1932

Abstract

The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101819-092536
2021-04-26
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-101819-092536.html?itemId=/content/journals/10.1146/annurev-immunol-101819-092536&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Linehan JL, Harrison OJ, Han SJ, Byrd AL, Vujkovic-Cvijin I et al. 2018. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172:784–96.e18
    [Google Scholar]
  2. 2. 
    Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH et al. 2017. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe 22:809–16.e4
    [Google Scholar]
  3. 3. 
    Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M et al. 2016. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 19:865–73
    [Google Scholar]
  4. 4. 
    Limon JJ, Skalski JH, Underhill DM. 2017. Commensal fungi in health and disease. Cell Host Microbe 22:156–65
    [Google Scholar]
  5. 5. 
    Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM et al. 2010. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Investig. 120:1762–73
    [Google Scholar]
  6. 6. 
    Li J, Casanova JL, Puel A. 2018. Mucocutaneous IL-17 immunity in mice and humans: host defense versus excessive inflammation. Mucosal Immunol 11:581–89
    [Google Scholar]
  7. 7. 
    Cohen JA, Edwards TN, Liu AW, Hirai T, Jones MR et al. 2019. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell 178:919–32.e14
    [Google Scholar]
  8. 8. 
    Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ et al. 2015. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520:104–8
    [Google Scholar]
  9. 9. 
    Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W et al. 2016. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44:659–71
    [Google Scholar]
  10. 10. 
    Krebs CF, Paust HJ, Krohn S, Koyro T, Brix SR et al. 2016. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity 45:1078–92
    [Google Scholar]
  11. 11. 
    Morton AM, Sefik E, Upadhyay R, Weissleder R, Benoist C, Mathis D 2014. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. PNAS 111:6696–701
    [Google Scholar]
  12. 12. 
    Krishnamurty AT, Turley SJ. 2020. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21:369–80
    [Google Scholar]
  13. 13. 
    Eddens T, Elsegeiny W, de la Luz, Garcia-Hernadez M, Castillo P, Trevejo-Nunez G et al. 2017. Pneumocystis-driven inducible bronchus-associated lymphoid tissue formation requires Th2 and Th17 immunity. Cell Rep 18:3078–90
    [Google Scholar]
  14. 14. 
    Rangel-Moreno J, Carragher DM, de la Luz, Garcia-Hernandez M, Hwang JY, Kusser K et al. 2011. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12:639–46
    [Google Scholar]
  15. 15. 
    Pikor NB, Astarita JL, Summers-Deluca L, Galicia G, Qu J et al. 2015. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43:1160–73
    [Google Scholar]
  16. 16. 
    Peters A, Pitcher LA, Sullivan JM, Mitsdoerffer M, Acton SE et al. 2011. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35:986–96
    [Google Scholar]
  17. 17. 
    Kohlgruber AC, Gal-Oz ST, LaMarche NM, Shimazaki M, Duquette D et al. 2018. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19:464–74
    [Google Scholar]
  18. 18. 
    Majumder S, Amatya N, Revu S, Jawale CV, Wu D et al. 2019. IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nat. Immunol. 20:534–45
    [Google Scholar]
  19. 19. 
    McGinley AM, Sutton CE, Edwards SC, Leane CM, DeCourcey J et al. 2020. Interleukin-17A serves a priming role in autoimmunity by recruiting IL-1β-producing myeloid cells that promote pathogenic T cells. Immunity 52:342–56.e6
    [Google Scholar]
  20. 20. 
    Xie S, Li J, Wang JH, Wu Q, Yang P et al. 2010. IL-17 activates the canonical NF-κB signaling pathway in autoimmune B cells of BXD2 mice to upregulate the expression of regulators of G-protein signaling 16. J. Immunol. 184:2289–96
    [Google Scholar]
  21. 21. 
    Mitsdoerffer M, Lee Y, Jager A, Kim HJ, Korn T et al. 2010. Proinflammatory T helper type 17 cells are effective B-cell helpers. PNAS 107:14292–97
    [Google Scholar]
  22. 22. 
    Hirota K, Turner JE, Villa M, Duarte JH, Demengeot J et al. 2013. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 14:372–79
    [Google Scholar]
  23. 23. 
    Solans L, Debrie AS, Borkner L, Aguilo N, Thiriard A et al. 2018. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunol 11:1753–62
    [Google Scholar]
  24. 24. 
    Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL. 2019. IL-17 receptor-based signaling and implications for disease. Nat. Immunol. 20:1594–602
    [Google Scholar]
  25. 25. 
    Shen F, Ruddy MJ, Plamondon P, Gaffen SL. 2005. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-α-induced genes in bone cells. J. Leukoc. Biol. 77:388–99
    [Google Scholar]
  26. 26. 
    Slowikowski K, Nguyen HN, Noss EH, Simmons DP, Mizoguchi F et al. 2020. CUX1 and IκBζ (NFKBIZ) mediate the synergistic inflammatory response to TNF and IL-17A in stromal fibroblasts. PNAS 117:5532–41
    [Google Scholar]
  27. 27. 
    Sonder SU, Saret S, Tang W, Sturdevant DE, Porcella SF, Siebenlist U. 2011. IL-17-induced NF-κB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J. Biol. Chem. 286:12881–90
    [Google Scholar]
  28. 28. 
    Nguyen HN, Noss EH, Mizoguchi F, Huppertz C, Wei KS et al. 2017. Autocrine loop involving IL-6 family member LIF, LIF receptor, and STAT4 drives sustained fibroblast production of inflammatory mediators. Immunity 46:220–32
    [Google Scholar]
  29. 29. 
    Harrison OJ, Linehan JL, Shih H-Y, Bouladoux N, Han S-J et al. 2019. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 363:6422eaat6280
    [Google Scholar]
  30. 30. 
    McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W et al. 2007. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8:1390–97
    [Google Scholar]
  31. 31. 
    Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ et al. 2010. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467:967–71
    [Google Scholar]
  32. 32. 
    Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F et al. 2012. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484:514–18
    [Google Scholar]
  33. 33. 
    Omenetti S, Bussi C, Metidji A, Iseppon A, Lee S et al. 2019. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity 51:77–89.e6
    [Google Scholar]
  34. 34. 
    Martinez-Lopez M, Iborra S, Conde-Garrosa R, Mastrangelo A, Danne C et al. 2019. Microbiota sensing by Mincle-Syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity. Immunity 50:446–61.e9
    [Google Scholar]
  35. 35. 
    Dutzan N, Abusleme L, Bridgeman H, Greenwell-Wild T, Zangerle-Murray T et al. 2017. On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity 46:133–47
    [Google Scholar]
  36. 36. 
    Ho J, Yang X, Nikou SA, Kichik N, Donkin A et al. 2019. Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat. Commun. 10:2297
    [Google Scholar]
  37. 37. 
    Sano T, Huang W, Hall JA, Yang Y, Chen A et al. 2015. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163:381–93
    [Google Scholar]
  38. 38. 
    Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. 2009. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:321–30
    [Google Scholar]
  39. 39. 
    Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. 2009. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–41
    [Google Scholar]
  40. 40. 
    Verma AH, Zafar H, Ponde NO, Hepworth OW, Sihra D et al. 2018. IL-36 and IL-1/IL-17 drive immunity to oral candidiasis via parallel mechanisms. J. Immunol. 201:627–34
    [Google Scholar]
  41. 41. 
    Poholek CH, Raphael I, Wu D, Revu S, Rittenhouse N et al. 2020. Noncanonical STAT3 activity sustains pathogenic Th17 proliferation and cytokine response to antigen. J. Exp. Med. 217:e20191761
    [Google Scholar]
  42. 42. 
    Revu S, Wu J, Henkel M, Rittenhouse N, Menk A et al. 2018. IL-23 and IL-1β drive human Th17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation. Cell Rep 22:2642–53
    [Google Scholar]
  43. 43. 
    Acharya D, Wang P, Paul AM, Dai J, Gate D et al. 2017. Interleukin-17A promotes CD8+ T cell cytotoxicity to facilitate West Nile virus clearance. J. Virol. 91:e01529–16
    [Google Scholar]
  44. 44. 
    Hou L, Jie Z, Desai M, Liang Y, Soong L et al. 2013. Early IL-17 production by intrahepatic T cells is important for adaptive immune responses in viral hepatitis. J. Immunol. 190:621–29
    [Google Scholar]
  45. 45. 
    Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J et al. 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8:369–77
    [Google Scholar]
  46. 46. 
    Wang X, Chan CC, Yang M, Deng J, Poon VK et al. 2011. A critical role of IL-17 in modulating the B-cell response during H5N1 influenza virus infection. Cell Mol. Immunol. 8:462–68
    [Google Scholar]
  47. 47. 
    Wang X, Ma K, Chen M, Ko KH, Zheng BJ, Lu L. 2016. IL-17A promotes pulmonary B-1a cell differentiation via induction of Blimp-1 expression during influenza virus infection. PLOS Pathog 12:e1005367
    [Google Scholar]
  48. 48. 
    Bagri P, Anipindi VC, Nguyen PV, Vitali D, Stampfli MR, Kaushic C. 2017. Novel role for interleukin-17 in enhancing type 1 helper T cell immunity in the female genital tract following mucosal herpes simplex virus 2 vaccination. J. Virol. 91:23e01234–17
    [Google Scholar]
  49. 49. 
    Muir R, Osbourn M, Dubois AV, Doran E, Small DM et al. 2016. Innate lymphoid cells are the predominant source of IL-17A during the early pathogenesis of acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 193:407–16
    [Google Scholar]
  50. 50. 
    Lu B, Liu M, Wang J, Fan H, Yang D et al. 2020. IL-17 production by tissue-resident MAIT cells is locally induced in children with pneumonia. Mucosal Immunol 13:824–35
    [Google Scholar]
  51. 51. 
    Li C, Yang P, Sun Y, Li T, Wang C et al. 2012. IL-17 response mediates acute lung injury induced by the 2009 pandemic influenza A (H1N1) virus. Cell Res 22:528–38
    [Google Scholar]
  52. 52. 
    Mebratu YA, Tesfaigzi Y. 2018. IL-17 plays a role in respiratory syncytial virus-induced lung inflammation and emphysema in elastase and LPS-injured mice. Am. J. Respir. Cell Mol. Biol. 58:717–26
    [Google Scholar]
  53. 53. 
    Crowe CR, Chen K, Pociask DA, Alcorn JF, Krivich C et al. 2009. Critical role of IL-17RA in immunopathology of influenza infection. J. Immunol. 183:5301–10
    [Google Scholar]
  54. 54. 
    Megna M, Napolitano M, Fabbrocini G. 2020. May IL-17 have a role in COVID-19 infection?. Med. Hypotheses 140:109749
    [Google Scholar]
  55. 55. 
    Pacha O, Sallman MA, Evans SE. 2020. COVID-19: a case for inhibiting IL-17?. Nat. Rev. Immunol. 20:6345–46
    [Google Scholar]
  56. 56. 
    Lythgoe MP, Middleton P. 2020. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol. Sci. 41:363–82
    [Google Scholar]
  57. 57. 
    Naik S, Larsen SB, Gomez NC, Alaverdyan K, Sendoel A et al. 2017. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550:475–80
    [Google Scholar]
  58. 58. 
    Wu L, Chen X, Zhao J, Martin B, Zepp JA et al. 2015. A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. J. Exp. Med. 212:1571–87
    [Google Scholar]
  59. 59. 
    Chen X, Cai G, Liu C, Zhao J, Gu C et al. 2019. IL-17R-EGFR axis links wound healing to tumorigenesis in Lrig1+ stem cells. J. Exp. Med. 216:195–214
    [Google Scholar]
  60. 60. 
    Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Cayatte C et al. 2015. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43:727–38
    [Google Scholar]
  61. 61. 
    Zepp JA, Zhao J, Liu C, Bulek K, Wu L et al. 2017. IL-17A-induced PLET1 expression contributes to tissue repair and colon tumorigenesis. J. Immunol. 199:3849–57
    [Google Scholar]
  62. 62. 
    Lubberts E. 2015. The IL-23-IL-17 axis in inflammatory arthritis. Nat. Rev. Rheumatol. 11:562
    [Google Scholar]
  63. 63. 
    Wang C, Zhang CJ, Martin BN, Bulek K, Kang Z et al. 2017. IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nat. Commun. 8:15508
    [Google Scholar]
  64. 64. 
    Kang Z, Wang C, Zepp J, Wu L, Sun K et al. 2013. Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells. Nat. Neurosci. 16:1401–8
    [Google Scholar]
  65. 65. 
    Lammermann T, Afonso PV, Angermann BR, Wang JM, Kastenmuller W et al. 2013. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498:371–75
    [Google Scholar]
  66. 66. 
    Ma S, Cheng Q, Cai Y, Gong H, Wu Y et al. 2014. IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res 74:1969–82
    [Google Scholar]
  67. 67. 
    Wang J, Zhang Y, Yin K, Xu P, Tian J et al. 2017. IL-17A weakens the antitumor immuity by inhibiting apoptosis of MDSCs in Lewis lung carcinoma bearing mice. Oncotarget 8:4814–25
    [Google Scholar]
  68. 68. 
    Veglia F, Perego M, Gabrilovich D. 2018. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19:108–19
    [Google Scholar]
  69. 69. 
    Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K et al. 2015. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522:345–48
    [Google Scholar]
  70. 70. 
    Zhuang Y, Peng LS, Zhao YL, Shi Y, Mao XH et al. 2012. CD8+ T cells that produce interleukin-17 regulate myeloid-derived suppressor cells and are associated with survival time of patients with gastric cancer. Gastroenterology 143:951–62.e8
    [Google Scholar]
  71. 71. 
    Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A et al. 2019. Commensal microbiota promote lung cancer development via γδ T cells. Cell 176:998–1013.e16
    [Google Scholar]
  72. 72. 
    Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K et al. 2018. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23:203–14.e5
    [Google Scholar]
  73. 73. 
    Chung L, Maestas DR Jr., Lebid A, Mageau A, Rosson GD et al. 2020. Interleukin 17 and senescent cells regulate the foreign body response to synthetic material implants in mice and humans. Sci. Transl. Med. 12:539eaax3799
    [Google Scholar]
  74. 74. 
    Sommerfeld SD, Cherry C, Schwab RM, Chung L, Maestas DR Jr. et al. 2019. Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis. Sci. Immunol. 4:40eaax4783
    [Google Scholar]
  75. 75. 
    Li W, Xu M, Li Y, Huang Z, Zhou J et al. 2020. Comprehensive analysis of the association between tumor glycolysis and immune/inflammation function in breast cancer. J. Transl. Med. 18:92
    [Google Scholar]
  76. 76. 
    Pan B, Shen J, Cao J, Zhou Y, Shang L et al. 2015. Interleukin-17 promotes angiogenesis by stimulating VEGF production of cancer cells via the STAT3/GIV signaling pathway in non-small-cell lung cancer. Sci. Rep. 5:16053
    [Google Scholar]
  77. 77. 
    Yang B, Kang H, Fung A, Zhao H, Wang T, Ma D 2014. The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediators Inflamm 2014:623759
    [Google Scholar]
  78. 78. 
    Patil RS, Shah SU, Shrikhande SV, Goel M, Dikshit RP, Chiplunkar SV. 2016. IL17 producing γδ T cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int. J. Cancer 139:869–81
    [Google Scholar]
  79. 79. 
    Kato T, Furumoto H, Ogura T, Onishi Y, Irahara M et al. 2001. Expression of IL-17 mRNA in ovarian cancer. Biochem. Biophys. Res. Commun. 282:735–38
    [Google Scholar]
  80. 80. 
    Liu L, Sun H, Wu S, Tan H, Sun Y et al. 2019. IL-17A promotes CXCR2-dependent angiogenesis in a mouse model of liver cancer. Mol. Med. Rep. 20:1065–74
    [Google Scholar]
  81. 81. 
    Wu HH, Hwang-Verslues WW, Lee WH, Huang CK, Wei PC et al. 2015. Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J. Exp. Med. 212:333–49
    [Google Scholar]
  82. 82. 
    Kang Z, Altuntas CZ, Gulen MF, Liu C, Giltiay N et al. 2010. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 32:414–25
    [Google Scholar]
  83. 83. 
    Paquissi FC. 2017. Immunity and fibrogenesis: the role of Th17/IL-17 axis in HBV and HCV-induced chronic hepatitis and progression to cirrhosis. Front. Immunol. 8:1195
    [Google Scholar]
  84. 84. 
    Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO et al. 2010. Bleomycin and IL-1β–mediated pulmonary fibrosis is IL-17A dependent. J. Exp. Med. 207:535–52
    [Google Scholar]
  85. 85. 
    Wang T, Liu Y, Zou JF, Cheng ZS. 2017. Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation. PLOS ONE 12:e0183972
    [Google Scholar]
  86. 86. 
    Gutcher I, Donkor MK, Ma Q, Rudensky AY, Flavell RA, Li MO. 2011. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity 34:396–408
    [Google Scholar]
  87. 87. 
    Dufour AM, Alvarez M, Russo B, Chizzolini C. 2018. Interleukin-6 and type-I collagen production by systemic sclerosis fibroblasts are differentially regulated by interleukin-17A in the presence of transforming growth factor-beta 1. Front. Immunol. 9:1865
    [Google Scholar]
  88. 88. 
    Fabre T, Molina MF, Soucy G, Goulet JP, Willems B et al. 2018. Type 3 cytokines IL-17A and IL-22 drive TGF-β-dependent liver fibrosis. Sci. Immunol. 3:eaar7754
    [Google Scholar]
  89. 89. 
    Wang Q, Zhou J, Zhang B, Tian Z, Tang J et al. 2013. Hepatitis B virus induces IL-23 production in antigen presenting cells and causes liver damage via the IL-23/IL-17 axis. PLOS Pathog 9:e1003410
    [Google Scholar]
  90. 90. 
    Tan Z, Qian X, Jiang R, Liu Q, Wang Y et al. 2013. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J. Immunol. 191:1835–44
    [Google Scholar]
  91. 91. 
    Zeng M, Smith AJ, Wietgrefe SW, Southern PJ, Schacker TW et al. 2011. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Investig. 121:998–1008
    [Google Scholar]
  92. 92. 
    Estes JD, Reilly C, Trubey CM, Fletcher CV, Cory TJ et al. 2015. Antifibrotic therapy in simian immunodeficiency virus infection preserves CD4+ T-cell populations and improves immune reconstitution with antiretroviral therapy. J. Infect. Dis. 211:744–54
    [Google Scholar]
  93. 93. 
    Kityo C, Makamdop KN, Rothenberger M, Chipman JG, Hoskuldsson T et al. 2018. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J. Clin. Investig. 128:72763–73
    [Google Scholar]
  94. 94. 
    Klatt NR, Estes JD, Sun X, Ortiz AM, Barber JS et al. 2012. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol 5:646–57
    [Google Scholar]
  95. 95. 
    Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Cayatte C et al. 2015. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43:727–38
    [Google Scholar]
  96. 96. 
    Ryan ES, Micci L, Fromentin R, Paganini S, McGary CS et al. 2016. Loss of function of intestinal IL-17 and IL-22 producing cells contributes to inflammation and viral persistence in SIV-infected rhesus macaques. PLOS Pathog 12:e1005412
    [Google Scholar]
  97. 97. 
    Christensen-Quick A, Lafferty M, Sun L, Marchionni L, DeVico A, Garzino-Demo A. 2016. Human Th17 cells lack HIV-inhibitory RNases and are highly permissive to productive HIV infection. J. Virol. 90:7833–47
    [Google Scholar]
  98. 98. 
    Planas D, Routy JP, Ancuta P. 2019. New Th17-specific therapeutic strategies for HIV remission. Curr. Opin. HIV AIDS 14:85–92
    [Google Scholar]
  99. 99. 
    Hinshaw DC, Shevde LA. 2019. The tumor microenvironment innately modulates cancer progression. Cancer Res 79:4557–66
    [Google Scholar]
  100. 100. 
    Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K et al. 2018. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544–48
    [Google Scholar]
  101. 101. 
    Dominguez CX, Muller S, Keerthivasan S, Koeppen H, Hung J et al. 2020. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov 10:232–53
    [Google Scholar]
  102. 102. 
    Barnas JL, Simpson-Abelson MR, Brooks SP, Kelleher RJ Jr., Bankert RB. 2010. Reciprocal functional modulation of the activation of T lymphocytes and fibroblasts derived from human solid tumors. J. Immunol. 185:2681–92
    [Google Scholar]
  103. 103. 
    Ghilardi N, Pappu R, Arron JR, Chan AC 2020. 30 years of biotherapeutics development—What have we learned?. Annu. Rev. Immunol. 38:249–87
    [Google Scholar]
  104. 104. 
    Llosa NJ, Luber B, Tam AJ, Smith KN, Siegel N et al. 2019. Intratumoral adaptive immunosuppression and type 17 immunity in mismatch repair proficient colorectal tumors. Clin. Cancer Res. 25:5250–59
    [Google Scholar]
  105. 105. 
    Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC et al. 2018. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359:97–103
    [Google Scholar]
  106. 106. 
    Sui G, Qiu Y, Yu H, Kong Q, Zhen B. 2019. Interleukin-17 promotes the development of cisplatin resistance in colorectal cancer. Oncol. Lett. 17:944–50
    [Google Scholar]
  107. 107. 
    Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. 2015. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43:515–26
    [Google Scholar]
  108. 108. 
    Riol-Blanco L, Ordovas-Montanes J, Perro M, Naval E, Thiriot A et al. 2014. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510:157–61
    [Google Scholar]
  109. 109. 
    Benakis C, Brea D, Caballero S, Faraco G, Moore J et al. 2016. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 22:516–23
    [Google Scholar]
  110. 110. 
    Beurel E, Harrington LE, Jope RS. 2013. Inflammatory T helper 17 cells promote depression-like behavior in mice. Biol. Psychiatry 73:622–30
    [Google Scholar]
  111. 111. 
    Xu J, Ma HY, Liu X, Rosenthal S, Baglieri J et al. 2020. Blockade of IL-17 signaling reverses alcohol-induced liver injury and excessive alcohol drinking in mice. JCI Insight 5:3e131277
    [Google Scholar]
  112. 112. 
    Luo H, Liu HZ, Zhang WW, Matsuda M, Lv N et al. 2019. Interleukin-17 regulates neuron-glial communications, synaptic transmission, and neuropathic pain after chemotherapy. Cell Rep 29:2384–97.e5
    [Google Scholar]
  113. 113. 
    Xu D, Robinson AP, Ishii T, Duncan DS, TD Alden et al. 2018. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J. Exp. Med. 215:1169–86
    [Google Scholar]
  114. 114. 
    Siffrin V, Radbruch H, Glumm R, Niesner R, Paterka M et al. 2010. In vivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33:424–36
    [Google Scholar]
  115. 115. 
    Gumusoglu SB, Hing BWQ, Chilukuri ASS, Dewitt JJ, Scroggins SM, Stevens HE. 2020. Chronic maternal interleukin-17 and autism-related cortical gene expression, neurobiology, and behavior. Neuropsychopharmacology 45:1008–17
    [Google Scholar]
  116. 116. 
    Reed MD, Yim YS, Wimmer RD, Kim H, Ryu C et al. 2020. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature 577:249–53
    [Google Scholar]
  117. 117. 
    Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W et al. 2016. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535:425–29
    [Google Scholar]
  118. 118. 
    Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B et al. 2012. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254–58
    [Google Scholar]
  119. 119. 
    Sharp SP, Avram D, Stain SC, Lee EC 2017. Local and systemic Th17 immune response associated with advanced stage colon cancer. J. Surg. Res. 208:180–86
    [Google Scholar]
  120. 120. 
    Wang K, Kim MK, Di Caro G, Wong J, Shalapour S et al. 2014. Interleukin-17 receptor A signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 41:1052–63
    [Google Scholar]
  121. 121. 
    Wang D, Yu W, Lian J, Wu Q, Liu S et al. 2020. Th17 cells inhibit CD8+ T cell migration by systematically downregulating CXCR3 expression via IL-17A/STAT3 in advanced-stage colorectal cancer patients. J. Hematol. Oncol. 13:68
    [Google Scholar]
  122. 122. 
    Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S et al. 2011. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res 71:1263–71
    [Google Scholar]
  123. 123. 
    Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R et al. 2018. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359:592–97
    [Google Scholar]
  124. 124. 
    Calcinotto A, Brevi A, Chesi M, Ferrarese R, Garcia Perez L et al. 2018. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat. Commun. 9:4832
    [Google Scholar]
  125. 125. 
    Langowski JL, Zhang X, Wu L, Mattson JD, Chen T et al. 2006. IL-23 promotes tumour incidence and growth. Nature 442:461–65
    [Google Scholar]
  126. 126. 
    Dai ZM, Zhang TS, Lin S, Zhang WG, Liu J et al. 2016. Role of IL-17A rs2275913 and IL-17F rs763780 polymorphisms in risk of cancer development: an updated meta-analysis. Sci. Rep. 6:20439
    [Google Scholar]
  127. 127. 
    Wu X, Zeng Z, Chen B, Yu J, Xue L et al. 2010. Association between polymorphisms in interleukin-17A and interleukin-17F genes and risks of gastric cancer. Int. J. Cancer 127:86–92
    [Google Scholar]
  128. 128. 
    Li TJ, Jiang YM, Hu YF, Huang L, Yu J et al. 2017. Interleukin-17-producing neutrophils link inflammatory stimuli to disease progression by promoting angiogenesis in gastric cancer. Clin. Cancer Res. 23:1575–85
    [Google Scholar]
  129. 129. 
    Punt S, van Vliet ME, Spaans VM, de Kroon CD, Fleuren GJ et al. 2015. FoxP3+ and IL-17+ cells are correlated with improved prognosis in cervical adenocarcinoma. Cancer Immunol. Immunother. 64:745–53
    [Google Scholar]
  130. 130. 
    Hirahara N, Nio Y, Sasaki S, Minari Y, Takamura M et al. 2001. Inoculation of human interleukin-17 gene-transfected Meth-A fibrosarcoma cells induces T cell-dependent tumor-specific immunity in mice. Oncology 61:79–89
    [Google Scholar]
  131. 131. 
    Lu L, Pan K, Zheng HX, Li JJ, Qiu HJ et al. 2013. IL-17A promotes immune cell recruitment in human esophageal cancers and the infiltrating dendritic cells represent a positive prognostic marker for patient survival. J. Immunother. 36:451–58
    [Google Scholar]
  132. 132. 
    Chen CL, Wang Y, Huang CY, Zhou ZQ, Zhao JJ et al. 2017. IL-17 induces antitumor immunity by promoting beneficial neutrophil recruitment and activation in esophageal squamous cell carcinoma. Oncoimmunology 7:e1373234
    [Google Scholar]
  133. 133. 
    Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T et al. 2009. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–98
    [Google Scholar]
  134. 134. 
    Kryczek I, Wei S, Szeliga W, Vatan L, Zou W. 2009. Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 114:357–59
    [Google Scholar]
  135. 135. 
    Ma M, Huang W, Kong D. 2018. IL-17 inhibits the accumulation of myeloid-derived suppressor cells in breast cancer via activating STAT3. Int. Immunopharmacol. 59:148–56
    [Google Scholar]
  136. 136. 
    Lin Y, Xu J, Su H, Zhong W, Yuan Y et al. 2015. Interleukin-17 is a favorable prognostic marker for colorectal cancer. Clin. Transl. Oncol. 17:50–56
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101819-092536
Loading
/content/journals/10.1146/annurev-immunol-101819-092536
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error