1932

Abstract

Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101921-045401
2023-04-26
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101921-045401.html?itemId=/content/journals/10.1146/annurev-immunol-101921-045401&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cohn WE, Volkin E. 1951. Nucleoside-5′-phosphates from ribonucleic acid. Nature 167:483–84
    [Google Scholar]
  2. 2.
    Jia G, Fu Y, Zhao X, Dai Q, Zheng G et al. 2011. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7:885–87. Erratum. 2012. Nat. Chem. Biol. 8:1008
    [Google Scholar]
  3. 3.
    Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–46
    [Google Scholar]
  4. 4.
    Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–6
    [Google Scholar]
  5. 5.
    Wiener D, Schwartz S. 2021. The epitranscriptome beyond m6A. Nat. Rev. Genet. 22:119–31
    [Google Scholar]
  6. 6.
    Roundtree IA, Evans ME, Pan T, He C. 2017. Dynamic RNA modifications in gene expression regulation. Cell 169:1187–200
    [Google Scholar]
  7. 7.
    Huang H, Weng H, Deng X, Chen J 2020. RNA modifications in cancer: functions, mechanisms, and therapeutic implications. Annu. Rev. Cancer Biol. 4:221–40
    [Google Scholar]
  8. 7a.
    Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM 1997. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3:1233–47
    [Google Scholar]
  9. 7b.
    Knuckles P, Carl SH, Musheev M, Niehrs C, Wenger Aet al 2017. RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat. Struct. Mol. Biol 24:561–69
    [Google Scholar]
  10. 8.
    Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. 2014. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16:191–98
    [Google Scholar]
  11. 9.
    Liu J, Yue Y, Han D, Wang X, Fu Y et al. 2014. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10:93–95
    [Google Scholar]
  12. 10.
    Sledz P, Jinek M 2016. Structural insights into the molecular mechanism of the m6A writer complex. eLife 5:e18434
    [Google Scholar]
  13. 11.
    Wang P, Doxtader KA, Nam Y 2016. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol. Cell 63:306–17
    [Google Scholar]
  14. 12.
    Wang X, Feng J, Xue Y, Guan Z, Zhang D et al. 2016. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature 534:575–78
    [Google Scholar]
  15. 13.
    Zaccara S, Ries RJ, Jaffrey SR. 2019. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20:608–24
    [Google Scholar]
  16. 14.
    Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N et al. 2015. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347:1002–6
    [Google Scholar]
  17. 15.
    Zhong S, Li H, Bodi Z, Button J, Vespa L et al. 2008. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20:1278–88
    [Google Scholar]
  18. 16.
    Ping XL, Sun BF, Wang L, Xiao W, Yang X et al. 2014. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–89
    [Google Scholar]
  19. 17.
    Yue Y, Liu J, Cui X, Cao J, Luo G et al. 2018. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 4:10
    [Google Scholar]
  20. 18.
    Wen J, Lv R, Ma H, Shen H, He C et al. 2018. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69:1028–38.e6
    [Google Scholar]
  21. 19.
    Patil DP, Chen CK, Pickering BF, Chow A, Jackson C et al. 2016. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:369–73
    [Google Scholar]
  22. 20.
    Růžička K, Zhang M, Campilho A, Bodi Z, Kashif M et al. 2017. Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol 215:157–72
    [Google Scholar]
  23. 21.
    Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y et al. 2017. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–35.e14
    [Google Scholar]
  24. 22.
    van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N et al. 2019. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic. Acids. Res. 47:7719–33
    [Google Scholar]
  25. 23.
    Ma H, Wang X, Cai J, Dai Q, Natchiar SK et al. 2019. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15:88–94. Erratum. 2019. Nat. Chem. Biol. 15:549
    [Google Scholar]
  26. 24.
    Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM et al. 2013. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49:18–29
    [Google Scholar]
  27. 25.
    Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV et al. 2017. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541:371–75
    [Google Scholar]
  28. 26.
    Wei J, Liu F, Lu Z, Fei Q, Ai Y et al. 2018. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71:973–85.e5
    [Google Scholar]
  29. 27.
    Xu C, Liu K, Ahmed H, Loppnau P, Schapira M, Min J 2015. Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. J. Biol. Chem. 290:24902–13
    [Google Scholar]
  30. 28.
    Wang X, Lu Z, Gomez A, Hon GC, Yue Y et al. 2014. N6-Methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–20
    [Google Scholar]
  31. 29.
    Wang X, Zhao BS, Roundtree IA, Lu Z, Han D et al. 2015. N6-Methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–99
    [Google Scholar]
  32. 29a.
    Li A, Chen YS, Ping XL, Yang X, Xiao Wet al 2017. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res 27:444–47
    [Google Scholar]
  33. 29b.
    Shi H, Wang X, Lu Z, Zhao BS, Ma Het al 2017. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 27:315–28
    [Google Scholar]
  34. 30.
    Shima H, Matsumoto M, Ishigami Y, Ebina M, Muto A et al. 2017. S-Adenosylmethionine synthesis is regulated by selective N6-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1. Cell Rep 21:3354–63
    [Google Scholar]
  35. 31.
    Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ et al. 2016. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61:507–19
    [Google Scholar]
  36. 32.
    Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T et al. 2017. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife 6:e31311
    [Google Scholar]
  37. 33.
    Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS. 2017. Regulation of m6A transcripts by the 3′→5′ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol. Cell 68:374–87.e12
    [Google Scholar]
  38. 33a.
    Hsu PJ, Zhu Y, Ma H, Guo Y, Shi Xet al 2017. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27:1115–27
    [Google Scholar]
  39. 34.
    Huang H, Weng H, Sun W, Qin X, Shi H et al. 2018. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20:285–95
    [Google Scholar]
  40. 35.
    Wu B, Su S, Patil DP, Liu H, Gan J et al. 2018. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat. Commun. 9:420
    [Google Scholar]
  41. 36.
    Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. 2017. N6-Methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 45:6051–63
    [Google Scholar]
  42. 37.
    Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. 2015. N6-Methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–64
    [Google Scholar]
  43. 38.
    Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ et al. 2017. N6-Methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24:870–78
    [Google Scholar]
  44. 39.
    Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA et al. 2015. 5′ UTR m6A promotes cap-independent translation. Cell 163:999–1010
    [Google Scholar]
  45. 40.
    Roundtree IA, He C. 2016. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Trends Genet 32:320–21
    [Google Scholar]
  46. 41.
    Du H, Zhao Y, He J, Zhang Y, Xi H et al. 2016. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 7:12626
    [Google Scholar]
  47. 42.
    Lin S, Choe J, Du P, Triboulet R, Gregory RI. 2016. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell 62:335–45
    [Google Scholar]
  48. 43.
    Choe J, Lin S, Zhang W, Liu Q, Wang L et al. 2018. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561:556–60
    [Google Scholar]
  49. 44.
    Haussmann IU, Bodi Z, Sanchez-Moran E, Mongan NP, Archer N et al. 2016. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 540:301–4
    [Google Scholar]
  50. 45.
    Fu Y, Zhuang X. 2020. m6A-Binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16:955–63
    [Google Scholar]
  51. 46.
    Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S et al. 2019. m6A enhances the phase separation potential of mRNA. Nature 571:424–28
    [Google Scholar]
  52. 47.
    Liu J, Dou X, Chen C, Chen C, Liu C et al. 2020. N6-Methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367:580–86
    [Google Scholar]
  53. 48.
    Xu W, Li J, He C, Wen J, Ma H et al. 2021. METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591:317–21
    [Google Scholar]
  54. 49.
    Liu J, Gao M, He J, Wu K, Lin S et al. 2021. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature 591:322–26
    [Google Scholar]
  55. 50.
    Lee JH, Wang R, Xiong F, Krakowiak J, Liao Z et al. 2021. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell 81:3368–85.e9
    [Google Scholar]
  56. 51.
    Akhtar J, Renaud Y, Albrecht S, Ghavi-Helm Y, Roignant JY et al. 2021. m6A RNA methylation regulates promoter-proximal pausing of RNA polymerase II. Mol. Cell 81:3356–67.e6
    [Google Scholar]
  57. 52.
    Schaefer M, Pollex T, Hanna K, Lyko F. 2009. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37:e12
    [Google Scholar]
  58. 53.
    Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. 2014. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–46
    [Google Scholar]
  59. 54.
    Chen K, Lu Z, Wang X, Fu Y, Luo GZ et al. 2015. High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing. Angew. Chem. Int. Ed. Engl. 54:1587–90
    [Google Scholar]
  60. 55.
    Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. 2015. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12:767–72
    [Google Scholar]
  61. 56.
    Li X, Xiong X, Zhang M, Wang K, Chen Y et al. 2017. Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68:993–1005.e9
    [Google Scholar]
  62. 57.
    Safra M, Sas-Chen A, Nir R, Winkler R, Nachshon A et al. 2017. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551:251–55
    [Google Scholar]
  63. 58.
    Zhang LS, Liu C, Ma H, Dai Q, Sun HL et al. 2019. Transcriptome-wide mapping of internal N7-methylguanosine methylome in mammalian mRNA. Mol. Cell 74:1304–16.e8
    [Google Scholar]
  64. 59.
    Malbec L, Zhang T, Chen YS, Zhang Y, Sun BF et al. 2019. Dynamic methylome of internal mRNA N7-methylguanosine and its regulatory role in translation. Cell Res 29:927–41
    [Google Scholar]
  65. 60.
    Sas-Chen A, Thomas JM, Matzov D, Taoka M, Nance KD et al. 2020. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 583:638–43
    [Google Scholar]
  66. 61.
    Grozhik AV, Olarerin-George AO, Sindelar M, Li X, Gross SS, Jaffrey SR. 2019. Antibody cross-reactivity accounts for widespread appearance of m1A in 5′UTRs. Nat. Commun. 10:5126
    [Google Scholar]
  67. 61a.
    Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZXet al 2016. m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nat. Methods 13:692–98
    [Google Scholar]
  68. 62.
    Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R et al. 2019. Deciphering the “m6A code” via antibody-independent quantitative profiling. Cell 178:731–47.e16
    [Google Scholar]
  69. 63.
    Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA et al. 2019. Single-base mapping of m6A by an antibody-independent method. Sci. Adv. 5:eaax0250
    [Google Scholar]
  70. 64.
    Zhang Z, Chen T, Chen HX, Xie YY, Chen LQ et al. 2021. Systematic calibration of epitranscriptomic maps using a synthetic modification-free RNA library. Nat. Methods 18:1213–22
    [Google Scholar]
  71. 65.
    Song CX, Szulwach KE, Fu Y, Dai Q, Yi C et al. 2011. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29:68–72
    [Google Scholar]
  72. 66.
    Xia B, Han D, Lu X, Sun Z, Zhou A et al. 2015. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat. Methods 12:1047–50
    [Google Scholar]
  73. 67.
    Li X, Zhu P, Ma S, Song J, Bai J et al. 2015. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11:592–97
    [Google Scholar]
  74. 68.
    Wang Y, Xiao Y, Dong S, Yu Q, Jia G 2020. Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine. Nat. Chem. Biol. 16:896–903
    [Google Scholar]
  75. 69.
    Shu X, Cao J, Cheng M, Xiang S, Gao M et al. 2020. A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nat. Chem. Biol. 16:887–95
    [Google Scholar]
  76. 70.
    Hu L, Liu S, Peng Y, Ge R, Su R et al. 2022. m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat. Biotechnol. 40:81210–19
    [Google Scholar]
  77. 71.
    Bakin A, Ofengand J. 1993. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32:9754–62
    [Google Scholar]
  78. 72.
    Martinez NM, Su A, Burns MC, Nussbacher JK, Schaening C et al. 2022. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol. Cell 82:645–59.e9
    [Google Scholar]
  79. 73.
    Tegowski M, Flamand MN, Meyer KD. 2022. scDART-seq reveals distinct m6A signatures and mRNA methylation heterogeneity in single cells. Mol. Cell 82:868–78.e10
    [Google Scholar]
  80. 73a.
    Meyer KD 2019. DART-seq: an antibody-free method for global m6A detection. Nat. Methods 16:1275–80
    [Google Scholar]
  81. 74.
    Dong L, Chen C, Zhang Y, Guo P, Wang Z et al. 2021. The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8+ T cell dysfunction and tumor growth. Cancer Cell 39:945–57.e10
    [Google Scholar]
  82. 75.
    Han D, Liu J, Chen C, Dong L, Liu Y et al. 2019. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566:270–74
    [Google Scholar]
  83. 76.
    Li HB, Tong J, Zhu S, Batista PJ, Duffy EE et al. 2017. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548:338–42
    [Google Scholar]
  84. 77.
    Rieger MA, Schroeder T. 2012. Hematopoiesis. Cold Spring Harb. Perspect. Biol. 4:a008250
    [Google Scholar]
  85. 78.
    Pucella JN, Upadhaya S, Reizis B. 2020. The source and dynamics of adult hematopoiesis: insights from lineage tracing. Annu. Rev. Cell Dev. Biol. 36:529–50
    [Google Scholar]
  86. 79.
    Avgustinova A, Benitah SA. 2016. Epigenetic control of adult stem cell function. Nat. Rev. Mol. Cell Biol. 17:643–58
    [Google Scholar]
  87. 80.
    Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D 2010. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464:108–11
    [Google Scholar]
  88. 81.
    Patel SH, Christodoulou C, Weinreb C, Yu Q, da Rocha EL et al. 2022. Lifelong multilineage contribution by embryonic-born blood progenitors. Nature 606:747–53
    [Google Scholar]
  89. 82.
    Zhang C, Chen Y, Sun B, Wang L, Yang Y et al. 2017. m6A modulates haematopoietic stem and progenitor cell specification. Nature 549:273–76
    [Google Scholar]
  90. 83.
    Lv J, Zhang Y, Gao S, Zhang C, Chen Y et al. 2018. Endothelial-specific m6A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling. Cell Res 28:249–52
    [Google Scholar]
  91. 84.
    Lee H, Bao S, Qian Y, Geula S, Leslie J et al. 2019. Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation. Nat. Cell Biol. 21:700–9
    [Google Scholar]
  92. 85.
    Cheng Y, Luo H, Izzo F, Pickering BF, Nguyen D et al. 2019. m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep 28:1703–16.e6
    [Google Scholar]
  93. 86.
    Weng H, Huang H, Wu H, Qin X, Zhao BS et al. 2018. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell 22:191–205.e9
    [Google Scholar]
  94. 87.
    Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D et al. 2017. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23:1369–76
    [Google Scholar]
  95. 88.
    Gao Y, Vasic R, Song Y, Teng R, Liu C et al. 2020. m6A modification prevents formation of endogenous double-stranded RNAs and deleterious innate immune responses during hematopoietic development. Immunity 52:1007–21.e8
    [Google Scholar]
  96. 89.
    Wang A, Tao W, Tong J, Gao J, Wang J et al. 2022. m6A modifications regulate intestinal immunity and rotavirus infection. eLife 11:e73628
    [Google Scholar]
  97. 90.
    Nachmani D, Bothmer AH, Grisendi S, Mele A, Bothmer D et al. 2019. Germline NPM1 mutations lead to altered rRNA 2′-O-methylation and cause dyskeratosis congenita. Nat. Genet. 51:1518–29
    [Google Scholar]
  98. 91.
    Bellodi C, McMahon M, Contreras A, Juliano D, Kopmar N et al. 2013. H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation. Cell Rep 3:1493–502
    [Google Scholar]
  99. 92.
    Guzzi N, Muthukumar S, Cieśla M, Todisco G, Ngoc PCT et al. 2022. Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nat. Cell Biol. 24:299–306
    [Google Scholar]
  100. 93.
    Guzzi N, Cieśla M, Ngoc PCT, Lang S, Arora S et al. 2018. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173:1204–16.e26
    [Google Scholar]
  101. 94.
    Tuorto F, Herbst F, Alerasool N, Bender S, Popp O et al. 2015. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J 34:2350–62
    [Google Scholar]
  102. 95.
    Boettcher S, Manz MG. 2017. Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol 38:345–57
    [Google Scholar]
  103. 96.
    Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. 2010. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465:793–97
    [Google Scholar]
  104. 97.
    Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L et al. 2011. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J. Immunol. 186:5367–75
    [Google Scholar]
  105. 98.
    Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D et al. 2016. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18:607–18
    [Google Scholar]
  106. 99.
    Mapperley C, van de Lagemaat LN, Lawson H, Tavosanis A, Paris J et al. 2021. The mRNA m6A reader YTHDF2 suppresses proinflammatory pathways and sustains hematopoietic stem cell function. J. Exp. Med. 218:e20200829
    [Google Scholar]
  107. 100.
    Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A et al. 2019. Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell 25:137–48.e6
    [Google Scholar]
  108. 101.
    Li Z, Qian P, Shao W, Shi H, He XC et al. 2018. Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res 28:904–17
    [Google Scholar]
  109. 102.
    Medzhitov R, Horng T. 2009. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9:692–703
    [Google Scholar]
  110. 103.
    Okabe Y, Medzhitov R. 2016. Tissue biology perspective on macrophages. Nat. Immunol. 17:9–17
    [Google Scholar]
  111. 104.
    Okabe Y, Medzhitov R. 2014. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157:832–44
    [Google Scholar]
  112. 105.
    Luecke S, Sheu KM, Hoffmann A. 2021. Stimulus-specific responses in innate immunity: multilayered regulatory circuits. Immunity 54:1915–32
    [Google Scholar]
  113. 106.
    Tong J, Wang X, Liu Y, Ren X, Wang A et al. 2021. Pooled CRISPR screening identifies m6A as a positive regulator of macrophage activation. Sci. Adv. 7:eabd4742
    [Google Scholar]
  114. 107.
    Qin Y, Li B, Arumugam S, Lu Q, Mankash SM et al. 2021. m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Rep 37:109968
    [Google Scholar]
  115. 108.
    Yin H, Zhang X, Yang P, Zhang X, Peng Y et al. 2021. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat. Commun. 12:1394
    [Google Scholar]
  116. 109.
    Du J, Liao W, Liu W, Deb DK, He L et al. 2020. N6-Adenosine methylation of Socs1 mRNA is required to sustain the negative feedback control of macrophage activation. Dev. Cell 55:737–53.e7
    [Google Scholar]
  117. 110.
    Wang H, Hu X, Huang M, Liu J, Gu Y et al. 2019. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat. Commun. 10:1898
    [Google Scholar]
  118. 111.
    Liu J, Zhang X, Chen K, Cheng Y, Liu S et al. 2019. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 50:600–15.e15
    [Google Scholar]
  119. 112.
    Song H, Song J, Cheng M, Zheng M et al. 2021. METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat. Commun. 12:5522
    [Google Scholar]
  120. 113.
    Ma S, Yan J, Barr T, Zhang J, Chen Z et al. 2021. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J. Exp. Med. 218:e20210279
    [Google Scholar]
  121. 114.
    Niogret C, Miah SMS, Rota G, Fonta NP, Wang H et al. 2019. Shp-2 is critical for ERK and metabolic engagement downstream of IL-15 receptor in NK cells. Nat. Commun. 10:1444
    [Google Scholar]
  122. 115.
    Kaech SM, Cui W. 2012. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12:749–61
    [Google Scholar]
  123. 116.
    Galloway A, Kaskar A, Ditsova D, Atrih A, Yoshikawa H et al. 2021. Upregulation of RNA cap methyltransferase RNMT drives ribosome biogenesis during T cell activation. Nucleic Acids Res 49:6722–38
    [Google Scholar]
  124. 117.
    Rak R, Polonsky M, Eizenberg-Magar I, Mo Y, Sakaguchi Y et al. 2021. Dynamic changes in tRNA modifications and abundance during T cell activation. PNAS 118:e2106556118
    [Google Scholar]
  125. 118.
    Yao Y, Yang Y, Guo W, Xu L, You M et al. 2021. METTL3-dependent m6A modification programs T follicular helper cell differentiation. Nat. Commun. 12:1333
    [Google Scholar]
  126. 119.
    Zhou J, Zhang X, Hu J, Qu R, Yu Z et al. 2021. m6A demethylase ALKBH5 controls CD4+ T cell pathogenicity and promotes autoimmunity. Sci. Adv. 7:eabg0470
    [Google Scholar]
  127. 120.
    Tong J, Cao G, Zhang T, Sefik E, Amezcua Vesely MC et al. 2018. m6A mRNA methylation sustains Treg suppressive functions. Cell Res 28:253–56
    [Google Scholar]
  128. 121.
    Lu TX, Zheng Z, Zhang L, Sun HL, Bissonnette M et al. 2020. A new model of spontaneous colitis in mice induced by deletion of an RNA m6A methyltransferase component METTL14 in T cells. Cell Mol. Gastroenterol. Hepatol. 10:747–61
    [Google Scholar]
  129. 122.
    Gokhale NS, Horner SM. 2017. RNA modifications go viral. PLOS Pathog 13:e1006188
    [Google Scholar]
  130. 123.
    Lichinchi G, Zhao BS, Wu Y, Lu Z et al. 2016. Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20:666–73
    [Google Scholar]
  131. 124.
    Tsai K, Bogerd HP, Kennedy EM, Emery A, Swanstrom R, Cullen BR. 2021. Epitranscriptomic addition of m6A regulates HIV-1 RNA stability and alternative splicing. Genes Dev 35:992–1004
    [Google Scholar]
  132. 125.
    Johnson B, VanBlargan LA, Xu W, White JP, Shan C et al. 2018. Human IFIT3 modulates IFIT1 RNA binding specificity and protein stability. Immunity 48:487–99.e5
    [Google Scholar]
  133. 126.
    Hyde JL, Diamond MS. 2015. Innate immune restriction and antagonism of viral RNA lacking 2′-O methylation. Virology 479–480:66–74
    [Google Scholar]
  134. 127.
    McFadden MJ, Gokhale NS, Horner SM. 2017. Protect this house: cytosolic sensing of viruses. Curr. Opin. Virol. 22:36–43
    [Google Scholar]
  135. 128.
    Kariko K, Buckstein M, Ni H, Weissman D. 2005. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–75
    [Google Scholar]
  136. 129.
    Ringeard M, Marchand V, Decroly E, Motorin Y, Bennasser Y. 2019. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 565:500–4
    [Google Scholar]
  137. 130.
    Decroly E, Ferron F, Lescar J, Canard B. 2011. Conventional and unconventional mechanisms for capping viral mRNA. Nat. Rev. Microbiol. 10:51–65
    [Google Scholar]
  138. 131.
    Zust R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW et al. 2011. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12:137–43
    [Google Scholar]
  139. 132.
    Krug RM, Morgan MA, Shatkin AJ. 1976. Influenza viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methylguanosine in cap structures. J. Virol. 20:45–53
    [Google Scholar]
  140. 133.
    Lavi S, Shatkin AJ. 1975. Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. PNAS 72:2012–16
    [Google Scholar]
  141. 134.
    Liu J, Xu YP, Li K, Ye Q, Zhou HY et al. 2021. The m6A methylome of SARS-CoV-2 in host cells. Cell Res 31:404–14
    [Google Scholar]
  142. 135.
    Lichinchi G, Gao S, Saletore Y, Gonzalez GM, Bansal V et al. 2016. Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nat. Microbiol. 1:16011
    [Google Scholar]
  143. 136.
    Williams GD, Gokhale NS, Horner SM. 2019. Regulation of viral infection by the RNA modification N6-methyladenosine. Annu. Rev. Virol. 6:235–53
    [Google Scholar]
  144. 137.
    Winkler R, Gillis E, Lasman L, Safra M, Geula S et al. 2019. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat. Immunol. 20:173–82
    [Google Scholar]
  145. 138.
    Liu Y, You Y, Lu Z, Yang J, Li P et al. 2019. N6-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science 365:1171–76
    [Google Scholar]
  146. 139.
    Qiu W, Zhang Q, Zhang R, Lu Y, Wang X et al. 2021. N6-methyladenosine RNA modification suppresses antiviral innate sensing pathways via reshaping double-stranded RNA. Nat. Commun. 12:1582
    [Google Scholar]
  147. 140.
    Kim GW, Imam H, Khan M, Siddiqui A. 2020. N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling. J. Biol. Chem. 295:13123–33
    [Google Scholar]
  148. 141.
    Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP et al. 2019. N6-Methyladenosine modification controls circular RNA immunity. Mol. Cell 76:96–109.e9
    [Google Scholar]
  149. 142.
    Lu M, Zhang Z, Xue M, Zhao BS, Harder O et al. 2020. N6-Methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat. Microbiol. 5:584–98
    [Google Scholar]
  150. 143.
    Chen S, Kumar S, Espada CE, Tirumuru N, Cahill MP et al. 2021. N6-Methyladenosine modification of HIV-1 RNA suppresses type-I interferon induction in differentiated monocytic cells and primary macrophages. PLOS Pathog 17:e1009421
    [Google Scholar]
  151. 144.
    Xue M, Zhang Y, Wang H, Kairis EL, Lu M et al. 2021. Viral RNA N6-methyladenosine modification modulates both innate and adaptive immune responses of human respiratory syncytial virus. PLOS Pathog 17:e1010142
    [Google Scholar]
  152. 145.
    Rubio RM, Depledge DP, Bianco C, Thompson L, Mohr I. 2018. RNA m6A modification enzymes shape innate responses to DNA by regulating interferon beta. Genes Dev 32:1472–84
    [Google Scholar]
  153. 146.
    Kim GW, Imam H, Khan M, Mir SA, Kim SJ et al. 2021. HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC. Hepatology 73:533–47
    [Google Scholar]
  154. 147.
    Xu J, Cai Y, Ma Z, Jiang B, Liu W et al. 2021. The RNA helicase DDX5 promotes viral infection via regulating N6-methyladenosine levels on the DHX58 and NFκB transcripts to dampen antiviral innate immunity. PLOS Pathog 17:e1009530
    [Google Scholar]
  155. 148.
    McFadden MJ, McIntyre ABR, Mourelatos H, Abell NS, Gokhale NS et al. 2021. Post-transcriptional regulation of antiviral gene expression by N6-methyladenosine. Cell Rep 34:108798
    [Google Scholar]
  156. 149.
    Terajima H, Lu M, Zhang L, Cui Q, Shi Y et al. 2021. N6-Methyladenosine promotes induction of ADAR1-mediated A-to-I RNA editing to suppress aberrant antiviral innate immune responses. PLOS Biol 19:e3001292
    [Google Scholar]
  157. 150.
    Chung H, Calis JJA, Wu X, Sun T, Yu Y et al. 2018. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172:811–24.e14
    [Google Scholar]
  158. 151.
    Zhang Y, Wang X, Zhang X, Wang J, Ma Y et al. 2019. RNA-binding protein YTHDF3 suppresses interferon-dependent antiviral responses by promoting FOXO3 translation. PNAS 116:976–81
    [Google Scholar]
  159. 152.
    Huang H, Weng H, Chen J 2020. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 37:270–88
    [Google Scholar]
  160. 153.
    Barbieri I, Kouzarides T. 2020. Role of RNA modifications in cancer. Nat. Rev. Cancer 20:303–22
    [Google Scholar]
  161. 154.
    Vesely MD, Zhang T, Chen L 2022. Resistance mechanisms to anti-PD cancer immunotherapy. Annu. Rev. Immunol. 40:45–74
    [Google Scholar]
  162. 155.
    Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF et al. 2018. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24:541–50
    [Google Scholar]
  163. 156.
    Su R, Dong L, Li Y, Gao M, Han L et al. 2020. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell 38:79–96.e11
    [Google Scholar]
  164. 157.
    Yang S, Wei J, Cui YH, Park G, Shah P et al. 2019. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat. Commun. 10:2782
    [Google Scholar]
  165. 158.
    Qiu X, Yang S, Wang S, Wu J, Zheng B et al. 2021. m6A demethylase ALKBH5 regulates PD-L1 expression and tumor immunoenvironment in intrahepatic cholangiocarcinoma. Cancer Res 81:4778–93
    [Google Scholar]
  166. 159.
    Mikucki ME, Fisher DT, Matsuzaki J, Skitzki JJ, Gaulin NB et al. 2015. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat. Commun. 6:7458
    [Google Scholar]
  167. 160.
    Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S et al. 2015. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527:249–53
    [Google Scholar]
  168. 161.
    Wang L, Hui H, Agrawal K, Kang Y, Li N et al. 2020. m6a RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J 39:e104514
    [Google Scholar]
  169. 162.
    Cui Q, Yin K, Zhang X, Ye P, Chen X et al. 2021. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat. Cancer 2:932–49
    [Google Scholar]
  170. 163.
    Dong F, Qin X, Wang B, Li Q, Hu J et al. 2021. ALKBH5 facilitates hypoxia-induced paraspeckle assembly and IL8 secretion to generate an immunosuppressive tumor microenvironment. Cancer Res 81:5876–88
    [Google Scholar]
  171. 164.
    Li N, Kang Y, Wang L, Huff S, Tang R et al. 2020. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. PNAS 117:20159–70
    [Google Scholar]
  172. 165.
    Qiu Z, Zhao L, Shen JZ, Liang Z, Wu Q et al. 2022. Transcription elongation machinery is a druggable dependency and potentiates immunotherapy in glioblastoma stem cells. Cancer Discov 12:502–21
    [Google Scholar]
  173. 166.
    Liu Y, Liang G, Xu H, Dong W, Dong Z et al. 2021. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab 33:1221–33.e11
    [Google Scholar]
  174. 167.
    Xia Z, Tang M, Ma J, Zhang H, Gimple RC et al. 2021. Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res 49:7361–74
    [Google Scholar]
  175. 168.
    Wilson C, Chen PJ, Miao Z, Liu DR. 2020. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat. Biotechnol. 38:1431–40
    [Google Scholar]
  176. 169.
    Li J, Chen Z, Chen F, Xie G, Ling Y et al. 2020. Targeted mRNA demethylation using an engineered dCas13b-ALKBH5 fusion protein. Nucleic Acids Res 48:5684–94
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101921-045401
Loading
/content/journals/10.1146/annurev-immunol-101921-045401
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error