1932

Abstract

The surfaces of all living organisms and most secreted proteins share a common feature: They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101819-074237
2021-04-26
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-101819-074237.html?itemId=/content/journals/10.1146/annurev-immunol-101819-074237&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Varki A, Cummings RD, Esko JD, Stanley P, Hart GW et al. 2017. Essentials of Glycobiology Cold Spring Harbor, NY: Cold Spring Harb. Lab.
  2. 2. 
    Varki A. 2017. Biological roles of glycans. Glycobiology 27:3–49
    [Google Scholar]
  3. 3. 
    Cummings RD. 2019. Stuck on sugars—how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconj. J. 36:241–57
    [Google Scholar]
  4. 4. 
    Wielgat P, Rogowski K, Niemirowicz-Laskowska K, Car H. 2020. Sialic acid-siglec axis as molecular checkpoints targeting of immune system: smart players in pathology and conventional therapy. Int. J. Mol. Sci. 21:12E4361
    [Google Scholar]
  5. 5. 
    Thiemann S, Baum LG. 2016. Galectins and immune responses—Just how do they do those things they do?. Annu. Rev. Immunol. 34:243–64
    [Google Scholar]
  6. 6. 
    Thompson AJ, de Vries RP, Paulson JC. 2019. Virus recognition of glycan receptors. Curr. Opin. Virol. 34:117–29
    [Google Scholar]
  7. 7. 
    Rogers GN, Paulson JC. 1983. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–73
    [Google Scholar]
  8. 8. 
    Gulati S, Lasanajak Y, Smith DF, Cummings RD, Air GM. 2014. Glycan array analysis of influenza H1N1 binding and release. Cancer Biomark. 14:43–53
    [Google Scholar]
  9. 9. 
    Byrd-Leotis L, Jia N, Dutta S, Trost JF, Gao C et al. 2019. Influenza binds phosphorylated glycans from human lung. Sci. Adv. 5:eaav2554
    [Google Scholar]
  10. 10. 
    Jia N, Byrd-Leotis L, Matsumoto Y, Gao C, Wein AN et al. 2020. The human lung glycome reveals novel glycan ligands for influenza A virus. Sci. Rep. 10:5320
    [Google Scholar]
  11. 11. 
    Karakus U, Pohl MO, Stertz S. 2020. Breaking the convention: sialoglycan variants, coreceptors, and alternative receptors for influenza A virus entry. J. Virol. 94:4e01357–19
    [Google Scholar]
  12. 12. 
    Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R et al. 2017. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. italicPNAS 114:E8508–17
    [Google Scholar]
  13. 13. 
    Hao W, Ma B, Li Z, Wang X, Gao X et al. 2020. Binding of the SARS-CoV-2 spike protein to glycans. bioRxiv 2020.05.17.100537
  14. 14. 
    Kim SY, Jin W, Sood A, Montgomery DW, Grant OC et al. 2020. Glycosaminoglycan binding motif at S1/S2 proteolytic cleavage site on spike glycoprotein may facilitate novel coronavirus (SARS-CoV-2) host cell entry. bioRxiv 2020.04.14.041459
  15. 15. 
    Liu L, Chopra P, Li X, Wolfert MA, Tompkins SM, Boons GJ. 2020. SARS-CoV-2 spike protein binds heparan sulfate in a length- and sequence-dependent manner. bioRxiv 2020.05.10.087288
  16. 16. 
    Tandon R, Sharp JS, Zhang F, Pomin VH, Ashpole NM et al. 2020. Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. bioRxiv 2020.06.08.140236
  17. 17. 
    Mycroft-West CJ, Su D, Pagani I, Rudd TR, Elli S et al. 2020. Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the surface protein (spike) S1 receptor binding domain with heparin. bioRxiv 2020.04.28.066761
  18. 18. 
    Madu IG, Chu VC, Lee H, Regan AD, Bauman BE, Whittaker GR. 2007. Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette. Avian Dis 51:45–51
    [Google Scholar]
  19. 19. 
    Lang J, Yang N, Deng J, Liu K, Yang P et al. 2011. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLOS ONE 6:e23710
    [Google Scholar]
  20. 20. 
    Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D et al. 1998. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–77
    [Google Scholar]
  21. 21. 
    Mahdavi J, Sonden B, Hurtig M, Olfat FO, Forsberg L et al. 2002. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–78
    [Google Scholar]
  22. 22. 
    Rossez Y, Gosset P, Boneca IG, Magalhaes A, Ecobichon C et al. 2014. The lacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter pylori to human gastric mucosa. J. Infect. Dis. 210:1286–95
    [Google Scholar]
  23. 23. 
    De Oliveira DM, Hartley-Tassell L, Everest-Dass A, Day CJ, Dabbs RA et al. 2017. Blood group antigen recognition via the group A streptococcal M protein mediates host colonization. mBio 8:1e02237–16
    [Google Scholar]
  24. 24. 
    Greco A, Ho JG, Lin SJ, Palcic MM, Rupnik M, Ng KK. 2006. Carbohydrate recognition by Clostridium difficile toxin A. Nat. Struct. Mol. Biol. 13:460–61
    [Google Scholar]
  25. 25. 
    Zuverink M, Barbieri JT. 2018. Protein toxins that utilize gangliosides as host receptors. Prog. Mol. Biol. Transl. Sci. 156:325–54
    [Google Scholar]
  26. 26. 
    Saffer LD, Petri WA Jr. 1991. Entamoeba histolytica: recognition of α- and β-galactose by the 260-kDa adherence lectin. Exp. Parasitol. 72:106–8
    [Google Scholar]
  27. 27. 
    Orlandi PA, Klotz FW, Haynes JD. 1992. A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac(α2-3)Gal- sequences of glycophorin A. J. Cell Biol. 116:901–9
    [Google Scholar]
  28. 28. 
    Paing MM, Salinas ND, Adams Y, Oksman A, Jensen AT et al. 2018. Shed EBA-175 mediates red blood cell clustering that enhances malaria parasite growth and enables immune evasion. eLife 7:e43224
    [Google Scholar]
  29. 29. 
    Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP. 2008. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol. Microbiol. 68:547–59
    [Google Scholar]
  30. 30. 
    Maestre-Reyna M, Diderrich R, Veelders MS, Eulenburg G, Kalugin V et al. 2012. Structural basis for promiscuity and specificity during Candida glabrata invasion of host epithelia. PNAS 109:16864–69
    [Google Scholar]
  31. 31. 
    Wheeler KM, Carcamo-Oyarce G, Turner BS, Dellos-Nolan S, Co JY et al. 2019. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat. Microbiol. 4:2146–54
    [Google Scholar]
  32. 32. 
    Polonowski M, Lespagnol A. 1931. Sur deux nouveaux sucres du lait de femme, le gynolactose et l'allolactose. C. R. Acad. Sci. 192:1319–20
    [Google Scholar]
  33. 33. 
    Polonowski M, Lespagnol A. 1929. Sur la nature glucidique de la substance lévogyre du lait de femme. Bull. Soc. Biol. 101:61–63
    [Google Scholar]
  34. 34. 
    Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L et al. 2011. Preterm milk oligosaccharides during the first month of lactation. Pediatrics 128:e1520–31
    [Google Scholar]
  35. 35. 
    Coppa GV, Pierani P, Zampini L, Carloni I, Carlucci A, Gabrielli O. 1999. Oligosaccharides in human milk during different phases of lactation. Acta Paediatr. Suppl. 88:89–94
    [Google Scholar]
  36. 36. 
    Newburg DS, Shen Z, Warren CD. 2000. Quantitative analysis of human milk oligosaccharides by capillary electrophoresis. Adv. Exp. Med. Biol. 478:381–82
    [Google Scholar]
  37. 37. 
    Gnoth MJ, Kunz C, Kinne-Saffran E, Rudloff S. 2000. Human milk oligosaccharides are minimally digested in vitro. J. Nutr. 130:3014–20
    [Google Scholar]
  38. 38. 
    Bode L. 2012. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22:1147–62
    [Google Scholar]
  39. 39. 
    Andreas NJ, Kampmann B, Mehring Le-Doare K 2015. Human breast milk: a review on its composition and bioactivity. Early Hum. Dev. 91:629–35
    [Google Scholar]
  40. 40. 
    Thurl S, Henker J, Siegel M, Tovar K, Sawatzki G. 1997. Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconj. J. 14:795–99
    [Google Scholar]
  41. 41. 
    Yu Y, Lasanajak Y, Song X, Hu L, Ramani S et al. 2014. Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses. Mol. Cell Proteom. 13:2944–60
    [Google Scholar]
  42. 42. 
    Yu Y, Mishra S, Song X, Lasanajak Y, Bradley KC et al. 2012. Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J. Biol. Chem. 287:44784–99
    [Google Scholar]
  43. 43. 
    Idota T, Kawakami H, Murakami Y, Sugawara M. 1995. Inhibition of cholera toxin by human milk fractions and sialyllactose. Biosci. Biotechnol. Biochem. 59:417–19
    [Google Scholar]
  44. 44. 
    Boren T, Falk P, Roth KA, Larson G, Normark S. 1993. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262:1892–95
    [Google Scholar]
  45. 45. 
    Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A et al. 2002. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122:1967–77
    [Google Scholar]
  46. 46. 
    Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. 2003. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278:14112–20
    [Google Scholar]
  47. 47. 
    Morrow AL, Ruiz-Palacios GM, Altaye M, Jiang X, Guerrero ML et al. 2004. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr. 145:297–303
    [Google Scholar]
  48. 48. 
    Facinelli B, Marini E, Magi G, Zampini L, Santoro L et al. 2019. Breast milk oligosaccharides: effects of 2′-fucosyllactose and 6′-sialyllactose on the adhesion of Escherichia coli and Salmonella fyris to Caco-2 cells. J. Matern. Fetal Neonatal. Med. 32:2950–2
    [Google Scholar]
  49. 49. 
    Jantscher-Krenn E, Lauwaet T, Bliss LA, Reed SL, Gillin FD, Bode L. 2012. Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br. J. Nutr. 108:1839–46
    [Google Scholar]
  50. 50. 
    Islam A, Stoll BJ, Ljungstrom I, Biswas J, Nazrul H, Huldt G. 1988. The prevalence of Entamoeba histolytica in lactating women and in their infants in Bangladesh. Trans. R. Soc. Trop. Med. Hyg. 82:99–103
    [Google Scholar]
  51. 51. 
    Abrahams SW, Labbok MH. 2011. Breastfeeding and otitis media: a review of recent evidence. Curr. Allergy Asthma Rep. 11:508–12
    [Google Scholar]
  52. 52. 
    Lesman-Movshovich E, Lerrer B, Gilboa-Garber N. 2003. Blocking of Pseudomonas aeruginosa lectins by human milk glycans. Can. J. Microbiol. 49:230–35
    [Google Scholar]
  53. 53. 
    Andersson B, Porras O, Hanson LA, Lagergard T, Svanborg-Eden C. 1986. Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. J. Infect. Dis. 153:232–37
    [Google Scholar]
  54. 54. 
    Hascoet JM, Hubert C, Rochat F, Legagneur H, Gaga S et al. 2011. Effect of formula composition on the development of infant gut microbiota. J. Pediatr. Gastroenterol. Nutr. 52:756–62
    [Google Scholar]
  55. 55. 
    Watson D, O'Connell Motherway M, Schoterman MHC, Joost van Neerven RJ, Nauta A, van Sinderen D 2013. Selective carbohydrate utilization by lactobacilli and bifidobacteria. J. Appl. Microbiol. 114:1132–46
    [Google Scholar]
  56. 56. 
    Turroni F, Peano C, Pass DA, Foroni E, Severgnini M et al. 2012. Diversity of bifidobacteria within the infant gut microbiota. PLOS ONE 7:e36957
    [Google Scholar]
  57. 57. 
    Sela DA, Mills DA. 2010. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 18:298–307
    [Google Scholar]
  58. 58. 
    German JB, Freeman SL, Lebrilla CB, Mills DA. 2008. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. Nestle Nutr. Workshop Ser. Pediatr. Program 62:205–18
    [Google Scholar]
  59. 59. 
    LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R et al. 2007. Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J. Agric. Food Chem. 55:8914–19
    [Google Scholar]
  60. 60. 
    Hoeflinger JL, Davis SR, Chow J, Miller MJ. 2015. In vitro impact of human milk oligosaccharides on Enterobacteriaceae growth. J. Agric. Food Chem. 63:3295–302
    [Google Scholar]
  61. 61. 
    Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC et al. 2011. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10:507–14
    [Google Scholar]
  62. 62. 
    Ackerman DL, Craft KM, Townsend SD. 2017. Infant food applications of complex carbohydrates: structure, synthesis, and function. Carbohydr. Res. 437:16–27
    [Google Scholar]
  63. 63. 
    Martin-Gallausiaux C, Marinelli L, Blottiere HM, Larraufie P, Lapaque N. 2020. SCFA: mechanisms and functional importance in the gut. Proc. Nutr. Soc. In press
    [Google Scholar]
  64. 64. 
    Raqib R, Sarker P, Bergman P, Ara G, Lindh M et al. 2006. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. PNAS 103:9178–83
    [Google Scholar]
  65. 65. 
    Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF. 2002. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect. Immun. 70:953–63
    [Google Scholar]
  66. 66. 
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T et al. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–41
    [Google Scholar]
  67. 67. 
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y et al. 2013. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature 500:232–36
    [Google Scholar]
  68. 68. 
    Zeng G, Gao L, Yu RK. 1998. Isolation and functional analysis of the promoter of the rat CMP-NeuAc:GM3 α2,8 sialyltransferase gene. Biochim. Biophys. Acta Gene Struct. Expr. 1397:126–30
    [Google Scholar]
  69. 69. 
    Thu CT, Mahal LK. 2020. Sweet control: microRNA regulation of the glycome. Biochemistry 59:343098–110
    [Google Scholar]
  70. 70. 
    Cobb BA. 2020. The history of IgG glycosylation and where we are now. Glycobiology 30:202–13
    [Google Scholar]
  71. 71. 
    Hulett MD, Hogarth PM. 1994. Molecular basis of Fc receptor function. Adv. Immunol. 57:1–127
    [Google Scholar]
  72. 72. 
    Muta T, Kurosaki T, Misulovin Z, Sanchez M, Nussenzweig MC, Ravetch JV. 1994. A 13-amino-acid motif in the cytoplasmic domain of FcγRIIB modulates B-cell receptor signalling. Nature 368:70–73
    [Google Scholar]
  73. 73. 
    Kaneko Y, Nimmerjahn F, Ravetch JV. 2006. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–73
    [Google Scholar]
  74. 74. 
    Irvine EB, Alter G. 2020. Understanding the role of antibody glycosylation through the lens of severe viral and bacterial diseases. Glycobiology 30:241–53
    [Google Scholar]
  75. 75. 
    Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S et al. 2017. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science 355:395–98
    [Google Scholar]
  76. 76. 
    Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH et al. 2016. A functional role for antibodies in tuberculosis. Cell 167:433–43.e14
    [Google Scholar]
  77. 77. 
    Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW et al. 2013. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J. Clin. Investig. 123:2183–92
    [Google Scholar]
  78. 78. 
    Ho CH, Chien RN, Cheng PN, Liu JH, Liu CK et al. 2015. Aberrant serum immunoglobulin G glycosylation in chronic hepatitis B is associated with histological liver damage and reversible by antiviral therapy. J. Infect. Dis. 211:115–24
    [Google Scholar]
  79. 79. 
    Kreisman LS, Cobb BA. 2012. Infection, inflammation and host carbohydrates: a glyco-evasion hypothesis. Glycobiology 22:1019–30
    [Google Scholar]
  80. 80. 
    Cooke CL, An HJ, Kim J, Canfield DR, Torres J et al. 2009. Modification of gastric mucin oligosaccharide expression in rhesus macaques after infection with Helicobacter pylori. Gastroenterology 137:1061–71.e8
    [Google Scholar]
  81. 81. 
    Linden S, Semino-Mora C, Liu H, Rick J, Dubois A 2010. Role of mucin Lewis status in resistance to Helicobacter pylori infection in pediatric patients. Helicobacter 15:251–58
    [Google Scholar]
  82. 82. 
    Zhou JY, Oswald DM, Oliva KD, Kreisman LSC, Cobb BA. 2018. The glycoscience of immunity. Trends Immunol 39:523–35
    [Google Scholar]
  83. 83. 
    Cross GA, Takle GB. 1993. The surface trans-sialidase family of Trypanosoma cruzi. Annu. Rev. Microbiol. 47:385–411
    [Google Scholar]
  84. 84. 
    Nardy AF, Freire-de-Lima CG, Perez AR, Morrot A. 2016. Role of Trypanosoma cruzi trans-sialidase on the escape from host immune surveillance. Front. Microbiol. 7:348
    [Google Scholar]
  85. 85. 
    Watanabe Y, Bowden TA, Wilson IA, Crispin M. 2019. Exploitation of glycosylation in enveloped virus pathobiology. Biochim. Biophys. Acta Gen. Subj. 1863:1480–97
    [Google Scholar]
  86. 86. 
    Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y et al. 2003. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:2065–71
    [Google Scholar]
  87. 87. 
    Scanlan CN, Pantophlet R, Wormald MR, Ollmann Saphire E, Stanfield R et al. 2002. The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of α1→2 mannose residues on the outer face of gp120. J. Virol. 76:7306–21
    [Google Scholar]
  88. 88. 
    Falkowska E, Le KM, Ramos A, Doores KJ, Lee JH et al. 2014. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 40:657–68
    [Google Scholar]
  89. 89. 
    Lee JH, Andrabi R, Su CY, Yasmeen A, Julien JP et al. 2017. A broadly neutralizing antibody targets the dynamic HIV envelope trimer apex via a long, rigidified, and anionic β-hairpin structure. Immunity 46:690–702
    [Google Scholar]
  90. 90. 
    Hakomori S. 2002. Glycosylation defining cancer malignancy: new wine in an old bottle. PNAS 99:10231–33
    [Google Scholar]
  91. 91. 
    Fuster MM, Esko JD. 2005. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5:526–42
    [Google Scholar]
  92. 92. 
    Friedenreich V. 1930. The Thomsen Hemagglutination Phenomenon Copenhagen, Denmark: Levin Munksgaard
  93. 93. 
    Thomsen OZ. 1927. Ein vermehrungsfahiges Agens als verandererdes isoagglutinatorischen verhaltens der roten Blutkorperchen, eine bisher unbekannta Quelle der Fehlbestimmungen. Z. Immunitäts Forschung 52:85–90
    [Google Scholar]
  94. 94. 
    Fu C, Zhao H, Wang Y, Cai H, Xiao Y et al. 2016. Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. HLA 88:275–86
    [Google Scholar]
  95. 95. 
    Konno A, Hoshino Y, Terashima S, Motoki R, Kawaguchi T. 2002. Carbohydrate expression profile of colorectal cancer cells is relevant to metastatic pattern and prognosis. Clin. Exp. Metastasis 19:61–70
    [Google Scholar]
  96. 96. 
    Welinder C, Baldetorp B, Blixt O, Grabau D, Jansson B. 2013. Primary breast cancer tumours contain high amounts of IgA1 immunoglobulin: an immunohistochemical analysis of a possible carrier of the tumour-associated Tn antigen. PLOS ONE 8:e61749
    [Google Scholar]
  97. 97. 
    Laack E, Nikbakht H, Peters A, Kugler C, Jasiewicz Y et al. 2002. Lectin histochemistry of resected adenocarcinoma of the lung: Helix pomatia agglutinin binding is an independent prognostic factor. Am. J. Pathol. 160:1001–8
    [Google Scholar]
  98. 98. 
    Rabinovich GA, Croci DO. 2012. Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity 36:322–35
    [Google Scholar]
  99. 99. 
    Julien S, Videira PA, Delannoy P. 2012. Sialyl-Tn in cancer: (How) did we miss the target?. Biomolecules 2:435–66
    [Google Scholar]
  100. 100. 
    Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H et al. 2006. A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314:304–8
    [Google Scholar]
  101. 101. 
    Terashima S, Takano Y, Ohori T, Kanno T, Kimura T et al. 1998. Sialyl-Tn antigen as a useful predictor of poor prognosis in patients with advanced stomach cancer. Surg. Today 28:682–86
    [Google Scholar]
  102. 102. 
    Blixt O, Bueti D, Burford B, Allen D, Julien S et al. 2011. Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis. Breast Cancer Res 13:R25
    [Google Scholar]
  103. 103. 
    Munkley J. 2016. The role of sialyl-Tn in cancer. Int. J. Mol. Sci. 17:275
    [Google Scholar]
  104. 104. 
    van Vliet SJ, Vuist IM, Lenos K, Tefsen B, Kalay H et al. 2013. Human T cell activation results in extracellular signal-regulated kinase (ERK)-calcineurin-dependent exposure of Tn antigen on the cell surface and binding of the macrophage galactose-type lectin (MGL). J. Biol. Chem. 288:27519–32
    [Google Scholar]
  105. 105. 
    van Vliet SJ, Bay S, Vuist IM, Kalay H, Garcia-Vallejo JJ et al. 2013. MGL signaling augments TLR2-mediated responses for enhanced IL-10 and TNF-α secretion. J. Leukoc. Biol. 94:315–23
    [Google Scholar]
  106. 106. 
    van Vliet SJ, Gringhuis SI, Geijtenbeek TB, van Kooyk Y. 2006. Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat. Immunol. 7:1200–8
    [Google Scholar]
  107. 107. 
    Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E et al. 1998. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. PNAS 95:11751–56
    [Google Scholar]
  108. 108. 
    Ng PS, Bohm R, Hartley-Tassell LE, Steen JA, Wang H et al. 2014. Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors. Nat. Commun. 5:5750
    [Google Scholar]
  109. 109. 
    Springer SA, Diaz SL, Gagneux P. 2014. Parallel evolution of a self-signal: humans and new world monkeys independently lost the cell surface sugar Neu5Gc. Immunogenetics 66:671–74
    [Google Scholar]
  110. 110. 
    Wiseman M. 2008. The second World Cancer Research Fund/American Institute for Cancer Research expert report: food, nutrition, physical activity, and the prevention of cancer; a global perspective. Proc. Nutr. Soc. 67:253–56
    [Google Scholar]
  111. 111. 
    Hedlund M, Padler-Karavani V, Varki NM, Varki A 2008. Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. PNAS 105:18936–41
    [Google Scholar]
  112. 112. 
    Altman MO, Gagneux P. 2019. Absence of Neu5Gc and presence of anti-Neu5Gc antibodies in humans—an evolutionary perspective. Front. Immunol. 10:789
    [Google Scholar]
  113. 113. 
    Samraj AN, Laubli H, Varki N, Varki A. 2014. Involvement of a non-human sialic acid in human cancer. Front. Oncol. 4:33
    [Google Scholar]
  114. 114. 
    Padler-Karavani V, Hurtado-Ziola N, Pu M, Yu H, Huang S et al. 2011. Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer. Cancer Res 71:3352–63
    [Google Scholar]
  115. 115. 
    Varki A. 2010. Colloquium paper: uniquely human evolution of sialic acid genetics and biology. PNAS 107:Suppl. 28939–46
    [Google Scholar]
  116. 116. 
    Samraj AN, Pearce OM, Laubli H, Crittenden AN, Bergfeld AK et al. 2015. A red meat-derived glycan promotes inflammation and cancer progression. PNAS 112:542–47
    [Google Scholar]
  117. 117. 
    Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E et al. 2012. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J 279:1177–97
    [Google Scholar]
  118. 118. 
    Crijns H, Vanheule V, Proost P. 2020. Targeting chemokine-glycosaminoglycan interactions to inhibit inflammation. Front. Immunol. 11:483
    [Google Scholar]
  119. 119. 
    Coombe DR. 2008. Biological implications of glycosaminoglycan interactions with haemopoietic cytokines. Immunol. Cell Biol. 86:598–607
    [Google Scholar]
  120. 120. 
    Liu M, Tolg C, Turley E. 2019. Dissecting the dual nature of hyaluronan in the tumor microenvironment. Front. Immunol. 10:947
    [Google Scholar]
  121. 121. 
    Koyama H, Hibi T, Isogai Z, Yoneda M, Fujimori M et al. 2007. Hyperproduction of hyaluronan in Neu-induced mammary tumor accelerates angiogenesis through stromal cell recruitment: possible involvement of versican/PG-M. Am. J. Pathol. 170:1086–99
    [Google Scholar]
  122. 122. 
    Li Y, Li L, Brown TJ, Heldin P. 2007. Silencing of hyaluronan synthase 2 suppresses the malignant phenotype of invasive breast cancer cells. Int. J. Cancer 120:2557–67
    [Google Scholar]
  123. 123. 
    Kuang DM, Wu Y, Chen N, Cheng J, Zhuang SM, Zheng L. 2007. Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes. Blood 110:587–95
    [Google Scholar]
  124. 124. 
    del Fresno C, Otero K, Gomez-Garcia L, Gonzalez-Leon MC, Soler-Ranger L et al. 2005. Tumor cells deactivate human monocytes by up-regulating IL-1 receptor associated kinase-M expression via CD44 and TLR4. J. Immunol. 174:3032–40
    [Google Scholar]
  125. 125. 
    Skliris A, Happonen KE, Terpos E, Labropoulou V, Borset M et al. 2011. Serglycin inhibits the classical and lectin pathways of complement via its glycosaminoglycan chains: implications for multiple myeloma. Eur. J. Immunol. 41:437–49
    [Google Scholar]
  126. 126. 
    Sanford BH, Codington JF. 1971. Further studies on the effect of neuraminidase on tumor cell transplantability. Tissue Antigens 1:153–61
    [Google Scholar]
  127. 127. 
    Currie GA, Bagshawe KD. 1968. The role of sialic acid in antigenic expression: further studies of the Landschutz ascites tumour. Br. J. Cancer 22:843–53
    [Google Scholar]
  128. 128. 
    Currie GA. 1967. Masking of antigens on the Landschutz ascites tumour. Lancet 2:1336–38
    [Google Scholar]
  129. 129. 
    Sanford BH. 1967. An alteration in tumor histocompatibility induced by neuraminidase. Transplantation 5:1273–79
    [Google Scholar]
  130. 130. 
    Lundgren G, Simmons RL. 1971. Effect of neuraminidase on the stimulatory capacity of cells in human mixed lymphocyte cultures. Clin. Exp. Immunol. 9:915–26
    [Google Scholar]
  131. 131. 
    Bagshawe KD, Currie GA. 1968. Immunogenicity of L 1210 murine leukaemia cells after treatment with neuraminidase. Nature 218:1254–55
    [Google Scholar]
  132. 132. 
    Schultz MJ, Holdbrooks AT, Chakraborty A, Grizzle WE, Landen CN et al. 2016. The tumor-associated glycosyltransferase ST6Gal-I regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res 76:3978–88
    [Google Scholar]
  133. 133. 
    Burchell J, Poulsom R, Hanby A, Whitehouse C, Cooper L et al. 1999. An α2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 9:1307–11
    [Google Scholar]
  134. 134. 
    Recchi MA, Hebbar M, Hornez L, Harduin-Lepers A, Peyrat JP, Delannoy P. 1998. Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res 58:4066–70
    [Google Scholar]
  135. 135. 
    Julien S, Adriaenssens E, Ottenberg K, Furlan A, Courtand G et al. 2006. ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology 16:54–64
    [Google Scholar]
  136. 136. 
    Julien S, Krzewinski-Recchi MA, Harduin-Lepers A, Gouyer V, Huet G et al. 2001. Expression of sialyl-Tn antigen in breast cancer cells transfected with the human CMP-Neu5Ac: GalNAc α2,6-sialyltransferase (ST6GalNac I) cDNA. Glycoconj. J. 18:883–93
    [Google Scholar]
  137. 137. 
    Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B et al. 2011. Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Res 71:7683–93
    [Google Scholar]
  138. 138. 
    Glavey SV, Manier S, Natoni A, Sacco A, Moschetta M et al. 2014. The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma. Blood 124:1765–76
    [Google Scholar]
  139. 139. 
    Stanczak MA, Siddiqui SS, Trefny MP, Thommen DS, Boligan KF et al. 2018. Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J. Clin. Investig. 128:4912–23
    [Google Scholar]
  140. 140. 
    Wang J, Sun J, Liu LN, Flies DB, Nie X et al. 2019. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med. 25:656–66
    [Google Scholar]
  141. 141. 
    Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M et al. 2014. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J. Clin. Investig. 124:1810–20
    [Google Scholar]
  142. 142. 
    Laubli H, Pearce OM, Schwarz F, Siddiqui SS, Deng L et al. 2014. Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. PNAS 111:14211–16
    [Google Scholar]
  143. 143. 
    Toscano MA, Bianco GA, Ilarregui JM, Croci DO, Correale J et al. 2007. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8:825–34
    [Google Scholar]
  144. 144. 
    Le QT, Shi G, Cao H, Nelson DW, Wang Y et al. 2005. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J. Clin. Oncol. 23:8932–41
    [Google Scholar]
  145. 145. 
    Rubinstein N, Alvarez M, Zwirner NW, Toscano MA, Ilarregui JM et al. 2004. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: a potential mechanism of tumor-immune privilege. Cancer Cell 5:241–51
    [Google Scholar]
  146. 146. 
    Dalotto-Moreno T, Croci DO, Cerliani JP, Martinez-Allo VC, Dergan-Dylon S et al. 2013. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res 73:1107–17
    [Google Scholar]
  147. 147. 
    Demotte N, Stroobant V, Courtoy PJ, Van Der Smissen P, Colau D et al. 2008. Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28:414–24
    [Google Scholar]
  148. 148. 
    Goncalves Silva I, Yasinska IM, Sakhnevych SS, Fiedler W, Wellbrock J et al. 2017. The Tim-3-galectin-9 secretory pathway is involved in the immune escape of human acute myeloid leukemia cells. EBioMedicine 22:44–57
    [Google Scholar]
  149. 149. 
    Dardalhon V, Anderson AC, Karman J, Apetoh L, Chandwaskar R et al. 2010. Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. J. Immunol. 185:1383–92
    [Google Scholar]
  150. 150. 
    Wu C, Thalhamer T, Franca RF, Xiao S, Wang C et al. 2014. Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 41:270–82
    [Google Scholar]
  151. 151. 
    Daley D, Mani VR, Mohan N, Akkad N, Ochi A et al. 2017. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 23:556–67
    [Google Scholar]
  152. 152. 
    Nomura S, Egawa Y, Urano S, Tahara T, Watanabe Y, Tanaka K. 2020. Cancer discrimination by on-cell N-glycan ligation. Commun. Chem. 3:26
    [Google Scholar]
  153. 153. 
    Matsumoto Y, Kudelka MR, Hanes MS, Lehoux S, Dutta S et al. 2020. Identification of Tn antigen O-GalNAc-expressing glycoproteins in human carcinomas using novel anti-Tn recombinant antibodies. Glycobiology 30:282–300
    [Google Scholar]
  154. 154. 
    Miles D, Roche H, Martin M, Perren TJ, Cameron DA et al. 2011. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist 16:1092–100
    [Google Scholar]
  155. 155. 
    Miles D, Papazisis K. 2003. Rationale for the clinical development of STn-KLH (Theratope) and anti-MUC-1 vaccines in breast cancer. Clin. Breast Cancer 3:Suppl. 4S134–38
    [Google Scholar]
  156. 156. 
    Demotte N, Wieers G, Van Der Smissen P, Moser M, Schmidt C et al. 2010. A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res 70:7476–88
    [Google Scholar]
  157. 157. 
    Daly J, Carlsten M, O'Dwyer M. 2019. Sugar free: novel immunotherapeutic approaches targeting Siglecs and sialic acids to enhance natural killer cell cytotoxicity against cancer. Front. Immunol. 10:1047
    [Google Scholar]
  158. 158. 
    Macauley MS, Arlian BM, Rillahan CD, Pang PC, Bortell N et al. 2014. Systemic blockade of sialylation in mice with a global inhibitor of sialyltransferases. J. Biol. Chem. 289:35149–58
    [Google Scholar]
  159. 159. 
    Bull C, Boltje TJ, van Dinther EA, Peters T, de Graaf AM et al. 2015. Targeted delivery of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread. ACS Nano 9:733–45
    [Google Scholar]
  160. 160. 
    Bull C, Boltje TJ, Balneger N, Weischer SM, Wassink M et al. 2018. Sialic acid blockade suppresses tumor growth by enhancing T-cell-mediated tumor immunity. Cancer Res 78:3574–88
    [Google Scholar]
  161. 161. 
    Angata T, Nycholat CM, Macauley MS. 2015. Therapeutic targeting of Siglecs using antibody- and glycan-based approaches. Trends Pharmacol. Sci. 36:645–60
    [Google Scholar]
  162. 162. 
    Posey AD Jr., Schwab RD, Boesteanu AC, Steentoft C, Mandel U et al. 2016. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44:1444–54
    [Google Scholar]
  163. 163. 
    Wilkie S, Picco G, Foster J, Davies DM, Julien S et al. 2008. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J. Immunol. 180:4901–9
    [Google Scholar]
  164. 164. 
    Meril S, Harush O, Reboh Y, Matikhina T, Barliya T, Cohen CJ. 2020. Targeting glycosylated antigens on cancer cells using siglec-7/9-based CAR T-cells. Mol. Carcinog. 59:713–23
    [Google Scholar]
  165. 165. 
    Pereira NA, Chan KF, Lin PC, Song Z. 2018. The “less-is-more” in therapeutic antibodies: afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs 10:693–711
    [Google Scholar]
  166. 166. 
    Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A et al. 1985. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452–57
    [Google Scholar]
  167. 167. 
    Pekelharing JM, Hepp E, Kamerling JP, Gerwig GJ, Leijnse B. 1988. Alterations in carbohydrate composition of serum IgG from patients with rheumatoid arthritis and from pregnant women. Ann. Rheum. Dis. 47:91–95
    [Google Scholar]
  168. 168. 
    van de Geijn FE, Wuhrer M, Selman MH, Willemsen SP, de Man YA et al. 2009. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res. Ther. 11:R193
    [Google Scholar]
  169. 169. 
    Konno N, Sugimoto M, Takagi T, Furuya M, Asano T et al. 2018. Changes in N-glycans of IgG4 and its relationship with the existence of hypocomplementemia and individual organ involvement in patients with IgG4-related disease. PLOS ONE 13:e0196163
    [Google Scholar]
  170. 170. 
    Zhang J, Zhao L, Gao Y, Liu M, Li T et al. 2014. A classification of Hashimoto's thyroiditis based on immunohistochemistry for IgG4 and IgG. Thyroid 24:364–70
    [Google Scholar]
  171. 171. 
    Mestecky J, Tomana M, Moldoveanu Z, Julian BA, Suzuki H et al. 2008. Role of aberrant glycosylation of IgA1 molecules in the pathogenesis of IgA nephropathy. Kidney Blood Press. Res. 31:29–37
    [Google Scholar]
  172. 172. 
    Simurina M, de Haan N, Vuckovic F, Kennedy NA, Stambuk J et al. 2018. Glycosylation of immunoglobulin G associates with clinical features of inflammatory bowel diseases. Gastroenterology 154:1320–33.e10
    [Google Scholar]
  173. 173. 
    Youinou P, Pennec YL, Casburn-Budd R, Dueymes M, Letoux G, Lamour A. 1992. Galactose terminating oligosaccharides of IgG in patients with primary Sjögren's syndrome. J. Autoimmun 5:393–400
    [Google Scholar]
  174. 174. 
    Shade KC, Conroy ME, Washburn N, Kitaoka M, Huynh DJ et al. 2020. Sialylation of immunoglobulin E is a determinant of allergic pathogenicity. Nature 582:265–70
    [Google Scholar]
  175. 175. 
    Anthony RM, Wermeling F, Ravetch JV. 2012. Novel roles for the IgG Fc glycan. Ann. N. Y. Acad. Sci. 1253:170–80
    [Google Scholar]
  176. 176. 
    Demetriou M, Granovsky M, Quaggin S, Dennis JW. 2001. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409:733–39
    [Google Scholar]
  177. 177. 
    Dias AM, Dourado J, Lago P, Cabral J, Marcos-Pinto R et al. 2014. Dysregulation of T cell receptor N-glycosylation: a molecular mechanism involved in ulcerative colitis. Hum. Mol. Genet. 23:2416–27
    [Google Scholar]
  178. 178. 
    Dias AM, Correia A, Pereira MS, Almeida CR, Alves I et al. 2018. Metabolic control of T cell immune response through glycans in inflammatory bowel disease. PNAS 115:E4651–60
    [Google Scholar]
  179. 179. 
    Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F et al. 2015. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J. Autoimmun. 57:1–13
    [Google Scholar]
  180. 180. 
    Oswald DM, Sim ES, Baker C, Farhan O, Debanne SM et al. 2019. Plasma glycomics predict cardiovascular disease in patients with ART-controlled HIV infections. FASEB J 33:1852–59
    [Google Scholar]
  181. 181. 
    Macauley MS, Pfrengle F, Rademacher C, Nycholat CM, Gale AJ et al. 2013. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J. Clin. Investig. 123:3074–83
    [Google Scholar]
  182. 182. 
    Nitschke L. 2014. CD22 and Siglec-G regulate inhibition of B-cell signaling by sialic acid ligand binding and control B-cell tolerance. Glycobiology 24:807–17
    [Google Scholar]
  183. 183. 
    Rudlof B, Just B, Deitenbeck R, Ehmann T. 2011. Mismatched transfusion of 8 AB0-incompatible units of packed red blood cells in a patient with acute intermittent porphyria. Saudi J. Anaesth. 5:101–4
    [Google Scholar]
  184. 184. 
    Goldstein J, Siviglia G, Hurst R, Lenny L, Reich L 1982. Group B erythrocytes enzymatically converted to group O survive normally in A, B, and O individuals. Science 215:168–70
    [Google Scholar]
  185. 185. 
    Liu QP, Sulzenbacher G, Yuan H, Bennett EP, Pietz G et al. 2007. Bacterial glycosidases for the production of universal red blood cells. Nat. Biotechnol. 25:454–64
    [Google Scholar]
  186. 186. 
    Yee J. 2016. Increasing access to kidney transplantation: easy as A-B-O. Adv. Chronic Kidney Dis. 23:277–79
    [Google Scholar]
  187. 187. 
    Rahfeld P, Withers SG. 2020. Toward universal donor blood: enzymatic conversion of A and B to O type. J. Biol. Chem. 295:325–34
    [Google Scholar]
  188. 188. 
    Li SF, Neethling FA, Taniguchi S, Yeh JC, Kobayashi T et al. 1996. Glycans derived from porcine stomach mucin are effective inhibitors of natural anti-α-galactosyl antibodies in vitro and after intravenous infusion in baboons. Transplantation 62:1324–31
    [Google Scholar]
  189. 189. 
    Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL et al. 2002. Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–92
    [Google Scholar]
  190. 190. 
    Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y et al. 2005. Marked prolongation of porcine renal xenograft survival in baboons through the use of α1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat. Med. 11:32–34
    [Google Scholar]
  191. 191. 
    Griesemer AD, Hirakata A, Shimizu A, Moran S, Tena A et al. 2009. Results of gal-knockout porcine thymokidney xenografts. Am. J. Transplant. 9:2669–78
    [Google Scholar]
  192. 192. 
    Fischer K, Rieblinger B, Hein R, Sfriso R, Zuber J et al. 2020. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2. Xenotransplantation 27:e12560
    [Google Scholar]
  193. 193. 
    Chang IJ, He M, Lam CT. 2018. Congenital disorders of glycosylation. Ann. Transl. Med. 6:477
    [Google Scholar]
  194. 194. 
    Vals MA, Pajusalu S, Kals M, Magi R, Ounap K. 2018. The prevalence of PMM2-CDG in Estonia based on population carrier frequencies and diagnosed patients. JIMD Rep 39:13–17
    [Google Scholar]
  195. 195. 
    Jaeken J, Matthijs G. 2001. Congenital disorders of glycosylation. Annu. Rev. Genom. Hum. Genet. 2:129–51
    [Google Scholar]
  196. 196. 
    Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA 2020. CDG and immune response: from bedside to bench and back. J. Inherit. Metab. Dis. 43:90–124
    [Google Scholar]
  197. 197. 
    Grubenmann CE, Frank CG, Kjaergaard S, Berger EG, Aebi M, Hennet T. 2002. ALG12 mannosyltransferase defect in congenital disorder of glycosylation type lg. Hum. Mol. Genet. 11:2331–39
    [Google Scholar]
  198. 198. 
    Guo L, Elcioglu NH, Mizumoto S, Wang Z, Noyan B et al. 2017. Identification of biallelic EXTL3 mutations in a novel type of spondylo-epi-metaphyseal dysplasia. J. Hum. Genet. 62:797–801
    [Google Scholar]
  199. 199. 
    Volpi S, Yamazaki Y, Brauer PM, van Rooijen E, Hayashida A et al. 2017. EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay. J. Exp. Med. 214:623–37
    [Google Scholar]
  200. 200. 
    Oud MM, Tuijnenburg P, Hempel M, van Vlies N, Ren Z et al. 2017. Mutations in EXTL3 cause neuro-immuno-skeletal dysplasia syndrome. Am. J. Hum. Genet. 100:281–96
    [Google Scholar]
  201. 201. 
    Stray-Pedersen A, Backe PH, Sorte HS, Morkrid L, Chokshi NY et al. 2014. PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am. J. Hum. Genet. 95:96–107
    [Google Scholar]
  202. 202. 
    Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S et al. 2014. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J. Allergy Clin. Immunol. 133:1400–9.e5
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101819-074237
Loading
/content/journals/10.1146/annurev-immunol-101819-074237
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error