1932

Abstract

The epithelial tissues that line our body, such as the skin and gut, have remarkable regenerative prowess and continually renew throughout our lifetimes. Owing to their barrier function, these tissues have also evolved sophisticated repair mechanisms to swiftly heal and limit the penetration of harmful agents following injury. Researchers now appreciate that epithelial regeneration and repair are not autonomous processes but rely on a dynamic cross talk with immunity. A wealth of clinical and experimental data point to the functional coupling of reparative and inflammatory responses as two sides of the same coin. Here we bring to the fore the immunological signals that underlie homeostatic epithelial regeneration and restitution following damage. We review our current understanding of how immune cells contribute to distinct phases of repair. When unchecked, immune-mediated repair programs are co-opted to fuel epithelial pathologies such as cancer, psoriasis, and inflammatory bowel diseases. Thus, understanding the reparative functions of immunity may advance therapeutic innovation in regenerative medicine and epithelial inflammatory diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101721-062818
2023-04-26
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101721-062818.html?itemId=/content/journals/10.1146/annurev-immunol-101721-062818&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Melms JC, Biermann J, Huang H, Wang Y, Nair A et al. 2021. A molecular single-cell lung atlas of lethal COVID-19. Nature 595:7865114–19
    [Google Scholar]
  2. 2.
    Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y et al. 2021. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595:7865107–13
    [Google Scholar]
  3. 3.
    Wynn T. 2008. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214:2199–210
    [Google Scholar]
  4. 4.
    Bootun R. 2013. Effects of immunosuppressive therapy on wound healing. Int. Wound J. 10:198–104
    [Google Scholar]
  5. 5.
    Metchnikoff E. 1894. The comparative pathology of inflammation, transl. FA Starling, EH Starling. Nature 50:1287194–95 ( from French )
    [Google Scholar]
  6. 6.
    Ebert RH, Florey HW. 1939. The extravascular development of the monocyte observed in vivo. Br. J. Exp. Pathol. 20:4342–56
    [Google Scholar]
  7. 7.
    Leibovich SJ, Ross R. 1975. The role of the macrophage in wound repair: a study with hydrocortisone and antimacrophage serum. Am. J. Pathol. 78:171–100
    [Google Scholar]
  8. 8.
    Polverini PJ, Cotran RS, Gimbrone MA, Unanue ER. 1977. Activated macrophages induce vascular proliferation. Nature 269:5631804–6
    [Google Scholar]
  9. 9.
    Hunt TK, Knighton DR, Thakral KK, Goodson WH, Andrews WS. 1984. Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages. Surgery 96:148–54
    [Google Scholar]
  10. 10.
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:114–20
    [Google Scholar]
  11. 11.
    Wynn TA, Vannella KM. 2016. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:3450–62
    [Google Scholar]
  12. 12.
    Gordon S, Plüddemann A. 2017. Tissue macrophages: heterogeneity and functions. BMC Biol. 15:153
    [Google Scholar]
  13. 13.
    Belkaid Y, Harrison OJ. 2017. Homeostatic immunity and the microbiota. Immunity 46:4562–76
    [Google Scholar]
  14. 14.
    Potten CS, Saffhill R, Maibach HI. 1987. Measurement of the transit time for cells through the epidermis and stratum corneum of the mouse and guinea-pig. Cell Prolif. 20:5461–72
    [Google Scholar]
  15. 15.
    Williams JM, Duckworth CA, Burkitt MD, Watson AJM, Campbell BJ, Pritchard DM. 2015. Epithelial cell shedding and barrier function. Vet. Pathol. 52:3445–55
    [Google Scholar]
  16. 16.
    Creamer B, Shorter RG, Bamforth J. 1961. The turnover and shedding of epithelial cells. I. The turnover in the gastro-intestinal tract. Gut 2:110–18
    [Google Scholar]
  17. 17.
    Blanpain C, Fuchs E. 2006. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 22:339–73
    [Google Scholar]
  18. 18.
    Gehart H, Clevers H. 2019. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16:119–34
    [Google Scholar]
  19. 19.
    Rosenblum D, Naik S. 2022. Epithelial-immune crosstalk in health and disease. Curr. Opin. Genet. Dev. 74:101910
    [Google Scholar]
  20. 20.
    Naik S, Bouladoux N, Linehan JL, Han S-J, Harrison OJ et al. 2015. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520:7545104–8
    [Google Scholar]
  21. 21.
    Wang ECE, Dai Z, Ferrante AW, Drake CG, Christiano AM. 2019. A subset of TREM2+ dermal macrophages secretes oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth. Cell Stem Cell 24:4654–69.e6
    [Google Scholar]
  22. 22.
    Castellana D, Paus R, Perez-Moreno M. 2014. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLOS Biol. 12:12e1002002
    [Google Scholar]
  23. 23.
    Recalcati S, Gammella E, Buratti P, Doni A, Anselmo A et al. 2019. Macrophage ferroportin is essential for stromal cell proliferation in wound healing. Haematologica 104:147–58
    [Google Scholar]
  24. 24.
    Ali N, Zirak B, Rodriguez RS, Pauli ML, Truong H-A et al. 2017. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169:61119–29.e11
    [Google Scholar]
  25. 25.
    Liu Z, Hu X, Liang Y, Yu J, Li H et al. 2022. Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche. Nat. Immunol. 23:71086–97
    [Google Scholar]
  26. 26.
    Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T et al. 2012. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13:8744–52
    [Google Scholar]
  27. 27.
    Lay K, Yuan S, Gur-Cohen S, Miao Y, Han T et al. 2018. Stem cells repurpose proliferation to contain a breach in their niche barrier. eLife 7:e41661
    [Google Scholar]
  28. 28.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:3485–98
    [Google Scholar]
  29. 29.
    Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R et al. 2012. Compartmentalized control of skin immunity by resident commensals. Science 337:60981115–19
    [Google Scholar]
  30. 30.
    Lin X, Gaudino SJ, Jang KK, Bahadur T, Singh A et al. 2022. IL-17RA-signaling in Lgr5+ intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity 55:2237–53.e8
    [Google Scholar]
  31. 31.
    Biton M, Haber AL, Rogel N, Burgin G, Beyaz S et al. 2018. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175:51307–20.e22
    [Google Scholar]
  32. 32.
    Gunasekera DC, Ma J, Vacharathit V, Shah P, Ramakrishnan A et al. 2020. The development of colitis in Il10/⁻ mice is dependent on IL-22. Mucosal Immunol. 13:3493–506
    [Google Scholar]
  33. 33.
    Moran CJ, Walters TD, Guo C-H, Kugathasan S, Klein C et al. 2013. IL-10R polymorphisms are associated with very early-onset ulcerative colitis. Inflamm. Bowel Dis. 19:1115–23
    [Google Scholar]
  34. 34.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT. 2008. Wound repair and regeneration. Nature 453:7193314–21
    [Google Scholar]
  35. 35.
    Konieczny P, Naik S. 2021. Healing without scarring. Science 372:6540346–47
    [Google Scholar]
  36. 36.
    Rowlatt U. 1979. Intrauterine wound healing in a 20 week human fetus. Virchows Arch. A Path. Anat. Histol. 381:3353–61
    [Google Scholar]
  37. 37.
    Longaker MT, Chiu ES, Adzick NS, Stern M, Harrison MR, Stern R. 1991. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann. Surg. 213:4292–96
    [Google Scholar]
  38. 38.
    Mast BA, Albanese CT, Kapadia S. 1998. Tissue repair in the fetal intestinal tract occurs with adhesions, fibrosis, and neovascularization. Ann. Plast. Surg. 41:2140–44
    [Google Scholar]
  39. 39.
    Larson BJ, Longaker MT, Lorenz HP. 2010. Scarless fetal wound healing: a basic science review. Plast. Reconstr. Surg. 126:41172–80
    [Google Scholar]
  40. 40.
    Frantz FW, Bettinger DA, Haynes JH, Johnson DE, Harvey KM et al. 1993. Biology of fetal repair: The presence of bacteria in fetal wounds induces an adult-like healing response. J. Pediatr. Surg. 28:3428–34
    [Google Scholar]
  41. 41.
    Reynolds G, Vegh P, Fletcher J, Poyner EFM, Stephenson E et al. 2021. Developmental cell programs are co-opted in inflammatory skin disease. Science 371:6527eaba6500
    [Google Scholar]
  42. 42.
    Elmentaite R, Kumasaka N, Roberts K, Fleming A, Dann E et al. 2021. Cells of the human intestinal tract mapped across space and time. Nature 597:7875250–55
    [Google Scholar]
  43. 43.
    Lavin Y, Mortha A, Rahman A, Merad M. 2015. Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol. 15:12731–44
    [Google Scholar]
  44. 44.
    Godwin JW, Pinto AR, Rosenthal NA. 2013. Macrophages are required for adult salamander limb regeneration. PNAS 110:239415–20
    [Google Scholar]
  45. 45.
    Pasciuto E, Burton OT, Roca CP, Lagou V, Rajan WD et al. 2020. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182:3625–40.e24
    [Google Scholar]
  46. 46.
    Munro DA, Wineberg Y, Tarnick J, Vink CS, Li Z et al. 2019. Macrophages restrict the nephrogenic field and promote endothelial connections during kidney development. eLife 8:e43271
    [Google Scholar]
  47. 47.
    Cahill TJ, Sun X, Ravaud C, Villa del Campo C, Klaourakis K et al. 2021. Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development 148:3dev194563
    [Google Scholar]
  48. 48.
    Pool JG. 1977. Normal hemostatic mechanisms: a review. Am. J. Med. Technol. 43:8776–80
    [Google Scholar]
  49. 49.
    Wilgus TA. 2018. Alerting the body to tissue injury: the role of alarmins and DAMPs in cutaneous wound healing. Curr. Pathobiol. Rep. 6:155–60
    [Google Scholar]
  50. 50.
    Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG et al. 2014. Epithelialization in wound healing: a comprehensive review. Adv. Wound Care 3:7445–64
    [Google Scholar]
  51. 51.
    Galiano RD, Michaels J V, Dobryansky M, Levine JP, Gurtner GC. 2004. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen. 12:4485–92
    [Google Scholar]
  52. 52.
    Desmoulière A, Redard M, Darby I, Gabbiani G 1995. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am. J. Pathol. 146:156–66
    [Google Scholar]
  53. 53.
    Lovvorn HN, Cheung DT, Nimni ME, Perelman N, Estes JM, Adzick NS. 1999. Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair. J. Pediatr. Surg. 34:1218–23
    [Google Scholar]
  54. 54.
    Hsu Y-C, Li L, Fuchs E 2014. Emerging interactions between skin stem cells and their niches. Nat. Med. 20:8847–56
    [Google Scholar]
  55. 55.
    Nelson WJ, Nusse R. 2004. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303:56631483–87
    [Google Scholar]
  56. 56.
    Vannella KM, Wynn TA. 2017. Mechanisms of organ injury and repair by macrophages. Annu. Rev. Physiol. 79:593–617
    [Google Scholar]
  57. 57.
    Cosín-Roger J, Ortiz-Masiá D, Calatayud S, Hernández C, Álvarez A et al. 2013. M2 macrophages activate WNT signaling pathway in epithelial cells: relevance in ulcerative colitis. PLOS ONE 8:10e78128
    [Google Scholar]
  58. 58.
    Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S et al. 2016. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat. Commun. 7:113096
    [Google Scholar]
  59. 59.
    Quiros M, Nishio H, Neumann PA, Siuda D, Brazil JC et al. 2017. Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling. J. Clin. Investig. 127:93510–20
    [Google Scholar]
  60. 60.
    Wang X, Chen H, Tian R, Zhang Y, Drutskaya MS et al. 2017. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat. Commun. 8:114091
    [Google Scholar]
  61. 61.
    Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E et al. 2002. A role for skin γδ T cells in wound repair. Science 296:5568747–49
    [Google Scholar]
  62. 62.
    Toulon A, Breton L, Taylor KR, Tenenhaus M, Bhavsar D et al. 2009. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206:4743–50
    [Google Scholar]
  63. 63.
    Linehan JL, Harrison OJ, Han S-J, Byrd AL, Vujkovic-Cvijin I et al. 2018. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172:4784–96.e18
    [Google Scholar]
  64. 64.
    Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP et al. 2018. Innate lymphoid cells: 10 years on. Cell 174:51054–66
    [Google Scholar]
  65. 65.
    Konieczny P, Xing Y, Sidhu I, Subudhi I, Mansfield KP et al. 2022. Interleukin-17 governs hypoxic adaptation of injured epithelium. Science 377:6602eabg9302
    [Google Scholar]
  66. 66.
    Song X, Dai D, He X, Zhu S, Yao Y et al. 2015. Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity 43:3488–501
    [Google Scholar]
  67. 67.
    Chen X, Cai G, Liu C, Zhao J, Gu C et al. 2019. IL-17R-EGFR axis links wound healing to tumorigenesis in Lrig1+ stem cells. J. Exp. Med. 216:1195–214
    [Google Scholar]
  68. 68.
    Wee P, Wang Z. 2017. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 9:552
    [Google Scholar]
  69. 69.
    Ho AW, Shen F, Conti HR, Patel N, Childs EE et al. 2010. IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail. J. Immunol. 185:21063–70
    [Google Scholar]
  70. 70.
    Harrison OJ, Linehan JL, Shih H-Y, Bouladoux N, Han S-J et al. 2019. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 363:6422eaat6280
    [Google Scholar]
  71. 71.
    Molofsky AB, Savage AK, Locksley RM. 2015. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity 42:61005–19
    [Google Scholar]
  72. 72.
    Lam AJ, MacDonald KN, Pesenacker AM, Juvet SC, Morishita KA et al. 2019. Innate control of tissue-reparative human regulatory T cells. J. Immunol. 202:82195–209
    [Google Scholar]
  73. 73.
    Schiering C, Krausgruber T, Chomka A, Fröhlich A, Adelmann K et al. 2014. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513:7519564–68
    [Google Scholar]
  74. 74.
    Cosovanu C, Neumann C. 2020. The many functions of Foxp3+ regulatory T cells in the intestine. Front. Immunol. 11:600973
    [Google Scholar]
  75. 75.
    Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M et al. 2013. A special population of regulatory T cells potentiates muscle repair. Cell 155:61282–95
    [Google Scholar]
  76. 76.
    Nosbaum A, Prevel N, Truong H-A, Mehta P, Ettinger M et al. 2016. Regulatory T cells facilitate cutaneous wound healing. J. Immunol. 196:52010–14
    [Google Scholar]
  77. 77.
    Moreau JM, Dhariwala MO, Gouirand V, Boda DP, Boothby IC et al. 2021. Regulatory T cells promote innate inflammation after skin barrier breach via TGF-β activation. Sci. Immunol. 6:62eabg2329
    [Google Scholar]
  78. 78.
    Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA et al. 2015. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528:7583560–64
    [Google Scholar]
  79. 79.
    Kuhn KA, Manieri NA, Liu T-C, Stappenbeck TS. 2014. IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLOS ONE 9:12e114195
    [Google Scholar]
  80. 80.
    Keyes BE, Liu S, Asare A, Naik S, Levorse J et al. 2016. Impaired epidermal to dendritic T-cell signaling slows wound repair in aged skin. Cell 167:51323–38.e14
    [Google Scholar]
  81. 81.
    Taniguchi K, Wu L-W, Grivennikov SI, de Jong PR, Lian I et al. 2015. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519:754157–62
    [Google Scholar]
  82. 82.
    Dudakov JA, Hanash AM, van den Brink MRM. 2015. Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33:747–85
    [Google Scholar]
  83. 83.
    Aparicio-Domingo P, Romera-Hernandez M, Karrich JJ, Cornelissen F, Papazian N et al. 2015. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J. Exp. Med. 212:111783–91
    [Google Scholar]
  84. 84.
    Pickert G, Neufert C, Leppkes M, Zheng Y, Wittkopf N et al. 2009. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206:71465–72
    [Google Scholar]
  85. 85.
    Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM et al. 2008. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14:3282–89
    [Google Scholar]
  86. 86.
    Romera-Hernández M, Aparicio-Domingo P, Papazian N, Karrich JJ, Cornelissen F et al. 2020. Yap1-driven intestinal repair is controlled by group 3 innate lymphoid cells. Cell Rep. 30:137–45.e3
    [Google Scholar]
  87. 87.
    Haensel D, Jin S, Sun P, Cinco R, Dragan M et al. 2020. Defining epidermal basal cell states during skin homeostasis and wound healing using single-cell transcriptomics. Cell Rep. 30:113932–47.e6
    [Google Scholar]
  88. 88.
    Lacy ER. 1988. Epithelial restitution in the gastrointestinal tract. J. Clin. Gastroenterol. 10:Suppl. 1S72–77
    [Google Scholar]
  89. 89.
    Aragona M, Dekoninck S, Rulands S, Lenglez S, Mascré G et al. 2017. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat. Commun. 8:114684
    [Google Scholar]
  90. 90.
    Friedl P, Gilmour D. 2009. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10:7445–57
    [Google Scholar]
  91. 91.
    Miyoshi H, VanDussen KL, Malvin NP, Ryu SH, Wang Y et al. 2017. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J. 36:15–24
    [Google Scholar]
  92. 92.
    Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN et al. 2014. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40:166–77
    [Google Scholar]
  93. 93.
    Semenza GL. 2012. Hypoxia-inducible factors in physiology and medicine. Cell 148:3399–408
    [Google Scholar]
  94. 94.
    Hong WX, Hu MS, Esquivel M, Liang GY, Rennert RC et al. 2014. The role of hypoxia-inducible factor in wound healing. Adv. Wound Care 3:5390–99
    [Google Scholar]
  95. 95.
    Wang Y, Chiang I-L, Ohara TE, Fujii S, Cheng J et al. 2019. Long-term culture captures injury-repair cycles of colonic stem cells. Cell 179:51144–59.e15
    [Google Scholar]
  96. 96.
    Botusan IR, Sunkari VG, Savu O, Catrina AI, Grünler J et al. 2008. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice. PNAS 105:4919426–31
    [Google Scholar]
  97. 97.
    Furuta GT, Turner JR, Taylor CT, Hershberg RM, Comerford K et al. 2001. Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J. Exp. Med. 193:91027–34
    [Google Scholar]
  98. 98.
    Liu Z, Zhang L, Toma MA, Li D, Bian X et al. 2022. Integrative small and long RNA omics analysis of human healing and nonhealing wounds discovers cooperating microRNAs as therapeutic targets. eLife 11:e80322
    [Google Scholar]
  99. 99.
    Li D, Cheng S, Pei Y, Sommar P, Kärner J et al. 2022. Single-cell analysis reveals major histocompatibility complex II‒expressing keratinocytes in pressure ulcers with worse healing outcomes. J. Investig. Dermatol. 142:3 Part A705–16
    [Google Scholar]
  100. 100.
    Mathur AN, Zirak B, Boothby IC, Tan M, Cohen JN et al. 2019. Treg-cell control of a CXCL5-IL-17 inflammatory axis promotes hair-follicle-stem-cell differentiation during skin-barrier repair. Immunity 50:3655–67.e4
    [Google Scholar]
  101. 101.
    Wong SL, Demers M, Martinod K, Gallant M, Wang Y et al. 2015. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21:7815–19
    [Google Scholar]
  102. 102.
    Plikus MV, Wang X, Sinha S, Forte E, Thompson SM et al. 2021. Fibroblasts: origins, definitions, and functions in health and disease. Cell 184:153852–72
    [Google Scholar]
  103. 103.
    Tamari M, Ver Heul AM, Kim BS 2021. Immunosensation: neuroimmune cross talk in the skin. Annu. Rev. Immunol. 39:369–93
    [Google Scholar]
  104. 104.
    Theilgaard-Mönch K, Knudsen S, Follin P, Borregaard N. 2004. The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J. Immunol. 172:127684–93
    [Google Scholar]
  105. 105.
    Curaj A, Schumacher D, Rusu M, Staudt M, Li X et al. 2020. Neutrophils modulate fibroblast function and promote healing and scar formation after murine myocardial infarction. Int. J. Mol. Sci. 21:103685
    [Google Scholar]
  106. 106.
    Correa-Gallegos D, Jiang D, Christ S, Ramesh P, Ye H et al. 2019. Patch repair of deep wounds by mobilized fascia. Nature 576:7786287–92
    [Google Scholar]
  107. 107.
    Fischer A, Wannemacher J, Christ S, Koopmans T, Kadri S et al. 2022. Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nat. Immunol. 23:4518–31
    [Google Scholar]
  108. 108.
    Ng LG, Ostuni R, Hidalgo A. 2019. Heterogeneity of neutrophils. Nat. Rev. Immunol. 19:4255–65
    [Google Scholar]
  109. 109.
    Buechler MB, Fu W, Turley SJ. 2021. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54:5903–15
    [Google Scholar]
  110. 110.
    Lucas T, Waisman A, Ranjan R, Roes J, Krieg T et al. 2010. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184:73964–77
    [Google Scholar]
  111. 111.
    Shook BA, Wasko RR, Mano O, Rutenberg-Schoenberg M, Rudolph MC et al. 2020. Dermal adipocyte lipolysis and myofibroblast conversion are required for efficient skin repair. Cell Stem Cell 26:6880–95.e6
    [Google Scholar]
  112. 112.
    Ribatti D, Crivellato E. 2009. Immune cells and angiogenesis. J. Cell. Mol. Med. 13:9a2822–33
    [Google Scholar]
  113. 113.
    Frantz S, Vincent KA, Feron O, Kelly RA. 2005. Innate immunity and angiogenesis. Circ. Res. 96:115–26
    [Google Scholar]
  114. 114.
    Stockmann C, Kirmse S, Helfrich I, Weidemann A, Takeda N et al. 2011. A wound size-dependent effect of myeloid cell-derived vascular endothelial growth factor on wound healing. J. Investig. Dermatol. 131:3797–801
    [Google Scholar]
  115. 115.
    Willenborg S, Lucas T, van Loo G, Knipper JA, Krieg T et al. 2012. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120:3613–25
    [Google Scholar]
  116. 116.
    Gurevich DB, Severn CE, Twomey C, Greenhough A, Cash J et al. 2018. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 37:13e97786
    [Google Scholar]
  117. 117.
    Kwee BJ, Budina E, Najibi AJ, Mooney DJ. 2018. CD4 T-cells regulate angiogenesis and myogenesis. Biomaterials 178:109–21
    [Google Scholar]
  118. 118.
    Hata T, Takahashi M, Hida S, Kawaguchi M, Kashima Y et al. 2011. Critical role of Th17 cells in inflammation and neovascularization after ischaemia. Cardiovasc. Res. 90:2364–72
    [Google Scholar]
  119. 119.
    Weirather J, Hofmann UDW, Beyersdorf N, Ramos GC, Vogel B et al. 2014. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115:155–67
    [Google Scholar]
  120. 120.
    Mor F, Quintana FJ, Cohen IR. 2004. Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J. Immunol. 172:74618–23
    [Google Scholar]
  121. 121.
    Ishida Y, Kondo T, Takayasu T, Iwakura Y, Mukaida N. 2004. The essential involvement of cross-talk between IFN-γ and TGF-β in the skin wound-healing process. J. Immunol. 172:31848–55
    [Google Scholar]
  122. 122.
    Oliver G, Kipnis J, Randolph GJ, Harvey NL. 2020. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell 182:2270–96
    [Google Scholar]
  123. 123.
    Mallon EC, Ryan TJ. 1994. Lymphedema and wound healing. Clin. Dermatol. 12:189–93
    [Google Scholar]
  124. 124.
    Saaristo A, Tammela T, Fārkkilā A, Kärkkäinen M, Suominen E et al. 2006. Vascular endothelial growth factor-C accelerates diabetic wound healing. Am. J. Pathol. 169:31080–87
    [Google Scholar]
  125. 125.
    Karpanen T, Alitalo K. 2008. Molecular biology and pathology of lymphangiogenesis. Annu. Rev. Pathol. 3:367–97
    [Google Scholar]
  126. 126.
    Lim L, Bui H, Farrelly O, Yang J, Li L et al. 2019. Hemostasis stimulates lymphangiogenesis through release and activation of VEGFC. Blood 134:201764–75
    [Google Scholar]
  127. 127.
    Kataru RP, Jung K, Jang C, Yang H, Schwendener RA et al. 2009. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113:225650–59
    [Google Scholar]
  128. 128.
    Hadrian K, Willenborg S, Bock F, Cursiefen C, Eming SA, Hos D. 2021. Macrophage-mediated tissue vascularization: similarities and differences between cornea and skin. Front. Immunol. 12:667830
    [Google Scholar]
  129. 129.
    Gur-Cohen S, Yang H, Baksh SC, Miao Y, Levorse J et al. 2019. Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science 366:64701218–25
    [Google Scholar]
  130. 130.
    Niec RE, Chu T, Schernthanner M, Gur-Cohen S, Hidalgo L et al. 2022. Lymphatics act as a signaling hub to regulate intestinal stem cell activity. Cell Stem Cell 29:71067–82.e18
    [Google Scholar]
  131. 131.
    Liu X, De la Cruz E, Gu X, Balint L, Oxendine-Burns M et al. 2020. Lymphoangiocrine signals promote cardiac growth and repair. Nature 588:7839705–11
    [Google Scholar]
  132. 132.
    Li J, Li E, Czepielewski RS, Chi J, Guo X et al. 2021. Neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells. Cell Metab. 33:71449–65.e6
    [Google Scholar]
  133. 133.
    Chu C, Artis D, Chiu IM. 2020. Neuro-immune interactions in the tissues. Immunity 52:3464–74
    [Google Scholar]
  134. 134.
    Klein Wolterink RGJ, Wu GS, Chiu IM, Veiga-Fernandes H. 2022. Neuroimmune interactions in peripheral organs. Annu. Rev. Neurosci. 45:339–60
    [Google Scholar]
  135. 135.
    Matheis F, Muller PA, Graves CL, Gabanyi I, Kerner ZJ et al. 2020. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180:164–78.e16
    [Google Scholar]
  136. 136.
    Pinho-Ribeiro FA, Verri WA, Chiu IM. 2017. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol. 38:15–19
    [Google Scholar]
  137. 137.
    Veiga-Fernandes H, Mucida D. 2016. Neuro-immune interactions at barrier surfaces. Cell 165:4801–11
    [Google Scholar]
  138. 138.
    Ibiza S, García-Cassani B, Ribeiro H, Carvalho T, Almeida L et al. 2016. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535:7612440–43
    [Google Scholar]
  139. 139.
    Progatzky F, Shapiro M, Chng SH, Garcia-Cassani B, Classon CH et al. 2021. Regulation of intestinal immunity and tissue repair by enteric glia. Nature 599:7883125–30
    [Google Scholar]
  140. 140.
    Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D. 2016. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164:3378–91
    [Google Scholar]
  141. 141.
    Matteoli G, Gomez-Pinilla PJ, Nemethova A, Giovangiulio MD, Cailotto C et al. 2014. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63:6938–48
    [Google Scholar]
  142. 142.
    Hoeffel G, Debroas G, Roger A, Rossignol R, Gouilly J et al. 2021. Sensory neuron-derived TAFA4 promotes macrophage tissue repair functions. Nature 594:786194–99
    [Google Scholar]
  143. 143.
    Serger E, Luengo-Gutierrez L, Chadwick JS, Kong G, Zhou L et al. 2022. The gut metabolite indole-3 propionate promotes nerve regeneration and repair. Nature 607:7919585–92
    [Google Scholar]
  144. 144.
    Dvorak HF. 1986. Tumors: wounds that do not heal. N. Engl. J. Med. 315:261650–59
    [Google Scholar]
  145. 145.
    Virchow R. 1863. Aetiologie der neoplastischen Geschwulste/Pathogenie der neoplastischen Geschwulste Berlin: Verlag von August Hirschwald
  146. 146.
    Schäfer M, Werner S. 2008. Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9:8628–38
    [Google Scholar]
  147. 147.
    Dolberg DS, Hollingsworth R, Hertle M, Bissell MJ. 1985. Wounding and its role in RSV-mediated tumor formation. Science 230:4726676–78
    [Google Scholar]
  148. 148.
    Arwert EN, Lal R, Quist S, Rosewell I, van Rooijen N, Watt FM. 2010. Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate. PNAS 107:4619903–8
    [Google Scholar]
  149. 149.
    Schafer ZT, Brugge JS. 2007. IL-6 involvement in epithelial cancers. J. Clin. Investig. 117:123660–63
    [Google Scholar]
  150. 150.
    Cataisson C, Salcedo R, Michalowski AM, Klosterman M, Naik S et al. 2019. T-cell deletion of MyD88 connects IL17 and IκBζ to RAS oncogenesis. Mol. Cancer Res. 17:81759–73
    [Google Scholar]
  151. 151.
    Grivennikov S, Karin E, Terzic J, Mucida D, Yu G-Y et al. 2009. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:2103–13
    [Google Scholar]
  152. 152.
    Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B et al. 2012. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:7423254–58
    [Google Scholar]
  153. 153.
    Kryczek I, Lin Y, Nagarsheth N, Peng D, Zhao L et al. 2014. IL-22+CD4+ T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40:5772–84
    [Google Scholar]
  154. 154.
    Bernshtein B, Curato C, Ioannou M, Thaiss CA, Gross-Vered M et al. 2019. IL-23-producing IL-10Rα-deficient gut macrophages elicit an IL-22-driven proinflammatory epithelial cell response. Sci. Immunol. 4:36eaau6571
    [Google Scholar]
  155. 155.
    Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F et al. 2013. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210:5917–31
    [Google Scholar]
  156. 156.
    Lowes MA, Suárez-Fariñas M, Krueger JG. 2014. Immunology of psoriasis. Annu. Rev. Immunol. 32:227–55
    [Google Scholar]
  157. 157.
    Morhenn VB. 1988. Keratinocyte proliferation in wound healing and skin diseases. Immunol. Today 9:4104–7
    [Google Scholar]
  158. 158.
    Mansbridge JN, Knapp AM. 1987. Changes in keratinocyte maturation during wound healing. J. Investig. Dermatol. 89:3253–63
    [Google Scholar]
  159. 159.
    Nickoloff BJ, Bonish BK, Marble DJ, Schriedel KA, DiPietro LA et al. 2006. Lessons learned from psoriatic plaques concerning mechanisms of tissue repair, remodeling, and inflammation. J. Investig. Dermatol. Symp. Proc. 11:116–29
    [Google Scholar]
  160. 160.
    de Souza HSP, Fiocchi C. 2016. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13:113–27
    [Google Scholar]
  161. 161.
    Rieder F, Brenmoehl J, Leeb S, Schölmerich J, Rogler G. 2007. Wound healing and fibrosis in intestinal disease. Gut 56:1130–39
    [Google Scholar]
  162. 162.
    Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CEM et al. 2014. Secukinumab in plaque psoriasis—results of two phase 3 trials. N. Engl. J. Med. 371:4326–38
    [Google Scholar]
  163. 163.
    Hawkes JE, Yan BY, Chan TC, Krueger JG. 2018. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J. Immunol. 201:61605–13
    [Google Scholar]
  164. 164.
    Fauny M, Moulin D, D'Amico F, Netter P, Petitpain N et al. 2020. Paradoxical gastrointestinal effects of interleukin-17 blockers. Ann. Rheum. Dis. 79:91132–38
    [Google Scholar]
  165. 165.
    Lim AI, McFadden T, Link VM, Han S-J, Karlsson R-M et al. 2021. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373:6558eabf3002
    [Google Scholar]
  166. 166.
    Naik S, Larsen SB, Gomez NC, Alaverdyan K, Sendoel A et al. 2017. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550:7677475–80
    [Google Scholar]
  167. 167.
    Larsen SB, Cowley CJ, Sajjath SM, Barrows D, Yang Y et al. 2021. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28:101758–74.e8
    [Google Scholar]
  168. 168.
    Bryant DM, Sousounis K, Payzin-Dogru D, Bryant S, Sandoval AGW et al. 2017. Identification of regenerative roadblocks via repeat deployment of limb regeneration in axolotls. npj Regen. Med. 2:30
    [Google Scholar]
  169. 169.
    Haller S, Kapuria S, Riley RR, O'Leary MN, Schreiber KH et al. 2017. mTORC1 activation during repeated regeneration impairs somatic stem cell maintenance. Cell Stem Cell 21:6806–18.e5
    [Google Scholar]
  170. 170.
    Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. 2018. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14:10576–90
    [Google Scholar]
  171. 171.
    Saxton RA, Henneberg LT, Calafiore M, Su L, Jude KM et al. 2021. The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design. Immunity 54:4660–72.e9
    [Google Scholar]
  172. 172.
    Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV et al. 2022. CAR T cells produced in vivo to treat cardiac injury. Science 375:657691–96
    [Google Scholar]
  173. 173.
    Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T et al. 2012. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18:4618–23
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101721-062818
Loading
/content/journals/10.1146/annurev-immunol-101721-062818
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error