M et al. 2022. Prolonged SARS-CoV-2 infection in patients with lymphoid malignancies. Cancer Discov. 12:62–73
    [Google Scholar]
  233. 233.
    Bange EM, Han NA, Wileyto P, Kim JY, Gouma S et al. 2021. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat. Med. 27:1280–89
    [Google Scholar]
  234. 234.
    Lyudovyk O, Kim JY, Qualls D, Hwee MA, Lin YH et al. 2022. Impaired humoral immunity is associated with prolonged COVID-19 despite robust CD8 T cell responses. Cancer Cell 40:738–53.e5
    [Google Scholar]
  235. 235.
    Shen C, Risk M, Schiopu E, Hayek SS, Xie T et al. 2022. Efficacy of COVID-19 vaccines in patients taking immunosuppressants. Ann. Rheum. Dis. 81:875–80
    [Google Scholar]
  236. 236.
    Khan N, Mahmud N 2021. Effectiveness of SARS-CoV-2 vaccination in a Veterans Affairs cohort of patients with inflammatory bowel disease with diverse exposure to immunosuppressive medications. Gastroenterology 161:827–36
    [Google Scholar]
  237. 237.
    Bsteh G, Gradl C, Heschl B, Hegen H, Di Pauli F et al. 2022. Impact of vaccination on COVID-19 outcome in multiple sclerosis. Eur. J. Neurol. 29:3329–36
    [Google Scholar]
  238. 238.
    Khoo NKH, Lim JME, Gill US, de Alwis R, Tan N et al. 2022. Differential immunogenicity of homologous versus heterologous boost in Ad26.COV2.S vaccine recipients. Medicine 3:104–18.e4
    [Google Scholar]
  239. 239.
    Li Y, Wang X, Jin J, Ma Z, Liu Y et al. 2022. T-cell responses to SARS-CoV-2 Omicron spike epitopes with mutations after the third booster dose of an inactivated vaccine. J. Med. Virol. 94:3998–4004
    [Google Scholar]
  240. 240.
    Chen Y, Chen L, Yin S, Tao Y, Zhu L et al. 2022. The third dose of CoronVac vaccination induces broad and potent adaptive immune responses that recognize SARS-CoV-2 Delta and Omicron variants. Emerg. Microbes Infect. 11:1524–36
    [Google Scholar]
  241. 241.
    Liu Y, Zeng Q, Deng C, Li M, Li L et al. 2022. Robust induction of B cell and T cell responses by a third dose of inactivated SARS-CoV-2 vaccine. Cell Discov. 8:10
    [Google Scholar]
  242. 242.
    Liwsrisakun C, Pata S, Laopajon W, Takheaw N, Chaiwong W et al. 2022. Neutralizing antibody and T cell responses against SARS-CoV-2 variants of concern following ChAdOx-1 or BNT162b2 boosting in the elderly previously immunized with CoronaVac vaccine. Immun. Ageing 19:24
    [Google Scholar]
  243. 243.
    Pozzetto B, Legros V, Djebali S, Barateau V, Guibert N et al. 2021. Immunogenicity and efficacy of heterologous ChAdOx1-BNT162b2 vaccination. Nature 600:701–6
    [Google Scholar]
  244. 244.
    Nordstrom P, Ballin M, Nordstrom A. 2021. Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic Covid-19 infection in Sweden: a nationwide cohort study. Lancet Reg. Health Eur. 11:100249
    [Google Scholar]
  245. 245.
    Cerqueira-Silva T, Andrews JR, Boaventura VS, Ranzani OT, de Araujo Oliveira V et al. 2022. Effectiveness of CoronaVac, ChAdOx1 nCoV-19, BNT162b2, and Ad26.COV2.S among individuals with previous SARS-CoV-2 infection in Brazil: a test-negative, case-control study. Lancet Infect. Dis. 22:791–801
    [Google Scholar]
  246. 246.
    Accorsi EK, Britton A, Shang N, Fleming-Dutra KE, Link-Gelles R et al. 2022. Effectiveness of homologous and heterologous Covid-19 boosters against Omicron. N. Engl. J. Med. 386:2433–35
    [Google Scholar]
  247. 247.
    Hall VG, Ferreira VH, Wood H, Ierullo M, Majchrzak-Kita B et al. 2022. Delayed-interval BNT162b2 mRNA COVID-19 vaccination enhances humoral immunity and induces robust T cell responses. Nat. Immunol. 23:380–85
    [Google Scholar]
  248. 248.
    Munro APS, Janani L, Cornelius V, Aley PK, Babbage G et al. 2021. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 398:2258–76
    [Google Scholar]
  249. 249.
    Stamatatos L, Czartoski J, Wan YH, Homad LJ, Rubin V et al. 2021. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science 372:1413–18
    [Google Scholar]
  250. 250.
    Reynolds CJ, Gibbons JM, Pade C, Lin KM, Sandoval DM et al. 2022. Heterologous infection and vaccination shapes immunity against SARS-CoV-2 variants. Science 375:183–92
    [Google Scholar]
  251. 251.
    Hall V, Foulkes S, Insalata F, Kirwan P, Saei A et al. 2022. Protection against SARS-CoV-2 after Covid-19 vaccination and previous infection. N. Engl. J. Med. 386:1207–20
    [Google Scholar]
  252. 252.
    Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman LS et al. 2022. Protection and waning of natural and hybrid immunity to SARS-CoV-2. N. Engl. J. Med. 386:2201–12
    [Google Scholar]
  253. 253.
    Rodda LB, Morawski PA, Pruner KB, Fahning ML, Howard CA et al. 2022. Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell 185:1588–601.e14
    [Google Scholar]
  254. 254.
    Nantel S, Bourdin B, Adams K, Carbonneau J, Rabezanahary H et al. 2022. Symptomatology during previous SARS-CoV-2 infection and serostatus before vaccination influence the immunogenicity of BNT162b2 COVID-19 mRNA vaccine. Front. Immunol. 13:930252
    [Google Scholar]
  255. 255.
    Dykema AG, Zhang B, Woldemeskel BA, Garliss CC, Rashid R et al. 2022. SARS-CoV-2 vaccination diversifies the CD4+ spike-reactive T cell repertoire in patients with prior SARS-CoV-2 infection. EBioMedicine 80:104048
    [Google Scholar]
  256. 256.
    Minervina AA, Pogorelyy MV, Kirk AM, Crawford JC, Allen EK et al. 2022. SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8+ T cells. Nat. Immunol. 23:781–90
    [Google Scholar]
  257. 257.
    Collier AY, Brown CM, McMahan KA, Yu J, Liu J et al. 2022. Characterization of immune responses in fully vaccinated individuals after breakthrough infection with the SARS-CoV-2 delta variant. Sci. Transl. Med. 14:eabn6150
    [Google Scholar]
  258. 258.
    Rumke LW, Groenveld FC, van Os YMG, Praest P, Tanja AAN et al. 2022. In-depth characterization of vaccine breakthrough infections with SARS-CoV-2 among health care workers in a Dutch academic medical center. Open. Forum Infect. Dis. 9:ofab553
    [Google Scholar]
  259. 259.
    Rovida F, Cassaniti I, Paolucci S, Percivalle E, Sarasini A et al. 2021. SARS-CoV-2 vaccine breakthrough infections with the alpha variant are asymptomatic or mildly symptomatic among health care workers. Nat. Commun. 12:6032
    [Google Scholar]
  260. 260.
    Paniskaki K, Anft M, Meister TL, Marheinecke C, Pfaender S et al. 2022. Immune response in moderate to critical breakthrough COVID-19 infection after mRNA vaccination. Front. Immunol. 13:816220
    [Google Scholar]
  261. 261.
    Lipsitch M, Krammer F, Regev-Yochay G, Lustig Y, Balicer RD. 2022. SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. Nat. Rev. Immunol. 22:57–65
    [Google Scholar]
  262. 262.
    Braun J, Loyal L, Frentsch M, Wendisch D, Georg P et al. 2020. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 587:270–74
    [Google Scholar]
  263. 263.
    Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M et al. 2020. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584:457–62
    [Google Scholar]
  264. 264.
    Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI et al. 2020. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 370:89–94
    [Google Scholar]
  265. 265.
    Bacher P, Rosati E, Esser D, Martini GR, Saggau C et al. 2020. Low-avidity CD4+ T cell responses to SARS-CoV-2 in unexposed individuals and humans with severe COVID-19. Immunity 53:1258–71.e5
    [Google Scholar]
  266. 266.
    Ahmadi E, Zabihi MR, Hosseinzadeh R, Mohamed Khosroshahi L, Noorbakhsh F 2021. SARS-CoV-2 spike protein displays sequence similarities with paramyxovirus surface proteins: a bioinformatics study. PLOS ONE 16:e0260360
    [Google Scholar]
  267. 267.
    Schulien I, Kemming J, Oberhardt V, Wild K, Seidel LM et al. 2021. Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells. Nat. Med. 27:78–85
    [Google Scholar]
  268. 268.
    Shomuradova AS, Vagida MS, Sheetikov SA, Zornikova KV, Kiryukhin D et al. 2020. SARS-CoV-2 epitopes are recognized by a public and diverse repertoire of human T cell receptors. Immunity 53:1245–57.e5
    [Google Scholar]
  269. 269.
    Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR et al. 2021. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat. Immunol. 22:74–85
    [Google Scholar]
  270. 270.
    Keller MD, Harris KM, Jensen-Wachspress MA, Kankate VV, Lang H et al. 2020. SARS-CoV-2-specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood 136:2905–17
    [Google Scholar]
  271. 271.
    Woldemeskel BA, Garliss CC, Blankson JN. 2021. SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. J. Clin. Investig. 131:e149335
    [Google Scholar]
  272. 272.
    Nathan A, Rossin EJ, Kaseke C, Park RJ, Khatri A et al. 2021. Structure-guided T cell vaccine design for SARS-CoV-2 variants and sarbecoviruses. Cell 184:4401–13.e10
    [Google Scholar]
  273. 273.
    Dykema AG, Zhang B, Woldemeskel BA, Garliss CC, Cheung LS et al. 2021. Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and endemic coronaviruses. J. Clin. Investig. 131:e146922
    [Google Scholar]
  274. 274.
    Stoddard CI, Galloway J, Chu HY, Shipley MM, Sung K et al. 2021. Epitope profiling reveals binding signatures of SARS-CoV-2 immune response in natural infection and cross-reactivity with endemic human CoVs. Cell Rep. 35:109164
    [Google Scholar]
  275. 275.
    Lineburg KE, Grant EJ, Swaminathan S, Chatzileontiadou DSM, Szeto C et al. 2021. CD8+ T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react with selective seasonal coronaviruses. Immunity 54:1055–65.e5
    [Google Scholar]
  276. 276.
    Francis JM, Leistritz-Edwards D, Dunn A, Tarr C, Lehman J et al. 2022. Allelic variation in class I HLA determines CD8+ T cell repertoire shape and cross-reactive memory responses to SARS-CoV-2. Sci. Immunol. 7:eabk3070
    [Google Scholar]
  277. 277.
    Becerra-Artiles A, Calvo-Calle JM, Co MD, Nanaware PP, Cruz J et al. 2022. Broadly recognized, cross-reactive SARS-CoV-2 CD4 T cell epitopes are highly conserved across human coronaviruses and presented by common HLA alleles. Cell Rep. 39:110952
    [Google Scholar]
  278. 278.
    Woldemeskel BA, Dykema AG, Garliss CC, Cherfils S, Smith KN, Blankson JN. 2022. CD4+ T cells from COVID-19 mRNA vaccine recipients recognize a conserved epitope present in diverse coronaviruses. J. Clin. Investig. 132:e156083
    [Google Scholar]
  279. 279.
    Sette A, Crotty S. 2020. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat. Rev. Immunol. 20:457–58
    [Google Scholar]
  280. 280.
    Lipsitch M, Grad YH, Sette A, Crotty S. 2020. Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat. Rev. Immunol. 20:709–13
    [Google Scholar]
  281. 281.
    Loyal L, Braun J, Henze L, Kruse B, Dingeldey M et al. 2021. Cross-reactive CD4+ T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science 374:eabh1823
    [Google Scholar]
  282. 282.
    Meyer-Arndt L, Schwarz T, Loyal L, Henze L, Kruse B et al. 2022. Cutting edge: Serum but not mucosal antibody responses are associated with pre-existing SARS-CoV-2 spike cross-reactive CD4+ T cells following BNT162b2 vaccination in the elderly. J. Immunol. 208:1001–5
    [Google Scholar]
  283. 283.
    Bonifacius A, Tischer-Zimmermann S, Dragon AC, Gussarow D, Vogel A et al. 2021. COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. Immunity 54:340–54.e6
    [Google Scholar]
  284. 284.
    Niessl J, Sekine T, Lange J, Konya V, Forkel M et al. 2021. Identification of resident memory CD8+ T cells with functional specificity for SARS-CoV-2 in unexposed oropharyngeal lymphoid tissue. Sci. Immunol. 6:eabk0894
    [Google Scholar]
  285. 285.
    Richards KA, Glover M, Crawford JC, Thomas PG, White C, Sant AJ. 2021. Circulating CD4 T cells elicited by endemic coronaviruses display vast disparities in abundance and functional potential linked to antigen specificity and age. J. Infect. Dis. 223:1555–63
    [Google Scholar]
  286. 286.
    Saletti G, Gerlach T, Jansen JM, Molle A, Elbahesh H et al. 2020. Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63. Sci. Rep. 10:21447
    [Google Scholar]
  287. 287.
    da Silva Antunes R, Pallikkuth S, Williams E, Dawen Yu E, Mateus J et al. 2021. Differential T-cell reactivity to endemic coronaviruses and SARS-CoV-2 in community and health care workers. J. Infect. Dis. 224:70–80
    [Google Scholar]
  288. 288.
    Sagar M, Reifler K, Rossi M, Miller NS, Sinha P et al. 2021. Recent endemic coronavirus infection is associated with less-severe COVID-19. J. Clin. Investig. 131:e143380
    [Google Scholar]
  289. 289.
    Aran D, Beachler DC, Lanes S, Overhage JM. 2020. Prior presumed coronavirus infection reduces COVID-19 risk: a cohort study. J. Infect. 81:923–30
    [Google Scholar]
  290. 290.
    Abela IA, Pasin C, Schwarzmüller M, Epp S, Sickmann ME et al. 2021. Multifactorial seroprofiling dissects the contribution of pre-existing human coronaviruses responses to SARS-CoV-2 immunity. Nat. Commun. 12:6703
    [Google Scholar]
  291. 291.
    Anderson EM, Goodwin EC, Verma A, Arevalo CP, Bolton MJ et al. 2021. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell 184:1858–64.e10
    [Google Scholar]
  292. 292.
    Aydillo T, Rombauts A, Stadlbauer D, Aslam S, Abelenda-Alonso G et al. 2021. Immunological imprinting of the antibody response in COVID-19 patients. Nat. Commun. 12:3781
    [Google Scholar]
  293. 293.
    Gouma S, Weirick ME, Bolton MJ, Arevalo CP, Goodwin EC et al. 2021. Health care worker seromonitoring reveals complex relationships between common coronavirus antibodies and COVID-19 symptom duration. JCI Insight 6:e150449
    [Google Scholar]
  294. 294.
    Campion SL, Brenna E, Thomson E, Fischer W, Ladell K et al. 2021. Preexisting memory CD4+ T cells contribute to the primary response in an HIV-1 vaccine trial. J. Clin. Investig. 131:e150823
    [Google Scholar]
  295. 295.
    Wild K, Smits M, Killmer S, Strohmeier S, Neumann-Haefelin C et al. 2021. Pre-existing immunity and vaccine history determine hemagglutinin-specific CD4 T cell and IgG response following seasonal influenza vaccination. Nat. Commun. 12:6720
    [Google Scholar]
  296. 296.
    Auladell M, Phuong HVM, Mai LTQ, Tseng YY, Carolan L et al. 2022. Influenza virus infection history shapes antibody responses to influenza vaccination. Nat. Med. 28:363–72
    [Google Scholar]
  297. 297.
    Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M et al. 2012. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18:274–80
    [Google Scholar]
  298. 298.
    Paterson S, Kar S, Ung SK, Gardener Z, Bergstrom E et al. 2021. Innate-like gene expression of lung-resident memory CD8+ T cells during experimental human influenza: a clinical study. Am. J. Resp. Crit. Care 204:826–41
    [Google Scholar]
  299. 299.
    Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W et al. 2013. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19:1305–12
    [Google Scholar]
  300. 300.
    Hayward AC, Wang L, Goonetilleke N, Fragaszy EB, Bermingham A et al. 2015. Natural T cell-mediated protection against seasonal and pandemic influenza: results of the Flu Watch Cohort Study. Am. J. Respir. Crit. Care Med. 191:1422–31
    [Google Scholar]
  301. 301.
    Tarke A, Sidney J, Methot N, Yu ED, Zhang Y et al. 2021. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2:100355
    [Google Scholar]
  302. 302.
    Redd AD, Nardin A, Kared H, Bloch EM, Abel B et al. 2022. Minimal crossover between mutations associated with Omicron variant of SARS-CoV-2 and CD8+ T-cell epitopes identified in COVID-19 convalescent individuals. mBio 13:e0361721
    [Google Scholar]
  303. 303.
    Hamelin DJ, Fournelle D, Grenier JC, Schockaert J, Kovalchik KA et al. 2022. The mutational landscape of SARS-CoV-2 variants diversifies T cell targets in an HLA-supertype-dependent manner. Cell Syst. 13:143–57.e3
    [Google Scholar]
  304. 304.
    Agerer B, Koblischke M, Gudipati V, Montaño-Gutierrez LF, Smyth M et al. 2021. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8+ T cell responses. Sci. Immunol. 6:eabg6461
    [Google Scholar]
  305. 305.
    Alter G, Yu J, Liu J, Chandrashekar A, Borducchi EN et al. 2021. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature 596:268–72
    [Google Scholar]
  306. 306.
    Geers D, Shamier MC, Bogers S, den Hartog G, Gommers L et al. 2021. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 6:eabj1750
    [Google Scholar]
  307. 307.
    Keeton R, Richardson SI, Moyo-Gwete T, Hermanus T, Tincho MB et al. 2021. Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner. Cell Host Microbe 29:1611–19.e5
    [Google Scholar]
  308. 308.
    Skelly DT, Harding AC, Gilbert-Jaramillo J, Knight ML, Longet S et al. 2021. Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern. Nat. Commun. 12:5061
    [Google Scholar]
  309. 309.
    GeurtsvanKessel CH, Geers D, Schmitz KS, Mykytyn AZ, Lamers MM et al. 2022. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci. Immunol. 7:69eabo2202
    [Google Scholar]
  310. 310.
    Zhang H, Deng S, Ren L, Zheng P, Hu X et al. 2021. Profiling CD8+ T cell epitopes of COVID-19 convalescents reveals reduced cellular immune responses to SARS-CoV-2 variants. Cell Rep. 36:109708
    [Google Scholar]
  311. 311.
    Jing L, Wu X, Krist MP, Hsiang TY, Campbell VL et al. 2022. T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. JCI Insight 7:e158126
    [Google Scholar]
  312. 312.
    Álvarez H, Ruiz-Mateos E, Juiz-González PM, Vitallé J, Viéitez I et al. 2022. SARS-CoV-2 evolution and spike-specific CD4+ T-cell response in persistent COVID-19 with severe HIV immune suppression. Microorganisms 10:143
    [Google Scholar]
  313. 313.
    Voloch CM, da Silva Francisco R Jr., de Almeida LGP, Brustolini OJ, Cardoso CC et al. 2021. Intra-host evolution during SARS-CoV-2 prolonged infection. Virus Evol. 7:veab078
    [Google Scholar]
  314. 314.
    Scherer EM, Babiker A, Adelman MW, Allman B, Key A et al. 2022. SARS-CoV-2 evolution and immune escape in immunocompromised patients. N. Engl. J. Med. 386:2436–38
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101721-061120
Loading
/content/journals/10.1146/annurev-immunol-101721-061120
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error