1932

Abstract

I have been a scientific grasshopper throughout my career, moving from question to question within the domain of lupus. This has proven to be immensely gratifying. Scientific exploration is endlessly fascinating, and succeeding in studies you care about with colleagues and trainees leads to strong and lasting bonds. Science isn't easy; being a woman in science presents challenges, but the drive to understand a disease remains strong.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101721-065214
2023-04-26
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101721-065214.html?itemId=/content/journals/10.1146/annurev-immunol-101721-065214&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Diamond S. 1977. Veritas at Harvard. New York Review of Books April 28
    [Google Scholar]
  2. 2.
    Diamond B, Knight SC, Lance EM. 1974. Some observations on the in vitro reactivity of lymphoid subpopulations. Cell Immunol. 11:239–46
    [Google Scholar]
  3. 3.
    Raff MC. 1970. Two distinct populations of peripheral lymphocytes in mice distinguishable by immunofluorescence. Immunology 19:637–50
    [Google Scholar]
  4. 4.
    Cook WD, Rudikoff S, Giusti AM, Scharff MD. 1982. Somatic mutation in a cultured mouse myeloma cell affects antigen binding. PNAS 79:1240–44
    [Google Scholar]
  5. 5.
    Kohler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–97
    [Google Scholar]
  6. 6.
    Diamond B, Birshtein BK, Scharff MD. 1979. Site of binding of mouse IgG2b to the Fc receptor on mouse macrophages. J. Exp. Med. 150:721–26
    [Google Scholar]
  7. 7.
    Diamond B, Bloom BR, Scharff MD. 1978. The Fc receptors of primary and cultured phagocytic cells studied with homogeneous antibodies. J. Immunol. 121:1329–33
    [Google Scholar]
  8. 8.
    Diamond B, Boccumini L, Birshtein BK. 1985. Site of binding of IgG2b and IgG2a by mouse macrophage Fc receptors by using cyanogen bromide fragments. J. Immunol. 134:1080–83
    [Google Scholar]
  9. 9.
    Diamond B, Yelton DE. 1981. A new Fc receptor on mouse macrophages binding IgG3. J. Exp. Med. 153:514–19
    [Google Scholar]
  10. 10.
    Ralph P, Nakoinz I, Diamond B, Yelton D. 1980. All classes of murine IgG antibody mediate macrophage phagocytosis and lysis of erythrocytes. J. Immunol. 125:1885–88
    [Google Scholar]
  11. 11.
    Schneck J, Rosen OM, Diamond B, Bloom BR. 1981. Modulation of Fc-receptor expression and Fc-mediated phagocytosis in variants of a macrophage-like cell line. J. Immunol. 126:745–49
    [Google Scholar]
  12. 12.
    Ravetch JV, Luster AD, Weinshank R, Kochan J, Pavlovec A et al. 1986. Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors. Science 234:718–25
    [Google Scholar]
  13. 13.
    Newman W, Gordon S, Hammerling U, Senik A, Bloom BR. 1978. Production of migration inhibition factor (MIF) and an inducer of plasminogen activator (IPA) by subsets of T cells in MLC. J. Immunol. 120:927–31
    [Google Scholar]
  14. 14.
    Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J et al. 1991. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254:279–82
    [Google Scholar]
  15. 15.
    Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR. 1995. Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 375:6527155–58
    [Google Scholar]
  16. 16.
    van Bleek GM, Nathenson SG. 1992. Presentation of antigenic peptides by MHC class I molecules. Trends Cell Biol. 2:202–7
    [Google Scholar]
  17. 17.
    Eckhardt LA, Tilley SA, Lang RB, Marcu KB, Birshtein BK. 1982. DNA rearrangements in MPC-11 immunoglobulin heavy chain class-switch variants. PNAS 79:3006–10
    [Google Scholar]
  18. 18.
    Potter TA, Bluestone JA, Rajan TV. 1987. A single amino acid substitution in the alpha 3 domain of an H-2 class I molecule abrogates reactivity with CTL. J. Exp. Med. 166:956–66
    [Google Scholar]
  19. 19.
    Solomon G, Schiffenbauer J, Keiser HD, Diamond B. 1983. Use of monoclonal antibodies to identify shared idiotypes on human antibodies to native DNA from patients with systemic lupus erythematosus. PNAS 80:850–54
    [Google Scholar]
  20. 20.
    Davidson A, Smith A, Katz J, Preud'Homme JL, Solomon A, Diamond B 1989. A cross-reactive idiotype on anti-DNA antibodies defines a H chain determinant present almost exclusively on IgG antibodies. J. Immunol. 143:174–80
    [Google Scholar]
  21. 21.
    Livneh A, Halpern A, Perkins D, Lazo A, Halpern R, Diamond B. 1987. A monoclonal antibody to a cross-reactive idiotype on cationic human anti-DNA antibodies expressing lambda light chains: a new reagent to identify a potentially differential pathogenic subset. J. Immunol. 138:123–27
    [Google Scholar]
  22. 22.
    Livneh A, Preud'Homme JL, Solomon A, Diamond B 1987. Preferential expression of the systemic lupus erythematosus-associated idiotype 8.12 in sera containing monoclonal immunoglobulins. J. Immunol. 139:3730–33
    [Google Scholar]
  23. 23.
    Isenberg DA, Shoenfeld Y, Madaio MP, Rauch J, Reichlin M et al. 1984. Anti-DNA antibody idiotypes in systemic lupus erythematosus. Lancet 2:417–22
    [Google Scholar]
  24. 24.
    Davidson A, Preud'homme JL, Solomon A, Chang MD, Beede S, Diamond B. 1987. Idiotypic analysis of myeloma proteins: Anti-DNA activity of monoclonal immunoglobulins bearing an SLE idiotype is more common in IgG than IgM antibodies. J. Immunol. 138:1515–18
    [Google Scholar]
  25. 25.
    Jerne NK. 1985. The generative grammar of the immune system. EMBO J. 4:847–52
    [Google Scholar]
  26. 26.
    Jerne NK. 1955. The natural-selection theory of antibody formation. PNAS 41:849–57
    [Google Scholar]
  27. 27.
    Shoenfeld Y, Isenberg DA, Rauch J, Madaio MP, Stollar BD, Schwartz RS. 1983. Idiotypic cross-reactions of monoclonal human lupus autoantibodies. J. Exp. Med. 158:718–30
    [Google Scholar]
  28. 28.
    Diamond B, Scharff MD. 1984. Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity. PNAS 81:5841–44
    [Google Scholar]
  29. 29.
    Shlomchik M, Mascelli M, Shan H, Radic MZ, Pisetsky D et al. 1990. Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J. Exp. Med. 171:265–92
    [Google Scholar]
  30. 30.
    Davidson A, Manheimer-Lory A, Aranow C, Peterson R, Hannigan N, Diamond B. 1990. Molecular characterization of a somatically mutated anti-DNA antibody bearing two systemic lupus erythematosus-related idiotypes. J. Clin. Investig. 85:1401–9
    [Google Scholar]
  31. 31.
    Manheimer-Lory A, Katz JB, Pillinger M, Ghossein C, Smith A, Diamond B. 1991. Molecular characteristics of antibodies bearing an anti-DNA-associated idiotype. J. Exp. Med. 174:1639–52
    [Google Scholar]
  32. 32.
    Paul E, Diamond B 1993. Characterization of two human anti-DNA antibodies bearing the pathogenic idiotype 8.12. Autoimmunity 16:13–21
    [Google Scholar]
  33. 33.
    Jenks SA, Cashman KS, Zumaquero E, Marigorta UM, Patel AV et al. 2018. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49:725–39.e6
    [Google Scholar]
  34. 34.
    Scharer CD, Blalock EL, Mi T, Barwick BG, Jenks SA et al. 2019. Epigenetic programming underpins B cell dysfunction in human SLE. Nat. Immunol. 20:1071–82
    [Google Scholar]
  35. 35.
    Detanico T, St. Clair JB, Aviszus K, Kirchenbaum G, Guo W, Wysocki LJ 2013. Somatic mutagenesis in autoimmunity. Autoimmunity 46:102–14
    [Google Scholar]
  36. 36.
    Zhang J, Jacobi AM, Wang T, Diamond B 2008. Pathogenic autoantibodies in systemic lupus erythematosus are derived from both self-reactive and non-self-reactive B cells. Mol. Med. 14:675–81
    [Google Scholar]
  37. 37.
    Suurmond J, Atisha-Fregoso Y, Marasco E, Barlev AN, Ahmed N et al. 2019. Loss of an IgG plasma cell checkpoint in patients with lupus. J. Allergy Clin. Immunol. 143:1586–97
    [Google Scholar]
  38. 38.
    Suurmond J, Atisha-Fregoso Y, Barlev AN, Calderon SA, Mackay MC et al. 2019. Patterns of ANA+ B cells for SLE patient stratification. JCI Insight 4:e127885
    [Google Scholar]
  39. 39.
    Cappione A 3rd, Anolik JH, Pugh-Bernard A, Barnard J, Dutcher P et al. 2005. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Investig. 115:3205–16
    [Google Scholar]
  40. 40.
    Jog NR, James JA. 2020. Epstein Barr virus and autoimmune responses in systemic lupus erythematosus. Front. Immunol. 11:623944
    [Google Scholar]
  41. 41.
    Jog NR, Young KA, Munroe ME, Harmon MT, Guthridge JM et al. 2019. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Ann. Rheum. Dis. 78:1235–41
    [Google Scholar]
  42. 42.
    Naparstek Y, Duggan D, Schattner A, Madaio MP, Goni F et al. 1985. Immunochemical similarities between monoclonal antibacterial Waldenstrom's macroglobulins and monoclonal anti-DNA lupus autoantibodies. J. Exp. Med. 161:1525–38
    [Google Scholar]
  43. 43.
    Azzouz D, Omarbekova A, Heguy A, Schwudke D, Gisch N et al. 2019. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann. Rheum. Dis. 78:947–56
    [Google Scholar]
  44. 44.
    Ray S, Diamond B. 1994. Generation of a fusion partner to sample the repertoire of splenic B cells destined for apoptosis. PNAS 91:5548–51
    [Google Scholar]
  45. 45.
    Ray SK, Putterman C, Diamond B. 1996. Pathogenic autoantibodies are routinely generated during the response to foreign antigen: a paradigm for autoimmune disease. PNAS 93:2019–24
    [Google Scholar]
  46. 46.
    Newman J, Rice JS, Wang C, Harris SL, Diamond B. 2003. Identification of an antigen-specific B cell population. J. Immunol. Methods 272:177–87
    [Google Scholar]
  47. 47.
    Rice JS, Newman J, Wang C, Michael DJ, Diamond B. 2005. Receptor editing in peripheral B cell tolerance. PNAS 102:1608–13
    [Google Scholar]
  48. 48.
    Wang YH, Diamond B. 2008. B cell receptor revision diminishes the autoreactive B cell response after antigen activation in mice. J. Clin. Investig. 118:2896–907
    [Google Scholar]
  49. 49.
    Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B. 2002. Estrogen alters thresholds for B cell apoptosis and activation. J. Clin. Investig. 109:1625–33
    [Google Scholar]
  50. 50.
    Grimaldi CM, Jeganathan V, Diamond B. 2006. Hormonal regulation of B cell development: 17β-estradiol impairs negative selection of high-affinity DNA-reactive B cells at more than one developmental checkpoint. J. Immunol. 176:2703–10
    [Google Scholar]
  51. 51.
    Grimaldi CM, Michael DJ, Diamond B. 2001. Cutting edge: expansion and activation of a population of autoreactive marginal zone B cells in a model of estrogen-induced lupus. J. Immunol. 167:1886–90
    [Google Scholar]
  52. 52.
    Peeva E, Grimaldi C, Spatz L, Diamond B. 2000. Bromocriptine restores tolerance in estrogen-treated mice. J. Clin. Investig. 106:1373–79
    [Google Scholar]
  53. 53.
    Peeva E, Michael D, Cleary J, Rice J, Chen X, Diamond B 2003. Prolactin modulates the naive B cell repertoire. J. Clin. Investig. 111:275–83
    [Google Scholar]
  54. 54.
    Venkatesh J, Peeva E, Xu X, Diamond B. 2006. Cutting edge: Hormonal milieu, not antigenic specificity, determines the mature phenotype of autoreactive B cells. J. Immunol. 176:3311–14
    [Google Scholar]
  55. 55.
    Mai T, Zan H, Zhang J, Hawkins JS, Xu Z, Casali P. 2010. Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation-induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation. J. Biol. Chem. 285:37797–810
    [Google Scholar]
  56. 56.
    Ebling F, Hahn BH. 1980. Restricted subpopulations of DNA antibodies in kidneys of mice with systemic lupus: comparison of antibodies in serum and renal eluates. Arthritis Rheum. 23:392–403
    [Google Scholar]
  57. 57.
    Liao L, Sindhwani R, Rojkind M, Factor S, Leinwand L, Diamond B. 1995. Antibody-mediated autoimmune myocarditis depends on genetically determined target organ sensitivity. J. Exp. Med. 181:1123–31
    [Google Scholar]
  58. 58.
    Malkiel S, Kuan AP, Diamond B. 1996. Autoimmunity in heart disease: mechanisms and genetic susceptibility. Mol. Med. Today 2:336–42
    [Google Scholar]
  59. 59.
    Malkiel S, Liao L, Cunningham MW, Diamond B. 2000. T-cell-dependent antibody response to the dominant epitope of streptococcal polysaccharide, N-acetyl-glucosamine, is cross-reactive with cardiac myosin. Infect. Immun. 68:5803–8
    [Google Scholar]
  60. 60.
    Fu R, Guo C, Wang S, Huang Y, Jin O et al. 2017. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol. 69:1636–46
    [Google Scholar]
  61. 61.
    Bhargava R, Lehoux S, Maeda K, Tsokos MG, Krishfield S et al. 2021. Aberrantly glycosylated IgG elicits pathogenic signaling in podocytes and signifies lupus nephritis. JCI Insight 6:9e147789
    [Google Scholar]
  62. 62.
    Chen PM, Wilson PC, Shyer JA, Veselits M, Steach HR et al. 2020. Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis. Sci. Transl. Med. 12:538eaay1620
    [Google Scholar]
  63. 63.
    Katz JB, Limpanasithikul W, Diamond B. 1994. Mutational analysis of an autoantibody: differential binding and pathogenicity. J. Exp. Med. 180:925–32
    [Google Scholar]
  64. 64.
    Gaynor B, Putterman C, Valadon P, Spatz L, Scharff MD, Diamond B. 1997. Peptide inhibition of glomerular deposition of an anti-DNA antibody. PNAS 94:1955–60
    [Google Scholar]
  65. 65.
    Lupus Allied Dis. Assoc., Lupus Found. Am., Lupus Res. Alliance 2018. Lupus: patient voices; report on externally-led patient-focused drug development meeting September 25, 2017 Rep. http://lupuspfdd.org/LupusPatientVoicesFINAL.pdf
    [Google Scholar]
  66. 66.
    DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B. 2001. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 7:1189–93
    [Google Scholar]
  67. 67.
    Mader S, Jeganathan V, Arinuma Y, Fujieda Y, Dujmovic I et al. 2018. Understanding the antibody repertoire in neuropsychiatric systemic lupus erythematosus and neuromyelitis optica spectrum disorder: Do they share common targets?. Arthritis Rheumatol. 70:277–86
    [Google Scholar]
  68. 68.
    Chan K, Nestor J, Huerta TS, Certain N, Moody G et al. 2020. Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. Nat. Commun. 11:1403
    [Google Scholar]
  69. 69.
    Putterman C, Deocharan B, Diamond B. 2000. Molecular analysis of the autoantibody response in peptide-induced autoimmunity. J. Immunol. 164:2542–49
    [Google Scholar]
  70. 70.
    Nestor J, Arinuma Y, Huerta TS, Kowal C, Nasiri E et al. 2018. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. J. Exp. Med. 215:2554–66
    [Google Scholar]
  71. 71.
    Seliga A, Lee MH, Fernandes NC, Zuluaga-Ramirez V, Didukh M et al. 2018. Kallikrein-kinin system suppresses type I interferon responses: a novel pathway of interferon regulation. Front. Immunol. 9:156
    [Google Scholar]
  72. 72.
    Chang EH, Volpe BT, Mackay M, Aranow C, Watson P et al. 2015. Selective impairment of spatial cognition caused by autoantibodies to the N-methyl-d-aspartate receptor. EBioMedicine 2:755–64
    [Google Scholar]
  73. 73.
    Mackay M, Tang CC, Volpe BT, Aranow C, Mattis PJ et al. 2015. Brain metabolism and autoantibody titres predict functional impairment in systemic lupus erythematosus. Lupus Sci. Med. 2:e000074
    [Google Scholar]
  74. 74.
    Mackay M, Vo A, Tang CC, Small M, Anderson EW et al. 2019. Metabolic and microstructural alterations in the SLE brain correlate with cognitive impairment. JCI Insight 4:e124002
    [Google Scholar]
  75. 75.
    Aw E, Zhang Y, Carroll M. 2020. Microglial responses to peripheral type 1 interferon. J. Neuroinflamm. 17:1340
    [Google Scholar]
  76. 76.
    Makinde HM, Winter DR, Procissi D, Mike EV, Stock AD et al. 2020. A novel microglia-specific transcriptional signature correlates with behavioral deficits in neuropsychiatric lupus. Front. Immunol. 11:230
    [Google Scholar]
  77. 77.
    Bonfa E, Golombek SJ, Kaufman LD, Skelly S, Weissbach H et al. 1987. Association between lupus psychosis and anti-ribosomal P protein antibodies. N. Engl. J. Med. 317:265–71
    [Google Scholar]
  78. 78.
    Bravo-Zehnder M, Toledo EM, Segovia-Miranda F, Serrano FG, Benito MJ et al. 2015. Anti-ribosomal P protein autoantibodies from patients with neuropsychiatric lupus impair memory in mice. Arthritis Rheumatol. 67:204–14
    [Google Scholar]
  79. 79.
    Espinoza S, Arredondo SB, Barake F, Carvajal F, Guerrero FG et al. 2020. Neuronal surface P antigen (NSPA) modulates postsynaptic NMDAR stability through ubiquitination of tyrosine phosphatase PTPMEG. BMC Biol. 18:164
    [Google Scholar]
  80. 80.
    Ivanidze J, Mackay M, Hoang A, Chi JM, Cheng K et al. 2019. Dynamic contrast-enhanced MRI reveals unique blood-brain barrier permeability characteristics in the hippocampus in the normal brain. Am. J. Neuroradiol. 40:408–11
    [Google Scholar]
  81. 81.
    Lee JY, Huerta PT, Zhang J, Kowal C, Bertini E et al. 2009. Neurotoxic autoantibodies mediate congenital cortical impairment of offspring in maternal lupus. Nat. Med. 15:91–96
    [Google Scholar]
  82. 82.
    Wang L, Zhou D, Lee J, Niu H, Faust TW et al. 2012. Female mouse fetal loss mediated by maternal autoantibody. J. Exp. Med. 209:1083–89
    [Google Scholar]
  83. 83.
    Jones KL, Van de Water J. 2019. Maternal autoantibody related autism: mechanisms and pathways. Mol. Psychiatry 24:252–65
    [Google Scholar]
  84. 84.
    Brimberg L, Sadiq A, Gregersen PK, Diamond B. 2013. Brain-reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder. Mol. Psychiatry 18:1171–77
    [Google Scholar]
  85. 85.
    Brimberg L, Mader S, Jeganathan V, Berlin R, Coleman TR et al. 2016. Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice. Mol. Psychiatry 21:1663–71
    [Google Scholar]
  86. 86.
    Kim SJ, Gregersen PK, Diamond B. 2013. Regulation of dendritic cell activation by microRNA let-7c and BLIMP1. J. Clin. Investig. 123:823–33
    [Google Scholar]
  87. 87.
    Kim SJ, Zou YR, Goldstein J, Reizis B, Diamond B. 2011. Tolerogenic function of Blimp-1 in dendritic cells. J. Exp. Med. 208:2193–99
    [Google Scholar]
  88. 88.
    Dam EM, Habib T, Chen J, Funk A, Glukhova V et al. 2016. The BANK1 SLE-risk variants are associated with alterations in peripheral B cell signaling and development in humans. Clin. Immunol. 173:171–80
    [Google Scholar]
  89. 89.
    Jacob CO, Eisenstein M, Dinauer MC, Ming W, Liu Q et al. 2012. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. PNAS 109:E59–67
    [Google Scholar]
  90. 90.
    Lu X, Zoller EE, Weirauch MT, Wu Z, Namjou B et al. 2015. Lupus risk variant increases pSTAT1 binding and decreases ETS1 expression. Am. J. Hum. Genet. 96:731–39
    [Google Scholar]
  91. 91.
    Manjarrez-Orduno N, Marasco E, Chung SA, Katz MS, Kiridly JF et al. 2012. CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation. Nat. Genet. 44:1227–30
    [Google Scholar]
  92. 92.
    Patel ZH, Lu X, Miller D, Forney CR, Lee J et al. 2018. A plausibly causal functional lupus-associated risk variant in the STAT1-STAT4 locus. Hum. Mol. Genet. 27:2392–404
    [Google Scholar]
  93. 93.
    Rawlings DJ, Dai X, Buckner JH. 2015. The role of PTPN22 risk variant in the development of autoimmunity: finding common ground between mouse and human. J. Immunol. 194:2977–84
    [Google Scholar]
  94. 94.
    Simpfendorfer KR, Armstead BE, Shih A, Li W, Curran M et al. 2015. Autoimmune disease-associated haplotypes of BLK exhibit lowered thresholds for B cell activation and expansion of Ig class-switched B cells. Arthritis Rheumatol. 67:2866–76
    [Google Scholar]
  95. 95.
    Son M, Diamond B. 2015. C1q-mediated repression of human monocytes is regulated by leukocyte-associated Ig-like receptor 1 (LAIR-1). Mol. Med. 20:559–68
    [Google Scholar]
  96. 96.
    Son M, Kim SJ, Diamond B. 2016. SLE-associated risk factors affect DC function. Immunol. Rev. 269:100–17
    [Google Scholar]
  97. 97.
    Son M, Santiago-Schwarz F, Al-Abed Y, Diamond B 2012. C1q limits dendritic cell differentiation and activation by engaging LAIR-1. PNAS 109:E3160–67
    [Google Scholar]
  98. 98.
    Liu T, Xiang A, Peng T, Doran AC, Tracey KJ et al. 2019. HMGB1-C1q complexes regulate macrophage function by switching between leukotriene and specialized proresolving mediator biosynthesis. PNAS 116:23254–63
    [Google Scholar]
  99. 99.
    Ramos MIP, Tian L, de Ruiter EJ, Song C, Paucarmayta A et al. 2021. Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR-collagen interaction. eLife 10:e62927
    [Google Scholar]
  100. 100.
    van der Wijst MGP, Vazquez SE, Hartoularos GC, Bastard P, Grant T et al. 2021. Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Sci. Transl. Med. 13:eabh2624
    [Google Scholar]
  101. 101.
    Finck BK, Linsley PS, Wofsy D. 1994. Treatment of murine lupus with CTLA4Ig. Science 265:1225–27
    [Google Scholar]
  102. 102.
    Access Trials Group 2014. Treatment of lupus nephritis with abatacept: the Abatacept and Cyclophosphamide Combination Efficacy and Safety Study. Arthritis Rheumatol. 66:3096–104
    [Google Scholar]
  103. 103.
    Atisha-Fregoso Y, Malkiel S, Harris KM, Byron M, Ding L et al. 2021. Phase II randomized trial of rituximab plus cyclophosphamide followed by belimumab for the treatment of lupus nephritis. Arthritis Rheumatol. 73:121–31
    [Google Scholar]
  104. 104.
    Arazi A, Rao DA, Berthier CC, Davidson A, Liu Y et al. 2019. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20:902–14 Erratum 2019. Nat. Immunol. 20:1404
    [Google Scholar]
  105. 105.
    Diamond B, Hulka BS, Kerkvliet NI, Tugwell P. 1998. Silicone breast implants in relation to connective tissue diseases and immunologic dysfunction: a report by a National Science Panel to the Honorable Sam C. Pointer Jr., coordinating judge for the Federal Breast Implant Multi-District Litigation Nat. Sci. Panel Washington, DC:
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101721-065214
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error