1932

Abstract

Alzheimer disease (AD) is the most common neurodegenerative disease, and with no efficient curative treatment available, its medical, social, and economic burdens are expected to dramatically increase. AD is historically characterized by amyloid β (Aβ) plaques and tau neurofibrillary tangles, but over the last 25 years chronic immune activation has been identified as an important factor contributing to AD pathogenesis. In this article, we review recent and important advances in our understanding of the significance of immune activation in the development of AD. We describe how brain-resident macrophages, the microglia, are able to detect Aβ species and be activated, as well as the consequences of activated microglia in AD pathogenesis. We discuss transcriptional changes of microglia in AD, their unique heterogeneity in humans, and emerging strategies to study human microglia. Finally, we expose, beyond Aβ and microglia, the role of peripheral signals and different cell types in immune activation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101921-035222
2024-06-28
2025-02-06
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-101921-035222.html?itemId=/content/journals/10.1146/annurev-immunol-101921-035222&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, et al. 2021.. Alzheimer's disease. . Lancet 397:(10284):157790
    [Crossref] [Google Scholar]
  2. 2.
    Hardy JA, Higgins GA. 1992.. Alzheimer's disease: the amyloid cascade hypothesis. . Science 256:(5054):18485
    [Crossref] [Google Scholar]
  3. 3.
    Webers A, Heneka MT, Gleeson PA. 2020.. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer's disease. . Immunol. Cell Biol. 98:(1):2841
    [Crossref] [Google Scholar]
  4. 4.
    Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, et al. 2022.. New insights into the genetic etiology of Alzheimer's disease and related dementias. . Nat. Genet. 54:(4):41236
    [Crossref] [Google Scholar]
  5. 5.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, et al. 2015.. Neuroinflammation in Alzheimer's disease. . Lancet Neurol. 14:(4):388405
    [Crossref] [Google Scholar]
  6. 6.
    Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. 2018.. Inflammation as a central mechanism in Alzheimer's disease. . Alzheimers Dement. Transl. Res. Clin. Interv. 4::57590
    [Crossref] [Google Scholar]
  7. 7.
    Jiang Y-T, Li H-Y, Cao X-P, Tan L. 2018.. Meta-analysis of the association between CD33 and Alzheimer's disease. . Ann. Transl. Med. 6:(10):169
    [Crossref] [Google Scholar]
  8. 8.
    Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, et al. 2013.. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. . Neuron 78:(4):63143
    [Crossref] [Google Scholar]
  9. 9.
    Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, et al. 2013.. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. . Nat. Neurosci. 16:(7):84850
    [Crossref] [Google Scholar]
  10. 10.
    Griciuc A, Patel S, Federico AN, Choi SH, Innes BJ, et al. 2019.. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer's disease. . Neuron 103:(5):82035.e7
    [Crossref] [Google Scholar]
  11. 11.
    Sanchez-Varo R, Mejias-Ortega M, Fernandez-Valenzuela JJ, Nuñez-Diaz C, Caceres-Palomo L, et al. 2022.. Transgenic mouse models of Alzheimer's disease: an integrative analysis. . Int. J. Mol. Sci. 23:(10):5404
    [Crossref] [Google Scholar]
  12. 12.
    Yokoyama M, Kobayashi H, Tatsumi L, Tomita T. 2022.. Mouse models of Alzheimer's disease. . Front. Mol. Neurosci. 15::912995
    [Crossref] [Google Scholar]
  13. 13.
    Gu X, Dou M, Cao B, Jiang Z, Chen Y. 2022.. Peripheral level of CD33 and Alzheimer's disease: a bidirectional two-sample Mendelian randomization study. . Transl. Psychiatry 12:(1):427
    [Crossref] [Google Scholar]
  14. 14.
    Griciuc A, Federico AN, Natasan J, Forte AM, McGinty D, et al. 2020.. Gene therapy for Alzheimer's disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation. . Hum. Mol. Genet. 29:(17):292035
    [Crossref] [Google Scholar]
  15. 15.
    Malik M, Simpson JF, Parikh I, Wilfred BR, Fardo DW, et al. 2013.. CD33 Alzheimer's risk-altering polymorphism, CD33 expression, and exon 2 splicing. . J. Neurosci. 33:(33):1332025
    [Crossref] [Google Scholar]
  16. 16.
    Butler CA, Thornton P, Brown GC. 2021.. CD33M inhibits microglial phagocytosis, migration and proliferation, but the Alzheimer's disease-protective variant CD33m stimulates phagocytosis and proliferation, and inhibits adhesion. . J. Neurochem. 158:(2):297310
    [Crossref] [Google Scholar]
  17. 17.
    Bhattacherjee A, Jung J, Zia S, Ho M, Eskandari-Sedighi G, et al. 2021.. The CD33 short isoform is a gain-of-function variant that enhances Aβ1–42 phagocytosis in microglia. . Mol. Neurodegener. 16:(1):19
    [Crossref] [Google Scholar]
  18. 18.
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, et al. 2013.. TREM2 variants in Alzheimer's disease. . N. Engl. J. Med. 368:(2):11727
    [Crossref] [Google Scholar]
  19. 19.
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, et al. 2013.. Variant of TREM2 associated with the risk of Alzheimer's disease. . N. Engl. J. Med. 368:(2):10716
    [Crossref] [Google Scholar]
  20. 20.
    Leyns CEG, Gratuze M, Narasimhan S, Jain N, Koscal LJ, et al. 2019.. TREM2 function impedes tau seeding in neuritic plaques. . Nat. Neurosci. 22:(8):121722
    [Crossref] [Google Scholar]
  21. 21.
    Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, et al. 2017.. A unique microglia type associated with restricting development of Alzheimer's disease. . Cell 169:(7):127690.e17
    [Crossref] [Google Scholar]
  22. 22.
    Ennerfelt H, Frost EL, Shapiro DA, Holliday C, Zengeler KE, et al. 2022.. SYK coordinates neuroprotective microglial responses in neurodegenerative disease. . Cell 185:(22):413552.e22
    [Crossref] [Google Scholar]
  23. 23.
    Wang S, Sudan R, Peng V, Zhou Y, Du S, et al. 2022.. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways. . Cell 185:(22):415369.e19
    [Crossref] [Google Scholar]
  24. 24.
    Ewers M, Biechele G, Suárez-Calvet M, Sacher C, Blume T, et al. 2020.. Higher CSF sTREM2 and microglia activation are associated with slower rates of beta-amyloid accumulation. . EMBO Mol. Med. 12:(9):e12308
    [Crossref] [Google Scholar]
  25. 25.
    Brosseron F, Maass A, Kleineidam L, Ravichandran KA, González PG, et al. 2022.. Soluble TAM receptors sAXL and sTyro3 predict structural and functional protection in Alzheimer's disease. . Neuron 110:(6):100922.e4
    [Crossref] [Google Scholar]
  26. 26.
    Lu Y, Huang X, Liang W, Li Y, Xing M, et al. 2023.. Regulation of TREM2 expression by transcription factor YY1 and its protective effect against Alzheimer's disease. . J. Biol. Chem. 299:(5):104688
    [Crossref] [Google Scholar]
  27. 27.
    Huang Y, Happonen KE, Burrola PG, O'Connor C, Hah N, et al. 2021.. Microglia use TAM receptors to detect and engulf amyloid β plaques. . Nat. Immunol. 22:(5):58694
    [Crossref] [Google Scholar]
  28. 28.
    Sainaghi PP, Bellan M, Lombino F, Alciato F, Carecchio M, et al. 2017.. Growth arrest specific 6 concentration is increased in the cerebrospinal fluid of patients with Alzheimer's disease. . J. Alzheimers Dis. 55:(1):5965
    [Crossref] [Google Scholar]
  29. 29.
    Herrera-Rivero M, Santarelli F, Brosseron F, Kummer MP, Heneka MT. 2019.. Dysregulation of TLR5 and TAM ligands in the Alzheimer's brain as contributors to disease progression. . Mol. Neurobiol. 56:(9):653950
    [Crossref] [Google Scholar]
  30. 30.
    Owlett LD, Karaahmet B, Le L, Belcher EK, Dionisio-Santos D, et al. 2022.. Gas6 induces inflammation and reduces plaque burden but worsens behavior in a sex-dependent manner in the APP/PS1 model of Alzheimer's disease. . J. Neuroinflamm. 19::38
    [Crossref] [Google Scholar]
  31. 31.
    Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, et al. 2010.. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. . Nat. Immunol. 11:(2):15561
    [Crossref] [Google Scholar]
  32. 32.
    Shmuel-Galia L, Klug Y, Porat Z, Charni M, Zarmi B, Shai Y. 2017.. Intramembrane attenuation of the TLR4-TLR6 dimer impairs receptor assembly and reduces microglia-mediated neurodegeneration. . J. Biol. Chem. 292:(32):1341527
    [Crossref] [Google Scholar]
  33. 33.
    Kim S-M, Mun B-R, Lee S-J, Joh Y, Lee H-Y, et al. 2017.. TREM2 promotes Aβ phagocytosis by upregulating C/EBPα-dependent CD36 expression in microglia. . Sci. Rep. 7:(1):11118
    [Crossref] [Google Scholar]
  34. 34.
    Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, et al. 2013.. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. . Nat. Immunol. 14:(8):81220
    [Crossref] [Google Scholar]
  35. 35.
    Yan SD, Chen X, Fu J, Chen M, Zhu H, et al. 1996.. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. . Nature 382:(6593):68591
    [Crossref] [Google Scholar]
  36. 36.
    Deane R, Singh I, Sagare AP, Bell RD, Ross NT, et al. 2012.. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. . J. Clin. Investig. 122:(4):137792
    [Crossref] [Google Scholar]
  37. 37.
    Sbai O, Djelloul M, Auletta A, Ieraci A, Vascotto C, Perrone L. 2022.. AGE-TXNIP axis drives inflammation in Alzheimer's by targeting Aβ to mitochondria in microglia. . Cell Death Dis. 13:(4):302
    [Crossref] [Google Scholar]
  38. 38.
    Kim Y, Park H, Kim Y, Kim S-H, Lee JH, et al. 2023.. Pathogenic role of RAGE in tau transmission and memory deficits. . Biol. Psychiatry 93:(9):82941
    [Crossref] [Google Scholar]
  39. 39.
    Tan J, Town T, Paris D, Mori T, Suo Z, et al. 1999.. Microglial activation resulting from CD40-CD40L interaction after β-amyloid stimulation. . Science 286:(5448):235255
    [Crossref] [Google Scholar]
  40. 40.
    Tan J, Town T, Crawford F, Mori T, DelleDonne A, et al. 2002.. Role of CD40 ligand in amyloidosis in transgenic Alzheimer's mice. . Nat. Neurosci. 5:(12):128893
    [Crossref] [Google Scholar]
  41. 41.
    Laporte V, Ait-Ghezala G, Volmar C-H, Mullan M. 2006.. CD40 deficiency mitigates Alzheimer's disease pathology in transgenic mouse models. . J. Neuroinflamm. 3:(1):3
    [Crossref] [Google Scholar]
  42. 42.
    Kim S-H, Lim K-H, Yang S, Joo J-Y. 2023.. Boosting of tau protein aggregation by CD40 and CD48 gene expression in Alzheimer's disease. . FASEB J. 37:(1):e22702
    [Crossref] [Google Scholar]
  43. 43.
    Heckmann BL, Teubner BJW, Tummers B, Boada-Romero E, Harris L, et al. 2019.. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer's disease. . Cell 178:(3):53651.e14
    [Crossref] [Google Scholar]
  44. 44.
    Heckmann BL, Teubner BJW, Boada-Romero E, Tummers B, Guy C, et al. 2020.. Noncanonical function of an autophagy protein prevents spontaneous Alzheimer's disease. . Sci. Adv. 6:(33):eabb9036
    [Crossref] [Google Scholar]
  45. 45.
    Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, et al. 2008.. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. . Nat. Immunol. 9:(8):85765
    [Crossref] [Google Scholar]
  46. 46.
    Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, et al. 2013.. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. . Nature 493:(7434):67478
    [Crossref] [Google Scholar]
  47. 47.
    Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, et al. 2019.. NLRP3 inflammasome activation drives tau pathology. . Nature 575:(7784):66973
    [Crossref] [Google Scholar]
  48. 48.
    Stancu I-C, Cremers N, Vanrusselt H, Couturier J, Vanoosthuyse A, et al. 2019.. Aggregated tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded tau pathology in vivo. . Acta Neuropathol. 137:(4):599617
    [Crossref] [Google Scholar]
  49. 49.
    Pontillo A, Catamo E, Arosio B, Mari D, Crovella S. 2012.. NALP1/NLRP1 genetic variants are associated with Alzheimer disease. . Alzheimer Dis. Assoc. Disord. 26:(3):27781
    [Crossref] [Google Scholar]
  50. 50.
    Tan M-S, Tan L, Jiang T, Zhu X-C, Wang H-F, et al. 2014.. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease. . Cell Death Dis. 5:(8):e1382
    [Crossref] [Google Scholar]
  51. 51.
    Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, et al. 2015.. Neuronal NLRP1 inflammasome activation of caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated caspase-6 activation. . Cell Death Differ. 22:(10):167686
    [Crossref] [Google Scholar]
  52. 52.
    Flores J, Noël A, Fillion M-L, LeBlanc AC. 2022.. Therapeutic potential of Nlrp1 inflammasome, caspase-1, or caspase-6 against Alzheimer disease cognitive impairment. . Cell Death Differ. 29:(3):65769
    [Crossref] [Google Scholar]
  53. 53.
    Liu L, Chan C. 2014.. IPAF inflammasome is involved in interleukin-1β production from astrocytes, induced by palmitate; implications for Alzheimer's disease. . Neurobiol. Aging 35:(2):30921
    [Crossref] [Google Scholar]
  54. 54.
    Cao L-L, Guan P-P, Zhang S-Q, Yang Y, Huang X-S, Wang P. 2021.. Downregulating expression of OPTN elevates neuroinflammation via AIM2 inflammasome- and RIPK1-activating mechanisms in APP/PS1 transgenic mice. . J. Neuroinflamm. 18::281
    [Crossref] [Google Scholar]
  55. 55.
    Wu P-J, Hung Y-F, Liu H-Y, Hsueh Y-P. 2017.. Deletion of the inflammasome sensor Aim2 mitigates Aβ deposition and microglial activation but increases inflammatory cytokine expression in an Alzheimer disease mouse model. . Neuroimmunomodulation 24:(1):2939
    [Crossref] [Google Scholar]
  56. 56.
    Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, et al. 2014.. The adaptor ASC has extracellular and “prionoid” activities that propagate inflammation. . Nat. Immunol. 15:(8):72737
    [Crossref] [Google Scholar]
  57. 57.
    Moonen S, Koper MJ, Van Schoor E, Schaeverbeke JM, Vandenberghe R, et al. 2023.. Pyroptosis in Alzheimer's disease: cell type-specific activation in microglia, astrocytes and neurons. . Acta Neuropathol. 145:(2):17595
    [Crossref] [Google Scholar]
  58. 58.
    Sánchez KE, Bhaskar K, Rosenberg GA. 2022.. Apoptosis-associated speck-like protein containing a CARD-mediated release of matrix metalloproteinase 10 stimulates a change in microglia phenotype. . Front. Mol. Neurosci. 15::976108
    [Crossref] [Google Scholar]
  59. 59.
    Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, et al. 2017.. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. . Nature 552:(7685):35561
    [Crossref] [Google Scholar]
  60. 60.
    Scott XO, Stephens ME, Desir MC, Dietrich WD, Keane RW, de Rivero Vaccari JP. 2020.. The inflammasome adaptor protein ASC in mild cognitive impairment and Alzheimer's disease. . Int. J. Mol. Sci. 21:(13):4674
    [Crossref] [Google Scholar]
  61. 61.
    Flores J, Noël A, Foveau B, Lynham J, Lecrux C, LeBlanc AC. 2018.. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer's disease mouse model. . Nat. Commun. 9:(1):3916
    [Crossref] [Google Scholar]
  62. 62.
    Flores J, Noël A, Foveau B, Beauchet O, LeBlanc AC. 2020.. Pre-symptomatic caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging. . Nat. Commun. 11:(1):4571
    [Crossref] [Google Scholar]
  63. 63.
    Tan M-S, Liu Y, Hu H, Tan C-C, Tan L. 2022.. Inhibition of caspase-1 ameliorates tauopathy and rescues cognitive impairment in SAMP8 mice. . Metab. Brain Dis. 37:(4):1197205
    [Crossref] [Google Scholar]
  64. 64.
    Ma X, Zhang Y, Gou D, Ma J, Du J, et al. 2022.. Metabolic reprogramming of microglia enhances proinflammatory cytokine release through EphA2/p38 MAPK pathway in Alzheimer's disease. . J. Alzheimers Dis. 88:(2):77185
    [Crossref] [Google Scholar]
  65. 65.
    Baik SH, Kang S, Lee W, Choi H, Chung S, et al. 2019.. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer's disease. . Cell Metab. 30:(3):493507.e6
    [Crossref] [Google Scholar]
  66. 66.
    Ulland TK, Song WM, Huang SC-C, Ulrich JD, Sergushichev A, et al. 2017.. TREM2 maintains microglial metabolic fitness in Alzheimer's disease. . Cell 170:(4):64963.e13
    [Crossref] [Google Scholar]
  67. 67.
    van Lengerich B, Zhan L, Xia D, Chan D, Joy D, et al. 2023.. A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer's disease models. . Nat. Neurosci. 26:(3):41629
    [Google Scholar]
  68. 68.
    Lu J, Zhou W, Dou F, Wang C, Yu Z. 2021.. TRPV1 sustains microglial metabolic reprogramming in Alzheimer's disease. . EMBO Rep. 22:(6):e52013
    [Crossref] [Google Scholar]
  69. 69.
    Rangaraju S, Dammer EB, Raza SA, Rathakrishnan P, Xiao H, et al. 2018.. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer's disease. . Mol. Neurodegener. 13:(1):24
    [Crossref] [Google Scholar]
  70. 70.
    Chen W-T, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, et al. 2020.. Spatial transcriptomics and in situ sequencing to study Alzheimer's disease. . Cell 182:(4):97691.e19
    [Crossref] [Google Scholar]
  71. 71.
    Ndoja A, Reja R, Lee S-H, Webster JD, Ngu H, et al. 2020.. Ubiquitin ligase COP1 suppresses neuroinflammation by degrading C/EBPβ in microglia. . Cell 182:(5):115669.e12
    [Crossref] [Google Scholar]
  72. 72.
    Bai B, Wang X, Li Y, Chen P-C, Yu K, et al. 2020.. Deep multilayer brain proteomics identifies molecular networks in Alzheimer's disease progression. . Neuron 105:(6):97591.e7
    [Crossref] [Google Scholar]
  73. 73.
    Chen C, Ahn EH, Kang SS, Liu X, Alam A, Ye K. 2020.. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer's disease mouse model. . Sci. Adv. 6:(31):eaba0466
    [Crossref] [Google Scholar]
  74. 74.
    Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, et al. 2019.. Cross-species single-cell analysis reveals divergence of the primate microglia program. . Cell 179:(7):160922.e16
    [Crossref] [Google Scholar]
  75. 75.
    Hasselmann J, Coburn MA, England W, Figueroa Velez DX, Kiani Shabestari S, et al. 2019.. Development of a chimeric model to study and manipulate human microglia in vivo. . Neuron 103:(6):101633.e10
    [Crossref] [Google Scholar]
  76. 76.
    Mancuso R, Van Den Daele J, Fattorelli N, Wolfs L, Balusu S, et al. 2019.. Stem-cell-derived human microglia transplanted in mouse brain to study human disease. . Nat. Neurosci. 22:(12):211116
    [Crossref] [Google Scholar]
  77. 77.
    Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, et al. 2017.. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. . Immunity 47:(3):56681.e9
    [Crossref] [Google Scholar]
  78. 78.
    Sala Frigerio C, Wolfs L, Fattorelli N, Thrupp N, Voytyuk I, et al. 2019.. The major risk factors for Alzheimer's disease: Age, sex, and genes modulate the microglia response to Aβ plaques. . Cell Rep. 27:(4):1293306.e6
    [Crossref] [Google Scholar]
  79. 79.
    Grubman A, Chew G, Ouyang JF, Sun G, Choo XY, et al. 2019.. A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation. . Nat. Neurosci. 22:(12):208797
    [Crossref] [Google Scholar]
  80. 80.
    Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, et al. 2019.. Single-cell transcriptomic analysis of Alzheimer's disease. . Nature 570:(7761):33237
    [Crossref] [Google Scholar]
  81. 81.
    Zhou Y, Song WM, Andhey PS, Swain A, Levy T, et al. 2020.. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. . Nat. Med. 26:(1):13142
    [Crossref] [Google Scholar]
  82. 82.
    Gerrits E, Brouwer N, Kooistra SM, Woodbury ME, Vermeiren Y, et al. 2021.. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer's disease. . Acta Neuropathol. 141:(5):68196
    [Crossref] [Google Scholar]
  83. 83.
    Del-Aguila JL, Li Z, Dube U, Mihindukulasuriya KA, Budde JP, et al. 2019.. A single-nuclei RNA sequencing study of Mendelian and sporadic AD in the human brain. . Alzheimers Res. Ther. 11:(1):71
    [Crossref] [Google Scholar]
  84. 84.
    Thrupp N, Sala Frigerio C, Wolfs L, Skene NG, Fattorelli N, et al. 2020.. Single-nucleus RNA-seq is not suitable for detection of microglial activation genes in humans. . Cell Rep. 32:(13):108189
    [Crossref] [Google Scholar]
  85. 85.
    Marsh SE, Walker AJ, Kamath T, Dissing-Olesen L, Hammond TR, et al. 2022.. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. . Nat. Neurosci. 25:(3):30616
    [Crossref] [Google Scholar]
  86. 86.
    Feng W, Zhang Y, Wang Z, Xu H, Wu T, et al. 2020.. Microglia prevent beta-amyloid plaque formation in the early stage of an Alzheimer's disease mouse model with suppression of glymphatic clearance. . Alzheimers Res. Ther. 12:(1):125
    [Crossref] [Google Scholar]
  87. 87.
    Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MRP, et al. 2016.. Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology. . Brain J. Neurol. 139:(Part 4):126581
    [Crossref] [Google Scholar]
  88. 88.
    Daria A, Colombo A, Llovera G, Hampel H, Willem M, et al. 2017.. Young microglia restore amyloid plaque clearance of aged microglia. . EMBO J. 36:(5):583603
    [Crossref] [Google Scholar]
  89. 89.
    Quick JD, Silva C, Wong JH, Lim KL, Reynolds R, et al. 2023.. Lysosomal acidification dysfunction in microglia: an emerging pathogenic mechanism of neuroinflammation and neurodegeneration. . J. Neuroinflamm. 20:(1):185
    [Crossref] [Google Scholar]
  90. 90.
    Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln A-C, Schlosser C, et al. 2017.. Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging. . Nat. Neurosci. 20:(10):137176
    [Crossref] [Google Scholar]
  91. 91.
    Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, et al. 2008.. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. . Nature 451:(7179):72024
    [Crossref] [Google Scholar]
  92. 92.
    Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, et al. 2008.. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. . J. Neurosci. 28:(16):428392
    [Crossref] [Google Scholar]
  93. 93.
    Serrano-Pozo A, Mielke ML, Muzitansky A, Gómez-Isla T, Growdon JH, et al. 2012.. Stable size distribution of amyloid plaques over the course of Alzheimer disease. . J. Neuropathol. Exp. Neurol. 71:(8):694701
    [Crossref] [Google Scholar]
  94. 94.
    Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, et al. 2015.. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. . Nat. Neurosci. 18:(11):158493
    [Crossref] [Google Scholar]
  95. 95.
    Crotti A, Sait HR, McAvoy KM, Estrada K, Ergun A, et al. 2019.. BIN1 favors the spreading of tau via extracellular vesicles. . Sci. Rep. 9:(1):9477
    [Crossref] [Google Scholar]
  96. 96.
    Zhu B, Liu Y, Hwang S, Archuleta K, Huang H, et al. 2022.. Trem2 deletion enhances tau dispersion and pathology through microglia exosomes. . Mol. Neurodegener. 17:(1):58
    [Crossref] [Google Scholar]
  97. 97.
    Lee SH, Meilandt WJ, Xie L, Gandham VD, Ngu H, et al. 2021.. Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology. . Neuron 109:(8):1283301.e6
    [Crossref] [Google Scholar]
  98. 98.
    Chen X, Firulyova M, Manis M, Herz J, Smirnov I, et al. 2023.. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. . Nature 615:(7953):66877
    [Crossref] [Google Scholar]
  99. 99.
    Ries M, Sastre M. 2016.. Mechanisms of Aβ clearance and degradation by glial cells. . Front. Aging Neurosci. 8::160
    [Crossref] [Google Scholar]
  100. 100.
    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, et al. 2017.. Neurotoxic reactive astrocytes are induced by activated microglia. . Nature 541:(7638):48187
    [Crossref] [Google Scholar]
  101. 101.
    Zhang Y, Yang X, Zhuang J, Zhang H, Gao C. 2022.. β-Amyloid activates reactive astrocytes by enhancing glycolysis of astrocytes. . Mol. Biol. Rep. 49:(6):4699707
    [Crossref] [Google Scholar]
  102. 102.
    Kim H, Leng K, Park J, Sorets AG, Kim S, et al. 2022.. Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. . Nat. Commun. 13:(1):6581
    [Crossref] [Google Scholar]
  103. 103.
    Park J-S, Kam T-I, Lee S, Park H, Oh Y, et al. 2021.. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. . Acta Neuropathol. Commun. 9:(1):78
    [Crossref] [Google Scholar]
  104. 104.
    Fuhrmann M, Bittner T, Jung CKE, Burgold S, Page RM, et al. 2010.. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. . Nat. Neurosci. 13:(4):41113
    [Crossref] [Google Scholar]
  105. 105.
    Busche MA, Konnerth A. 2015.. Neuronal hyperactivity – a key defect in Alzheimer's disease?. BioEssays 37:(6):62432
    [Crossref] [Google Scholar]
  106. 106.
    Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, et al. 2020.. Negative feedback control of neuronal activity by microglia. . Nature 586:(7829):41723
    [Crossref] [Google Scholar]
  107. 107.
    Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, et al. 2016.. Complement and microglia mediate early synapse loss in Alzheimer mouse models. . Science 352:(6286):71216
    [Crossref] [Google Scholar]
  108. 108.
    Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, et al. 2016.. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. . Cell 165:(4):92135
    [Crossref] [Google Scholar]
  109. 109.
    Dejanovic B, Wu T, Tsai M-C, Graykowski D, Gandham VD, et al. 2022.. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer's disease mouse models. . Nat. Aging 2:(9):83750
    [Crossref] [Google Scholar]
  110. 110.
    Wu J, Xu J, Naguib M, Bie B. 2023.. Blockade of type 2A protein phosphatase signaling attenuates complement C1q-mediated microglial phagocytosis of glutamatergic synapses induced by amyloid fibrils. . Mol. Neurobiol. 60:(3):152736
    [Crossref] [Google Scholar]
  111. 111.
    De Schepper S, Ge JZ, Crowley G, Ferreira LSS, Garceau D, et al. 2023.. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer's disease. . Nat. Neurosci. 26:(3):40615
    [Crossref] [Google Scholar]
  112. 112.
    Comi C, Carecchio M, Chiocchetti A, Nicola S, Galimberti D, et al. 2010.. Osteopontin is increased in the cerebrospinal fluid of patients with Alzheimer's disease and its levels correlate with cognitive decline. . J. Alzheimers Dis. 19:(4):114348
    [Crossref] [Google Scholar]
  113. 113.
    Chai YL, Chong JR, Raquib AR, Xu X, Hilal S, et al. 2021.. Plasma osteopontin as a biomarker of Alzheimer's disease and vascular cognitive impairment. . Sci. Rep. 11:(1):4010
    [Crossref] [Google Scholar]
  114. 114.
    Zhong L, Sheng X, Wang W, Li Y, Zhuo R, et al. 2023.. TREM2 receptor protects against complement-mediated synaptic loss by binding to complement C1q during neurodegeneration. . Immunity 56:(8):1794808.e8
    [Crossref] [Google Scholar]
  115. 115.
    Litvinchuk A, Wan Y-W, Swartzlander DB, Chen F, Cole A, et al. 2018.. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer's disease. . Neuron 100:(6):133753.e5
    [Crossref] [Google Scholar]
  116. 116.
    Yao Y, Chang Y, Li S, Zhu J, Wu Y, et al. 2023.. Complement C3a receptor antagonist alleviates tau pathology and ameliorates cognitive deficits in P301S mice. . Brain Res. Bull. 200::110685
    [Crossref] [Google Scholar]
  117. 117.
    Li Z, Wu H, Luo Y, Tan X. 2023.. Correlation of serum complement factor 5a level with inflammatory response and cognitive function in patients with Alzheimer's disease of different severity. . BMC Neurol. 23:(1):319
    [Crossref] [Google Scholar]
  118. 118.
    Gomez-Arboledas A, Carvalho K, Balderrama-Gutierrez G, Chu S-H, Liang HY, et al. 2022.. C5aR1 antagonism alters microglial polarization and mitigates disease progression in a mouse model of Alzheimer's disease. . Acta Neuropathol. Commun. 10:(1):116
    [Crossref] [Google Scholar]
  119. 119.
    Carvalho K, Schartz ND, Balderrama-Gutierrez G, Liang HY, Chu S-H, et al. 2022.. Modulation of C5a–C5aR1 signaling alters the dynamics of AD progression. . J. Neuroinflamm. 19:(1):178
    [Crossref] [Google Scholar]
  120. 120.
    Carpanini SM, Harwood JC, Baker E, Torvell M, Gerad Consortium, et al. 2021.. The impact of complement genes on the risk of late-onset Alzheimer's disease. . Genes 12:(3):443
    [Crossref] [Google Scholar]
  121. 121.
    Zhang D-F, Fan Y, Xu M, Wang G, Wang D, et al. 2019.. Complement C7 is a novel risk gene for Alzheimer's disease in Han Chinese. . Natl. Sci. Rev. 6:(2):25774
    [Crossref] [Google Scholar]
  122. 122.
    Carpanini SM, Torvell M, Bevan RJ, Byrne RAJ, Daskoulidou N, et al. 2022.. Terminal complement pathway activation drives synaptic loss in Alzheimer's disease models. . Acta Neuropathol. Commun. 10::99
    [Crossref] [Google Scholar]
  123. 123.
    Haenseler W, Rajendran L. 2019.. Concise review: modeling neurodegenerative diseases with human pluripotent stem cell-derived microglia. . Stem Cells 37:(6):72430
    [Crossref] [Google Scholar]
  124. 124.
    Bian Z, Gong Y, Huang T, Lee CZW, Bian L, et al. 2020.. Deciphering human macrophage development at single-cell resolution. . Nature 582:(7813):57176
    [Crossref] [Google Scholar]
  125. 125.
    Fattorelli N, Martinez-Muriana A, Wolfs L, Geric I, De Strooper B, Mancuso R. 2021.. Stem-cell-derived human microglia transplanted into mouse brain to study human disease. . Nat. Protoc. 16:(2):101333
    [Crossref] [Google Scholar]
  126. 126.
    Dräger NM, Sattler SM, Huang CT-L, Teter OM, Leng K, et al. 2022.. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. . Nat. Neurosci. 25:(9):114962
    [Crossref] [Google Scholar]
  127. 127.
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, et al. 2014.. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. . Nat. Neurosci. 17:(1):13143
    [Crossref] [Google Scholar]
  128. 128.
    Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, et al. 2017.. An environment-dependent transcriptional network specifies human microglia identity. . Science 356:(6344):eaal3222
    [Crossref] [Google Scholar]
  129. 129.
    Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA. 2017.. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. . Neuron 94:(4):75973.e8
    [Crossref] [Google Scholar]
  130. 130.
    Qiu J, Dando O, Baxter PS, Hasel P, Heron S, et al. 2018.. Mixed-species RNA-seq for elucidation of non-cell-autonomous control of gene transcription. . Nat. Protoc. 13:(10):217699
    [Crossref] [Google Scholar]
  131. 131.
    Cakir B, Tanaka Y, Kiral FR, Xiang Y, Dagliyan O, et al. 2022.. Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids. . Nat. Commun. 13:(1):430
    [Crossref] [Google Scholar]
  132. 132.
    Xu R, Li X, Boreland AJ, Posyton A, Kwan K, et al. 2020.. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. . Nat. Commun. 11:(1):1577
    [Crossref] [Google Scholar]
  133. 133.
    Rathinam C, Poueymirou WT, Rojas J, Murphy AJ, Valenzuela DM, et al. 2011.. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. . Blood 118:(11):311928
    [Crossref] [Google Scholar]
  134. 134.
    Lloyd AF, Martinez-Muriana A, Hou P, Davis E, Mancuso R, et al. 2022.. Deep proteomic analysis of human microglia and model systems reveal fundamental biological differences of in vitro and ex vivo cells. . bioRxiv 2022.07.07.498804. https://doi.org/10.1101/2022.07.07.498804
  135. 135.
    Mancuso R, Van Den Daele J, Fattorelli N, Wolfs L, Balusu S, et al. 2019.. Stem-cell-derived human microglia transplanted in mouse brain to study human disease. . Nat. Neurosci. 22:(12):211116
    [Crossref] [Google Scholar]
  136. 136.
    Schafer ST, Mansour AA, Schlachetzki JCM, Pena M, Ghassemzadeh S, et al. 2023.. An in vivo neuroimmune organoid model to study human microglia phenotypes. . Cell 186:(10):211126.e20
    [Crossref] [Google Scholar]
  137. 137.
    McQuade A, Kang YJ, Hasselmann J, Jairaman A, Sotelo A, et al. 2020.. Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer's disease. . Nat. Commun. 11:(1):5370
    [Crossref] [Google Scholar]
  138. 138.
    Seo D-O, O'Donnell D, Jain N, Ulrich JD, Herz J, et al. 2023.. ApoE isoform- and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. . Science 379:(6628):eadd1236
    [Crossref] [Google Scholar]
  139. 139.
    Shen H, Guan Q, Zhang X, Yuan C, Tan Z, et al. 2020.. New mechanism of neuroinflammation in Alzheimer's disease: the activation of NLRP3 inflammasome mediated by gut microbiota. . Prog. Neuropsychopharmacol. Biol. Psychiatry 100::109884
    [Crossref] [Google Scholar]
  140. 140.
    Ruan S, Zhai L, Wu S, Zhang C, Guan Q. 2021.. SCFAs promote intestinal double-negative T cells to regulate the inflammatory response mediated by NLRP3 inflammasome. . Aging 13:(17):2147082
    [Crossref] [Google Scholar]
  141. 141.
    Lopez-Rodriguez AB, Hennessy E, Murray CL, Nazmi A, Delaney HJ, et al. 2021.. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer's disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction. . Alzheimers Dement. 17:(10):173555
    [Crossref] [Google Scholar]
  142. 142.
    Tejera D, Mercan D, Sanchez-Caro JM, Hanan M, Greenberg D, et al. 2019.. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. . EMBO J. 38:(17):e101064
    [Crossref] [Google Scholar]
  143. 143.
    Asby D, Boche D, Allan S, Love S, Miners JS. 2021.. Systemic infection exacerbates cerebrovascular dysfunction in Alzheimer's disease. . Brain J. Neurol. 144:(6):186983
    [Crossref] [Google Scholar]
  144. 144.
    Paraiso HC, Kuo P-C, Curfman ET, Moon HJ, Sweazey RD, et al. 2018.. Dimethyl fumarate attenuates reactive microglia and long-term memory deficits following systemic immune challenge. . J. Neuroinflamm. 15:(1):100
    [Crossref] [Google Scholar]
  145. 145.
    Rui W, Xiao H, Fan Y, Ma Z, Xiao M, et al. 2021.. Systemic inflammasome activation and pyroptosis associate with the progression of amnestic mild cognitive impairment and Alzheimer's disease. . J. Neuroinflamm. 18:(1):280
    [Crossref] [Google Scholar]
  146. 146.
    Ye X, Chen J, Pan J, Wu Q, Wang Y, et al. 2023.. Interleukin-17 promotes the infiltration of CD8+ T cells into the brain in a mouse model for Alzheimer's disease. . Immunol. Investig. 52:(2):13553
    [Crossref] [Google Scholar]
  147. 147.
    Unger MS, Schernthaner P, Marschallinger J, Mrowetz H, Aigner L. 2018.. Microglia prevent peripheral immune cell invasion and promote an anti-inflammatory environment in the brain of APP-PS1 transgenic mice. . J. Neuroinflamm. 15:(1):274
    [Crossref] [Google Scholar]
  148. 148.
    Baek H, Ye M, Kang G-H, Lee C, Lee G, et al. 2016.. Neuroprotective effects of CD4+CD25+Foxp3+ regulatory T cells in a 3xTg-AD Alzheimer's disease model. . Oncotarget 7:(43):6934757
    [Crossref] [Google Scholar]
  149. 149.
    Dansokho C, Ait Ahmed D, Aid S, Toly-Ndour C, Chaigneau T, et al. 2016.. Regulatory T cells delay disease progression in Alzheimer-like pathology. . Brain J. Neurol. 139:(Part 4):123751
    [Crossref] [Google Scholar]
  150. 150.
    Stym-Popper G, Matta K, Chaigneau T, Rupra R, Demetriou A, et al. 2023.. Regulatory T cells decrease C3-positive reactive astrocytes in Alzheimer-like pathology. . J. Neuroinflamm. 20:(1):64
    [Crossref] [Google Scholar]
  151. 151.
    Da Mesquita S, Papadopoulos Z, Dykstra T, Brase L, Farias FG, et al. 2021.. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. . Nature 593:(7858):25560
    [Crossref] [Google Scholar]
  152. 152.
    Mi Y, Qi G, Vitali F, Shang Y, Raikes AC, et al. 2023.. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. . Nat. Metab. 5:(3):44565
    [Crossref] [Google Scholar]
  153. 153.
    Zyśk M, Beretta C, Naia L, Dakhel A, Påvénius L, et al. 2023.. Amyloid-β accumulation in human astrocytes induces mitochondrial disruption and changed energy metabolism. . J. Neuroinflamm. 20:(1):43
    [Crossref] [Google Scholar]
  154. 154.
    Qi G, Mi Y, Shi X, Gu H, Brinton RD, Yin F. 2021.. ApoE4 impairs neuron-astrocyte coupling of fatty acid metabolism. . Cell Rep. 34:(1):108572
    [Crossref] [Google Scholar]
  155. 155.
    Katsouri L, Birch AM, Renziehausen AWJ, Zach C, Aman Y, et al. 2020.. Ablation of reactive astrocytes exacerbates disease pathology in a model of Alzheimer's disease. . Glia 68:(5):101730
    [Crossref] [Google Scholar]
  156. 156.
    Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, et al. 2020.. Disease-associated astrocytes in Alzheimer's disease and aging. . Nat. Neurosci. 23:(6):7016
    [Crossref] [Google Scholar]
  157. 157.
    Casula EP, Pellicciari MC, Bonnì S, Borghi I, Maiella M, et al. 2022.. Decreased frontal gamma activity in Alzheimer disease patients. . Ann. Neurol. 92:(3):46475
    [Crossref] [Google Scholar]
  158. 158.
    Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, et al. 2016.. Gamma frequency entrainment attenuates amyloid load and modifies microglia. . Nature 540:(7632):23035
    [Crossref] [Google Scholar]
  159. 159.
    Martorell AJ, Paulson AL, Suk H-J, Abdurrob F, Drummond GT, et al. 2019.. Multi-sensory gamma stimulation ameliorates Alzheimer's-associated pathology and improves cognition. . Cell 177:(2):25671.e22
    [Crossref] [Google Scholar]
  160. 160.
    Yu Y, Jiang X, Fang X, Wang Y, Liu P, et al. 2023.. Transauricular vagal nerve stimulation at 40 Hz inhibits hippocampal P2X7R/NLRP3/caspase-1 signaling and improves spatial learning and memory in 6-month-old APP/PS1 mice. . Neuromodulation 26:(3):589600
    [Crossref] [Google Scholar]
  161. 161.
    Minhas PS, Latif-Hernandez A, McReynolds MR, Durairaj AS, Wang Q, et al. 2021.. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. . Nature 590:(7844):12228
    [Crossref] [Google Scholar]
  162. 162.
    Ng PY, McNeely TL, Baker DJ. 2023.. Untangling senescent and damage-associated microglia in the aging and diseased brain. . FEBS J. 290:(5):132639
    [Crossref] [Google Scholar]
  163. 163.
    Choi I, Wang M, Yoo S, Xu P, Seegobin SP, et al. 2023.. Autophagy enables microglia to engage amyloid plaques and prevents microglial senescence. . Nat. Cell Biol. 25:(7):96374
    [Crossref] [Google Scholar]
  164. 164.
    Hu Y, Fryatt GL, Ghorbani M, Obst J, Menassa DA, et al. 2021.. Replicative senescence dictates the emergence of disease-associated microglia and contributes to Aβ pathology. . Cell Rep. 35:(10):109228
    [Crossref] [Google Scholar]
  165. 165.
    Mancuso R, Fryatt G, Cleal M, Obst J, Pipi E, et al. 2019.. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. . Brain 142:(10):324364
    [Crossref] [Google Scholar]
  166. 166.
    Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M. 2016.. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. . Neuron 91:(2):32840
    [Crossref] [Google Scholar]
  167. 167.
    Fitz NF, Nam KN, Wolfe CM, Letronne F, Playso BE, et al. 2021.. Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. . Nat. Commun. 12:(1):3416
    [Crossref] [Google Scholar]
  168. 168.
    Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, et al. 2017.. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. . Nature 549:(7673):52327
    [Crossref] [Google Scholar]
  169. 169.
    Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, et al. 2017.. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. . PNAS 114:(43):1152429
    [Crossref] [Google Scholar]
  170. 170.
    Gratuze M, Schlachetzki JCM, D'Oliveira Albanus R, Jain N, Novotny B, et al. 2023.. TREM2-independent microgliosis promotes tau-mediated neurodegeneration in the presence of ApoE4. . Neuron 111:(2):20219.e7
    [Crossref] [Google Scholar]
  171. 171.
    Shi Y, Manis M, Long J, Wang K, Sullivan PM, et al. 2019.. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. . J. Exp. Med. 216:(11):254661
    [Crossref] [Google Scholar]
  172. 172.
    Andrews SJ, Renton AE, Fulton-Howard B, Podlesny-Drabiniok A, Marcora E, Goate AM. 2023.. The complex genetic architecture of Alzheimer's disease: novel insights and future directions. . EBioMedicine 90::104511
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-101921-035222
Loading
/content/journals/10.1146/annurev-immunol-101921-035222
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error