1932

Abstract

Sialic acid–binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid–containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-102419-035900
2020-04-26
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-102419-035900.html?itemId=/content/journals/10.1146/annurev-immunol-102419-035900&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Macauley MS, Crocker PR, Paulson JC 2014. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14:653–66
    [Google Scholar]
  2. 2. 
    Varki A, Schnaar RL, Crocker PR 2017. I-type lectins. Essentials of Glycobiology A Varki, RD Cummings, JD Esko, P Stanley, GW Hart et al.453–67 New York: Cold Spring Harb. Lab.
    [Google Scholar]
  3. 3. 
    Bochner BS. 2016. “Siglec”ting the allergic response for therapeutic targeting. Glycobiology 26:546–52
    [Google Scholar]
  4. 4. 
    Pillai S, Netravali IA, Cariappa A, Mattoo H 2012. Siglecs and immune regulation. Annu. Rev. Immunol. 30:357–92
    [Google Scholar]
  5. 5. 
    Lubbers J, Rodriguez E, van Kooyk Y 2018. Modulation of immune tolerance via Siglec-sialic acid interactions. Front. Immunol. 9:2807
    [Google Scholar]
  6. 6. 
    Daly J, Carlsten M, O'Dwyer M 2019. Sugar free: novel immunotherapeutic approaches targeting siglecs and sialic acids to enhance natural killer cell cytotoxicity against cancer. Front. Immunol. 10:1047
    [Google Scholar]
  7. 7. 
    Fraschilla I, Pillai S. 2017. Viewing Siglecs through the lens of tumor immunology. Immunol. Rev. 276:178–91
    [Google Scholar]
  8. 8. 
    Bull C, Heise T, Adema GJ, Boltje TJ 2016. Sialic acid mimetics to target the sialic acid-Siglec axis. Trends Biochem. Sci. 41:519–31
    [Google Scholar]
  9. 9. 
    Li RE, van Vliet SJ, van Kooyk Y 2018. Using the glycan toolbox for pathogenic interventions and glycan immunotherapy. Curr. Opin. Biotechnol. 51:24–31
    [Google Scholar]
  10. 10. 
    Liu YC, Yu MM, Chai YF, Shou ST 2017. Sialic acids in the immune response during sepsis. Front. Immunol. 8:1601
    [Google Scholar]
  11. 11. 
    Schwarz F, Landig CS, Siddiqui S, Secundino I, Olson J et al. 2017. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J 36:751–60
    [Google Scholar]
  12. 12. 
    Chang YC, Nizet V. 2014. The interplay between Siglecs and sialylated pathogens. Glycobiology 24:818–25
    [Google Scholar]
  13. 13. 
    Uchiyama S, Sun J, Fukahori K, Ando N, Wu M et al. 2019. Dual actions of group B Streptococcus capsular sialic acid provide resistance to platelet-mediated antimicrobial killing. PNAS 116:7465–70
    [Google Scholar]
  14. 14. 
    Landig CS, Hazel A, Kellman BP, Fong JJ, Schwarz F et al. 2019. Evolution of the exclusively human pathogen Neisseria gonorrhoeae: human-specific engagement of immunoregulatory Siglecs. Evol. Appl. 12:337–49
    [Google Scholar]
  15. 15. 
    May AP, Robinson RC, Vinson M, Crocker PR, Jones EY 1998. Crystal structure of the N-terminal domain of sialoadhesin in complex with 3′ sialyllactose at 1.85 Å resolution. Mol. Cell 1:719–28
    [Google Scholar]
  16. 16. 
    Zaccai NR, Maenaka K, Maenaka T, Crocker PR, Brossmer R et al. 2003. Structure-guided design of sialic acid-based Siglec inhibitors and crystallographic analysis in complex with sialoadhesin. Structure 11:557–67
    [Google Scholar]
  17. 17. 
    Zaccai NR, May AP, Robinson RC, Burtnick LD, Crocker PR et al. 2007. Crystallographic and in silico analysis of the sialoside-binding characteristics of the Siglec sialoadhesin. J. Mol. Biol. 365:1469–79
    [Google Scholar]
  18. 18. 
    Ereno-Orbea J, Sicard T, Cui H, Mazhab-Jafari MT, Benlekbir S et al. 2017. Molecular basis of human CD22 function and therapeutic targeting. Nat. Commun. 8:764
    [Google Scholar]
  19. 19. 
    Miles LA, Hermans SJ, Crespi GAN, Gooi JH, Doughty L et al. 2019. Small molecule binding to Alzheimer risk factor CD33 promotes Aβ phagocytosis. Science 19:110–18
    [Google Scholar]
  20. 20. 
    Zhuravleva MA, Trandem K, Sun PD 2008. Structural implications of Siglec-5-mediated sialoglycan recognition. J. Mol. Biol. 375:437–47
    [Google Scholar]
  21. 21. 
    Attrill H, Imamura A, Sharma RS, Kiso M, Crocker PR, van Aalten DM 2006. Siglec-7 undergoes a major conformational change when complexed with the α(2,8)-disialylganglioside GT1b. J. Biol. Chem. 281:32774–83
    [Google Scholar]
  22. 22. 
    Propster JM, Yang F, Rabbani S, Ernst B, Allain FH, Schubert M 2016. Structural basis for sulfation-dependent self-glycan recognition by the human immune-inhibitory receptor Siglec-8. PNAS 113:E4170–79
    [Google Scholar]
  23. 23. 
    Avril T, Attrill H, Zhang J, Raper A, Crocker PR 2006. Negative regulation of leucocyte functions by CD33-related siglecs. Biochem. Soc. Trans. 34:1024–27
    [Google Scholar]
  24. 24. 
    Muller J, Obermeier I, Wohner M, Brandl C, Mrotzek S et al. 2013. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. PNAS 110:12402–7
    [Google Scholar]
  25. 25. 
    Clark EA, Giltiay NV. 2018. CD22: a regulator of innate and adaptive B cell responses and autoimmunity. Front. Immunol. 9:2235
    [Google Scholar]
  26. 26. 
    Umemori H, Kadowaki Y, Hirosawa K, Yoshida Y, Hironaka K et al. 1999. Stimulation of myelin basic protein gene transcription by Fyn tyrosine kinase for myelination. J. Neurosci. 19:1393–97
    [Google Scholar]
  27. 27. 
    Cao H, Lakner U, de Bono B, Traherne JA, Trowsdale J, Barrow AD 2008. SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur. J. Immunol. 38:2303–15
    [Google Scholar]
  28. 28. 
    Blasius AL, Cella M, Maldonado J, Takai T, Colonna M 2006. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107:2474–76
    [Google Scholar]
  29. 29. 
    Shimizu T, Takahata M, Kameda Y, Endo T, Hamano H et al. 2015. Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) mediates periarticular bone loss, but not joint destruction, in murine antigen-induced arthritis. Bone 79:65–70
    [Google Scholar]
  30. 30. 
    Takamiya R, Ohtsubo K, Takamatsu S, Taniguchi N, Angata T 2013. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology 23:178–87
    [Google Scholar]
  31. 31. 
    Ali SR, Fong JJ, Carlin AF, Busch TD, Linden R et al. 2014. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J. Exp. Med 211:1231–42
    [Google Scholar]
  32. 32. 
    Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M 2006. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 20:1964–73
    [Google Scholar]
  33. 33. 
    Cao H, Crocker PR. 2011. Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation. ? Immunology 132:18–26
    [Google Scholar]
  34. 34. 
    Hayakawa T, Khedri Z, Schwarz F, Landig C, Liang SY et al. 2017. Coevolution of Siglec-11 and Siglec-16 via gene conversion in primates. BMC Evol. Biol. 17:228
    [Google Scholar]
  35. 35. 
    Blixt O, Collins BE, van den Nieuwenhof IM, Crocker PR, Paulson JC 2003. Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J. Biol. Chem. 278:31007–19
    [Google Scholar]
  36. 36. 
    Nitschke L. 2014. CD22 and Siglec-G regulate inhibition of B-cell signaling by sialic acid ligand binding and control B-cell tolerance. Glycobiology 24:807–17
    [Google Scholar]
  37. 37. 
    Ozgor L, Meyer SJ, Korn M, Terorde K, Nitschke L 2018. Sialic acid ligand binding of CD22 and Siglec-G determines distinct B cell functions but is dispensable for B cell tolerance induction. J. Immunol. 201:2107–16
    [Google Scholar]
  38. 38. 
    Dhar C, Sasmal A, Varki A 2019. From “serum sickness” to “xenosialitis”: past, present, and future significance of the non-human sialic acid Neu5Gc. Front. Immunol. 10:807
    [Google Scholar]
  39. 39. 
    Razi N, Varki A. 1998. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. PNAS 95:7469–74
    [Google Scholar]
  40. 40. 
    Macauley MS, Kawasaki N, Peng W, Wang SH, He Y et al. 2015. Unmasking of CD22 co-receptor on germinal center B-cells occurs by alternative mechanisms in mouse and man. J. Biol. Chem. 290:30066–77
    [Google Scholar]
  41. 41. 
    Naito Y, Takematsu H, Koyama S, Miyake S, Yamamoto H et al. 2007. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell. Biol. 27:3008–22
    [Google Scholar]
  42. 42. 
    Kimura N, Ohmori K, Miyazaki K, Izawa M, Matsuzaki Y et al. 2007. Human B-lymphocytes express α2–6-sialylated 6-sulfo-N-acetyllactosamine serving as a preferred ligand for CD22/Siglec-2. J. Biol. Chem. 282:32200–7
    [Google Scholar]
  43. 43. 
    Grewal PK, Boton M, Ramirez K, Collins BE, Saito A et al. 2006. ST6Gal-I restrains CD22-dependent antigen receptor endocytosis and Shp-1 recruitment in normal and pathogenic immune signaling. Mol. Cell. Biol. 26:4970–81
    [Google Scholar]
  44. 44. 
    Collins BE, Smith BA, Bengtson P, Paulson JC 2006. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat. Immunol. 7:199–206
    [Google Scholar]
  45. 45. 
    Kiwamoto T, Brummet ME, Wu F, Motari MG, Smith DF et al. 2014. Mice deficient in the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation. J. Allergy Clin. Immunol. 133:240–47.e1–3
    [Google Scholar]
  46. 46. 
    Tateno H, Crocker PR, Paulson JC 2005. Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6′-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology 15:1125–35
    [Google Scholar]
  47. 47. 
    Bochner BS, Alvarez RA, Mehta P, Bovin NV, Blixt O et al. 2005. Glycan array screening reveals a candidate ligand for Siglec-8. J. Biol. Chem. 280:4307–12
    [Google Scholar]
  48. 48. 
    Yu H, Gonzalez-Gil A, Wei Y, Fernandes SM, Porell RN et al. 2017. Siglec-8 and Siglec-9 binding specificities and endogenous airway ligand distributions and properties. Glycobiology 27:657–68
    [Google Scholar]
  49. 49. 
    Gonzalez-Gil A, Porell RN, Fernandes SM, Wei Y, Yu H et al. 2018. Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways. Glycobiology 28:786–801
    [Google Scholar]
  50. 50. 
    Prescher H, Frank M, Gutgemann S, Kuhfeldt E, Schweizer A et al. 2017. Design, synthesis, and biological evaluation of small, high-affinity Siglec-7 ligands: toward novel inhibitors of cancer immune evasion. J. Med. Chem. 60:941–56
    [Google Scholar]
  51. 51. 
    Bull C, Heise T, van Hilten N, Pijnenborg JF, Bloemendal VR et al. 2017. Steering siglec-sialic acid interactions on living cells using bioorthogonal chemistry. Angew. Chem. Int. Ed. Engl. 56:3309–13
    [Google Scholar]
  52. 52. 
    Briard JG, Jiang H, Moremen KW, Macauley MS, Wu P 2018. Cell-based glycan arrays for probing glycan-glycan binding protein interactions. Nat. Commun. 9:880
    [Google Scholar]
  53. 53. 
    Rillahan CD, Macauley MS, Schwartz E, He Y, McBride R et al. 2014. Disubstituted sialic acid ligands targeting siglecs CD33 and CD22 associated with myeloid leukaemias and B cell lymphomas. Chem. Sci. 5:2398–406
    [Google Scholar]
  54. 54. 
    Rillahan CD, Schwartz E, McBride R, Fokin VV, Paulson JC 2012. Click and pick: identification of sialoside analogues for siglec-based cell targeting. Angew. Chem. Int. Ed. Engl. 51:11014–8
    [Google Scholar]
  55. 55. 
    Nycholat CM, Rademacher C, Kawasaki N, Paulson JC 2012. In silico-aided design of a glycan ligand of sialoadhesin for in vivo targeting of macrophages. J. Am. Chem. Soc. 134:15696–9
    [Google Scholar]
  56. 56. 
    Press OW, Farr AG, Borroz KI, Anderson SK, Martin PJ 1989. Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies. Cancer Res 49:4906–12
    [Google Scholar]
  57. 57. 
    Biedermann B, Gil D, Bowen DT, Crocker PR 2007. Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors. Leuk. Res. 31:211–20
    [Google Scholar]
  58. 58. 
    Delputte PL, Van Gorp H, Favoreel HW, Hoebeke I, Delrue I et al. 2011. Porcine sialoadhesin (CD169/Siglec-1) is an endocytic receptor that allows targeted delivery of toxins and antigens to macrophages. PLOS ONE 6:e16827
    [Google Scholar]
  59. 59. 
    Ding Y, Guo Z, Liu Y, Li X, Zhang Q et al. 2016. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I-peptide complex formation. Nat. Immunol. 17:1167–75
    [Google Scholar]
  60. 60. 
    Kawasaki N, Rillahan CD, Cheng TY, Van Rhijn I, Macauley MS et al. 2014. Targeted delivery of mycobacterial antigens to human dendritic cells via Siglec-7 induces robust T cell activation. J. Immunol. 193:1560–66
    [Google Scholar]
  61. 61. 
    Nagala M, McKenzie E, Richards H, Sharma R, Thomson S et al. 2017. Expression of siglec-E alters the proteome of lipopolysaccharide (LPS)-activated macrophages but does not affect LPS-driven cytokine production or Toll-like receptor 4 endocytosis. Front. Immunol. 8:1926
    [Google Scholar]
  62. 62. 
    O'Reilly MK, Tian H, Paulson JC 2011. CD22 is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells. J. Immunol. 186:1554–63
    [Google Scholar]
  63. 63. 
    O'Sullivan JA, Carroll DJ, Cao Y, Salicru AN, Bochner BS 2018. Leveraging Siglec-8 endocytic mechanisms to kill human eosinophils and malignant mast cells. J. Allergy Clin. Immunol. 141:1774–85.e7
    [Google Scholar]
  64. 64. 
    Scott CJ, Marouf WM, Quinn DJ, Buick RJ, Orr SJ et al. 2008. Immunocolloidal targeting of the endocytotic siglec-7 receptor using peripheral attachment of siglec-7 antibodies to poly(lactide-co-glycolide) nanoparticles. Pharm. Res. 25:135–46
    [Google Scholar]
  65. 65. 
    Shan D, Press OW. 1995. Constitutive endocytosis and degradation of CD22 by human B cells. J. Immunol. 154:4466–75
    [Google Scholar]
  66. 66. 
    Tateno H, Li H, Schur MJ, Bovin N, Crocker PR et al. 2007. Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity. Mol. Cell. Biol. 27:5699–710
    [Google Scholar]
  67. 67. 
    Walter RB, Raden BW, Zeng R, Hausermann P, Bernstein ID, Cooper JA 2008. ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2. J. Leukoc. Biol. 83:200–11
    [Google Scholar]
  68. 68. 
    Winterstein C, Trotter J, Kramer-Albers EM 2008. Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling. J. Cell Sci. 121:834–42
    [Google Scholar]
  69. 69. 
    Vanderheijden N, Delputte PL, Favoreel HW, Vandekerckhove J, Van Damme J et al. 2003. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J. Virol. 77:8207–15
    [Google Scholar]
  70. 70. 
    Uchil PD, Pi R, Haugh KA, Ladinsky MS, Ventura JD et al. 2019. A protective role for the lectin CD169/Siglec-1 against a pathogenic murine retrovirus. Cell Host Microbe 25:87–100.e10
    [Google Scholar]
  71. 71. 
    Van Gorp H, Van Breedam W, Delputte PL, Nauwynck HJ 2009. The porcine reproductive and respiratory syndrome virus requires trafficking through CD163-positive early endosomes, but not late endosomes, for productive infection. Arch. Virol. 154:1939–43
    [Google Scholar]
  72. 72. 
    Perez-Zsolt D, Cantero-Perez J, Erkizia I, Benet S, Pino M et al. 2019. Dendritic cells from the cervical mucosa capture and transfer HIV-1 via Siglec-1. Front. Immunol. 10:825
    [Google Scholar]
  73. 73. 
    Chen WC, Kawasaki N, Nycholat CM, Han S, Pilotte J et al. 2012. Antigen delivery to macrophages using liposomal nanoparticles targeting sialoadhesin/CD169. PLOS ONE 7:e39039
    [Google Scholar]
  74. 74. 
    Edgar LJ, Kawasaki N, Nycholat CM, Paulson JC 2019. Targeted delivery of antigen to activated CD169+ macrophages induces bias for expansion of CD8+ T cells. Cell Chem. Biol. 26:131–36.e4
    [Google Scholar]
  75. 75. 
    Veninga H, Borg EG, Vreeman K, Taylor PR, Kalay H et al. 2015. Antigen targeting reveals splenic CD169+ macrophages as promoters of germinal center B-cell responses. Eur. J. Immunol. 45:747–57
    [Google Scholar]
  76. 76. 
    Duan S, Koziol-White CJ, Jester WF Jr, Nycholat CM, Macauley MS et al. 2019. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J. Clin. Investig. 129:1387–401
    [Google Scholar]
  77. 77. 
    Yokoi H, Myers A, Matsumoto K, Crocker PR, Saito H, Bochner BS 2006. Alteration and acquisition of Siglecs during in vitro maturation of CD34+ progenitors into human mast cells. Allergy 61:769–76
    [Google Scholar]
  78. 78. 
    Reineks EZ, Osei ES, Rosenberg A, Auletta J, Meyerson HJ 2009. CD22 expression on blastic plasmacytoid dendritic cell neoplasms and reactivity of anti-CD22 antibodies to peripheral blood dendritic cells. Cytometry B Clin. Cytom. 76:237–48
    [Google Scholar]
  79. 79. 
    Jellusova J, Nitschke L. 2011. Regulation of B cell functions by the sialic acid-binding receptors Siglec-G and CD22. Front. Immunol. 2:96
    [Google Scholar]
  80. 80. 
    Chen WC, Completo GC, Sigal DS, Crocker PR, Saven A, Paulson JC 2010. In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood 115:4778–86
    [Google Scholar]
  81. 81. 
    John B, Herrin BR, Raman C, Wang YN, Bobbitt KR et al. 2003. The B cell coreceptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction. J. Immunol. 170:3534–43
    [Google Scholar]
  82. 82. 
    Chan CH, Wang J, French RR, Glennie MJ 1998. Internalization of the lymphocytic surface protein CD22 is controlled by a novel membrane proximal cytoplasmic motif. J. Biol. Chem. 273:27809–15
    [Google Scholar]
  83. 83. 
    Doherty GJ, McMahon HT. 2009. Mechanisms of endocytosis. Annu. Rev. Biochem. 78:857–902
    [Google Scholar]
  84. 84. 
    Van Acker T, Tavernier J, Peelman F 2019. The Small GTPase Arf6: an overview of its mechanisms of action and of its role in host–pathogen interactions and innate immunity. Int. J. Mol. Sci. 20:E2209
    [Google Scholar]
  85. 85. 
    Peng W, Paulson JC. 2017. CD22 ligands on a natural N-glycan scaffold efficiently deliver toxins to B-lymphoma cells. J. Am. Chem. Soc. 139:12450–58
    [Google Scholar]
  86. 86. 
    Kawasaki N, Vela JL, Nycholat CM, Rademacher C, Khurana A et al. 2013. Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation. PNAS 110:7826–31
    [Google Scholar]
  87. 87. 
    Hoogeboom R, Tolar P. 2016. Molecular mechanisms of B cell antigen gathering and endocytosis. Curr. Top. Microbiol. Immunol. 393:45–63
    [Google Scholar]
  88. 88. 
    Lei JT, Martinez-Moczygemba M. 2008. Separate endocytic pathways regulate IL-5 receptor internalization and signaling. J. Leukoc. Biol. 84:499–509
    [Google Scholar]
  89. 89. 
    Stoddart A, Jackson AP, Brodsky FM 2005. Plasticity of B cell receptor internalization upon conditional depletion of clathrin. Mol. Biol. Cell 16:2339–48
    [Google Scholar]
  90. 90. 
    Cendrowski J, Maminska A, Miaczynska M 2016. Endocytic regulation of cytokine receptor signaling. Cytokine Growth Factor. Rev. 32:63–73
    [Google Scholar]
  91. 91. 
    Gasparrini F, Feest C, Bruckbauer A, Mattila PK, Muller J et al. 2016. Nanoscale organization and dynamics of the siglec CD22 cooperate with the cytoskeleton in restraining BCR signalling. EMBO J 35:258–80
    [Google Scholar]
  92. 92. 
    Head BP, Patel HH, Insel PA 2014. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim. Biophys. Acta Biomembr. 1838:532–45
    [Google Scholar]
  93. 93. 
    Horejsi V, Hrdinka M. 2014. Membrane microdomains in immunoreceptor signaling. FEBS Lett 588:2392–97
    [Google Scholar]
  94. 94. 
    Lu SM, Fairn GD. 2018. Mesoscale organization of domains in the plasma membrane—beyond the lipid raft. Crit. Rev. Biochem. Mol. Biol. 53:192–207
    [Google Scholar]
  95. 95. 
    Sedwick CE, Altman A. 2002. Ordered just so: lipid rafts and lymphocyte function. Sci. STKE 2002:re2
    [Google Scholar]
  96. 96. 
    Adachi T, Flaswinkel H, Yakura H, Reth M, Tsubata T 1998. The B cell surface protein CD72 recruits the tyrosine phosphatase SHP-1 upon tyrosine phosphorylation. J. Immunol. 160:4662–65
    [Google Scholar]
  97. 97. 
    Chang CH, Wang Y, Gupta P, Goldenberg DM 2015. Extensive crosslinking of CD22 by epratuzumab triggers BCR signaling and caspase-dependent apoptosis in human lymphoma cells. mAbs 7:199–211
    [Google Scholar]
  98. 98. 
    Duong BH, Tian H, Ota T, Completo G, Han S et al. 2010. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J. Exp. Med. 207:173–87
    [Google Scholar]
  99. 99. 
    Clark EA, Lane PJ. 1991. Regulation of human B-cell activation and adhesion. Annu. Rev. Immunol. 9:97–127
    [Google Scholar]
  100. 100. 
    Sgroi D, Varki A, Braesch-Andersen S, Stamenkovic I 1993. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J. Biol. Chem. 268:7011–18
    [Google Scholar]
  101. 101. 
    O'Keefe TL, Williams GT, Davies SL, Neuberger MS 1996. Hyperresponsive B cells in CD22-deficient mice. Science 274:798–801
    [Google Scholar]
  102. 102. 
    Nitschke L, Carsetti R, Ocker B, Kohler G, Lamers MC 1997. CD22 is a negative regulator of B-cell receptor signalling. Curr. Biol. 7:133–43
    [Google Scholar]
  103. 103. 
    Tedder TF, Tuscano J, Sato S, Kehrl JH 1997. CD22, a B lymphocyte–specific adhesion molecule that regulates antigen receptor signaling. Annu. Rev. Immunol. 15:481–504
    [Google Scholar]
  104. 104. 
    Doody GM, Justement LB, Delibrias CC, Matthews RJ, Lin J et al. 1995. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269:242–44
    [Google Scholar]
  105. 105. 
    Han S, Collins BE, Bengtson P, Paulson JC 2005. Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nat. Chem. Biol. 1:93–97
    [Google Scholar]
  106. 106. 
    Kawasaki N, Rademacher C, Paulson JC 2011. CD22 regulates adaptive and innate immune responses of B cells. J. Innate Immun. 3:411–19
    [Google Scholar]
  107. 107. 
    Jellusova J, Wellmann U, Amann K, Winkler TH, Nitschke L 2010. CD22 × Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity. J. Immunol. 184:3618–27
    [Google Scholar]
  108. 108. 
    Chen J, McLean PA, Neel BG, Okunade G, Shull GE, Wortis HH 2004. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat. Immunol. 5:651–57
    [Google Scholar]
  109. 109. 
    Chen J, Wang H, Xu WP, Wei SS, Li HJ et al. 2016. Besides an ITIM/SHP-1-dependent pathway, CD22 collaborates with Grb2 and plasma membrane calcium-ATPase in an ITIM/SHP-1-independent pathway of attenuation of Ca2+i signal in B cells. Oncotarget 7:56129–46
    [Google Scholar]
  110. 110. 
    Macauley MS, Paulson JC. 2014. Siglecs induce tolerance to cell surface antigens by BIM-dependent deletion of the antigen-reactive B cells. J. Immunol. 193:4312–21
    [Google Scholar]
  111. 111. 
    Lanoue A, Batista FD, Stewart M, Neuberger MS 2002. Interaction of CD22 with α2,6-linked sialoglycoconjugates: innate recognition of self to dampen B cell autoreactivity. ? Eur. J. Immunol. 32:348–55
    [Google Scholar]
  112. 112. 
    Collins BE, Blixt O, DeSieno AR, Bovin N, Marth JD, Paulson JC 2004. Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. PNAS 101:6104–9
    [Google Scholar]
  113. 113. 
    Macauley MS, Pfrengle F, Rademacher C, Nycholat CM, Gale AJ et al. 2013. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J. Clin. Investig. 123:3074–83
    [Google Scholar]
  114. 114. 
    Spiller F, Nycholat CM, Kikuchi C, Paulson JC, Macauley MS 2018. Murine red blood cells lack ligands for B cell Siglecs, allowing strong activation by erythrocyte surface antigens. J. Immunol. 200:949–56
    [Google Scholar]
  115. 115. 
    Hutzler S, Ozgor L, Naito-Matsui Y, Klasener K, Winkler TH et al. 2014. The ligand-binding domain of Siglec-G is crucial for its selective inhibitory function on B1 cells. J. Immunol. 192:5406–14
    [Google Scholar]
  116. 116. 
    Meyer SJ, Linder AT, Brandl C, Nitschke L 2018. B cell Siglecs—news on signaling and its interplay with ligand binding. Front. Immunol. 9:2820
    [Google Scholar]
  117. 117. 
    Pfrengle F, Macauley MS, Kawasaki N, Paulson JC 2013. Copresentation of antigen and ligands of Siglec-G induces B cell tolerance independent of CD22. J. Immunol. 191:1724–31
    [Google Scholar]
  118. 118. 
    Carroll DJ, O'Sullivan JA, Nix DB, Cao Y, Tiemeyer M, Bochner BS 2018. Sialic acid-binding immunoglobulin-like lectin 8 (Siglec-8) is an activating receptor mediating β2-integrin-dependent function in human eosinophils. J. Allergy Clin. Immunol. 141:2196–207
    [Google Scholar]
  119. 119. 
    Nutku-Bilir E, Hudson SA, Bochner BS 2008. Interleukin-5 priming of human eosinophils alters Siglec-8–mediated apoptosis pathways. Am. J. Respir. Cell Mol. Biol. 38:121–24
    [Google Scholar]
  120. 120. 
    Nutku E, Aizawa H, Hudson SA, Bochner BS 2003. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101:5014–20
    [Google Scholar]
  121. 121. 
    Kano G, Bochner BS, Zimmermann N 2017. Regulation of Siglec-8-induced intracellular reactive oxygen species production and eosinophil cell death by Src family kinases. Immunobiology 222:343–49
    [Google Scholar]
  122. 122. 
    Floyd H, Ni J, Cornish AL, Zeng Z, Liu D et al. 2000. Siglec-8: a novel eosinophil-specific member of the immunoglobulin superfamily. J. Biol. Chem. 275:861–66
    [Google Scholar]
  123. 123. 
    Aizawa H, Plitt J, Bochner BS 2002. Human eosinophils express two Siglec-8 splice variants. J. Allergy Clin. Immunol. 109:176
    [Google Scholar]
  124. 124. 
    Legrand F, Landolina N, Zaffran I, Emeh RO, Chen E et al. 2019. Siglec-7 on peripheral blood eosinophils: surface expression and function. Allergy 74:1257–65
    [Google Scholar]
  125. 125. 
    Chen GY, Chen X, King S, Cavassani KA, Cheng J et al. 2011. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat. Biotechnol. 29:428–35
    [Google Scholar]
  126. 126. 
    Chen GY, Brown NK, Zheng P, Liu Y 2014. Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity. Glycobiology 24:800–6
    [Google Scholar]
  127. 127. 
    Toubai T, Rossi C, Oravecz-Wilson K, Zajac C, Liu C et al. 2017. Siglec-G represses DAMP-mediated effects on T cells. JCI Insight 2:e92293
    [Google Scholar]
  128. 128. 
    Bull C, Collado-Camps E, Kers-Rebel ED, Heise T, Sondergaard JN et al. 2017. Metabolic sialic acid blockade lowers the activation threshold of moDCs for TLR stimulation. Immunol. Cell Biol. 95:408–15
    [Google Scholar]
  129. 129. 
    Wu Y, Ren D, Chen GY 2016. Siglec-E negatively regulates the activation of TLR4 by controlling its endocytosis. J. Immunol. 197:3336–47
    [Google Scholar]
  130. 130. 
    Chen GY, Brown NK, Wu W, Khedri Z, Yu H et al. 2014. Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. eLife 3:e04066
    [Google Scholar]
  131. 131. 
    Hernandez-Caselles T, Miguel RC, Ruiz-Alcaraz AJ, Garcia-Penarrubia P 2019. CD33 (Siglec-3) inhibitory function: role in the NKG2D/DAP10 activating pathway. J. Immunol. Res. 2019:6032141
    [Google Scholar]
  132. 132. 
    Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M et al. 2014. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J. Clin. Investig. 124:1810–20
    [Google Scholar]
  133. 133. 
    Shao JY, Yin WW, Zhang QF, Liu Q, Peng ML et al. 2016. Siglec-7 defines a highly functional natural killer cell subset and inhibits cell-mediated activities. Scand. J. Immunol. 84:182–90
    [Google Scholar]
  134. 134. 
    Lizcano A, Secundino I, Dohrmann S, Corriden R, Rohena C et al. 2017. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood 129:3100–10
    [Google Scholar]
  135. 135. 
    Mingari MC, Vitale C, Romagnani C, Falco M, Moretta L 2001. p75/AIRM1 and CD33, two sialoadhesin receptors that regulate the proliferation or the survival of normal and leukemic myeloid cells. Immunol. Rev. 181:260–68
    [Google Scholar]
  136. 136. 
    Kameda Y, Takahata M, Mikuni S, Shimizu T, Hamano H et al. 2015. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis. Bone 71:217–26
    [Google Scholar]
  137. 137. 
    Stuible M, Moraitis A, Fortin A, Saragosa S, Kalbakji A et al. 2014. Mechanism and function of monoclonal antibodies targeting Siglec-15 for therapeutic inhibition of osteoclastic bone resorption. J. Biol. Chem. 289:6498–512
    [Google Scholar]
  138. 138. 
    van Dinther D, Veninga H, Revet M, Hoogterp L, Olesek K et al. 2018. Comparison of protein and peptide targeting for the development of a CD169-based vaccination strategy against melanoma. Front. Immunol. 9:1997
    [Google Scholar]
  139. 139. 
    van Dinther D, Lopez Venegas M, Veninga H, Olesek K, Hoogterp L et al. 2019. Activation of CD8+ T cell responses after melanoma antigen targeting to CD169+ antigen presenting cells in mice and humans. Cancers 11:E183
    [Google Scholar]
  140. 140. 
    Amin Asnafi A, Jalali MT, Pezeshki SMS, Jaseb K, Saki N 2019. The association between human leukocyte antigens and ITP, TTP, and HIT. J. Pediatr. Hematol. Oncol. 41:81–86
    [Google Scholar]
  141. 141. 
    Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K et al. 2017. Mechanisms of autoantibody-induced pathology. Front. Immunol. 8:603
    [Google Scholar]
  142. 142. 
    Flores R, Zhang P, Wu W, Wang X, Ye P et al. 2019. Siglec genes confer resistance to systemic lupus erythematosus in humans and mice. Cell Mol. Immunol. 16:154–64
    [Google Scholar]
  143. 143. 
    Tsubata T. 2018. Ligand recognition determines the role of inhibitory B cell co-receptors in the regulation of B cell homeostasis and autoimmunity. Front. Immunol. 9:2276
    [Google Scholar]
  144. 144. 
    Mahajan VS, Pillai S. 2016. Sialic acids and autoimmune disease. Immunol. Rev. 269:145–61
    [Google Scholar]
  145. 145. 
    Muller J, Nitschke L. 2014. The role of CD22 and Siglec-G in B-cell tolerance and autoimmune disease. Nat. Rev. Rheumatol. 10:422–28
    [Google Scholar]
  146. 146. 
    Mary C, Laporte C, Parzy D, Santiago M-L, Stefani F et al. 2000. CD22a PRE-mRNA dysregulated expression of the Cd22 gene as a result of a short interspersed nucleotide element insertion in Cd22a lupus-prone mice. J. Immunol. 165:2987–96
    [Google Scholar]
  147. 147. 
    O'Keefe TL, Williams GT, Batista FD, Neuberger MS 1999. Deficiency in CD22, a B cell–specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J. Exp. Med. 189:1307–13
    [Google Scholar]
  148. 148. 
    Angata T. 2014. Associations of genetic polymorphisms of Siglecs with human diseases. Glycobiology 24:785–93
    [Google Scholar]
  149. 149. 
    Hatta Y, Tsuchiya N, Matsushita M, Shiota M, Hagiwara K, Tokunaga K 1999. Identification of the gene variations in human CD22. Immunogenetics 49:280–86
    [Google Scholar]
  150. 150. 
    Hitomi Y, Tsuchiya N, Hasegawa M, Fujimoto M, Takehara K et al. 2007. Association of CD22 gene polymorphism with susceptibility to limited cutaneous systemic sclerosis. Tissue Antigens 69:242–49
    [Google Scholar]
  151. 151. 
    Surolia I, Pirnie SP, Chellappa V, Taylor KN, Cariappa A et al. 2010. Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature 466:243–47
    [Google Scholar]
  152. 152. 
    Cariappa A, Takematsu H, Liu H, Diaz S, Haider K et al. 2009. B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. J. Exp. Med. 206:125–38
    [Google Scholar]
  153. 153. 
    Kishimoto TK, Maldonado RA. 2018. Nanoparticles for the induction of antigen-specific immunological tolerance. Front. Immunol. 9:230
    [Google Scholar]
  154. 154. 
    Courtney AH, Puffer EB, Pontrello JK, Yang ZQ, Kiessling LL 2009. Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation. PNAS 106:2500–5
    [Google Scholar]
  155. 155. 
    Orgel KA, Duan S, Wright BL, Maleki SJ, Wolf JC et al. 2017. Exploiting CD22 on antigen-specific B cells to prevent allergy to the major peanut allergen Ara h 2. J. Allergy Clin. Immunol. 139:366–69.e2
    [Google Scholar]
  156. 156. 
    Bednar KJ, Nycholat CM, Rao TS, Paulson JC, Fung-Leung WP, Macauley MS 2019. Exploiting CD22 to selectively tolerize autoantibody producing B-cells in rheumatoid arthritis. ACS Chem. Biol. 14:644–54
    [Google Scholar]
  157. 157. 
    Pang L, Macauley MS, Arlian BM, Nycholat CM, Paulson JC 2017. Encapsulating an immunosuppressant enhances tolerance induction by Siglec-engaging tolerogenic liposomes. Chembiochem 18:1226–33
    [Google Scholar]
  158. 158. 
    Perdicchio M, Ilarregui JM, Verstege MI, Cornelissen LA, Schetters ST et al. 2016. Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. PNAS 113:3329–34
    [Google Scholar]
  159. 159. 
    Rosenberg HF, Dyer KD, Foster PS 2012. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 13:9–22
    [Google Scholar]
  160. 160. 
    Kiwamoto T, Kawasaki N, Paulson JC, Bochner BS 2012. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol. Ther. 135:327–36
    [Google Scholar]
  161. 161. 
    Legrand F, Cao Y, Wechsler JB, Zhu X, Zimmermann N et al. 2018. Sialic acid–binding immunoglobulin-like lectin (Siglec) 8 in patients with eosinophilic disorders: receptor expression and targeting using chimeric antibodies. J. Allergy Clin. Immunol. 143:2227–37.e10
    [Google Scholar]
  162. 162. 
    Youngblood BA, Brock EC, Leung J, Falahati R, Bryce PJ et al. 2019. AK002, a humanized sialic acid-binding immunoglobulin-like lectin-8 antibody that induces antibody-dependent cell-mediated cytotoxicity against human eosinophils and inhibits mast cell-mediated anaphylaxis in mice. Int. Arch. Allergy Immunol. 180:91–102
    [Google Scholar]
  163. 163. 
    O'Sullivan JA, Wei Y, Carroll DJ, Moreno-Vinasco L, Cao Y et al. 2018. Frontline science: characterization of a novel mouse strain expressing human Siglec-8 only on eosinophils. J. Leukoc. Biol. 104:11–19
    [Google Scholar]
  164. 164. 
    Galli SJ, Tsai M, Piliponsky AM 2008. The development of allergic inflammation. Nature 454:445–54
    [Google Scholar]
  165. 165. 
    Harvima IT, Levi-Schaffer F, Draber P, Friedman S, Polakovicova I et al. 2014. Molecular targets on mast cells and basophils for novel therapies. J. Allergy Clin. Immunol. 134:530–44
    [Google Scholar]
  166. 166. 
    Gilfillan AM, Tkaczyk C. 2006. Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 6:218–30
    [Google Scholar]
  167. 167. 
    Yokoi H, Choi OH, Hubbard W, Lee HS, Canning BJ et al. 2008. Inhibition of FcεRI-dependent mediator release and calcium flux from human mast cells by sialic acid–binding immunoglobulin-like lectin 8 engagement. J. Allergy Clin. Immunol. 121:499–505.e1
    [Google Scholar]
  168. 168. 
    Mizrahi S, Gibbs BF, Karra L, Ben-Zimra M, Levi-Schaffer F 2014. Siglec-7 is an inhibitory receptor on human mast cells and basophils. J. Allergy Clin. Immunol. 134:230–33
    [Google Scholar]
  169. 169. 
    Bachelet I, Munitz A, Levi-Schaffer F 2006. Abrogation of allergic reactions by a bispecific antibody fragment linking IgE to CD300a. J. Allergy Clin. Immunol. 117:1314–20
    [Google Scholar]
  170. 170. 
    Eggel A, Buschor P, Baumann MJ, Amstutz P, Stadler BM, Vogel M 2011. Inhibition of ongoing allergic reactions using a novel anti-IgE DARPin-Fc fusion protein. Allergy 66:961–68
    [Google Scholar]
  171. 171. 
    Wei Y, Chhiba KD, Zhang F, Ye X, Wang L et al. 2018. Mast cell-specific expression of human Siglec-8 in conditional knock-in mice. Int. J. Mol. Sci. 20:E19
    [Google Scholar]
  172. 172. 
    Voehringer D. 2013. Protective and pathological roles of mast cells and basophils. Nat. Rev. Immunol. 13:362–75
    [Google Scholar]
  173. 173. 
    Abraham SN, St. John AL 2010. Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10:440–52
    [Google Scholar]
  174. 174. 
    Godwin CD, Gale RP, Walter RB 2017. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 31:1855–68
    [Google Scholar]
  175. 175. 
    Baron J, Wang ES. 2018. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev. Clin. Pharmacol. 11:549–59
    [Google Scholar]
  176. 176. 
    Walter RB. 2018. Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin. Invest. Drugs 27:339–48
    [Google Scholar]
  177. 177. 
    Ai J, Advani A. 2015. Current status of antibody therapy in ALL. Br. J. Haematol. 168:471–80
    [Google Scholar]
  178. 178. 
    Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM et al. 2018. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24:20–28
    [Google Scholar]
  179. 179. 
    June CH, Sadelain M. 2018. Chimeric antigen receptor therapy. N. Engl. J. Med. 379:64–73
    [Google Scholar]
  180. 180. 
    Wilky BA. 2019. Immune checkpoint inhibitors: The linchpins of modern immunotherapy. Immunol. Rev. 290:6–23
    [Google Scholar]
  181. 181. 
    Wei SC, Duffy CR, Allison JP 2018. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8:1069–86
    [Google Scholar]
  182. 182. 
    Kim N, Kim HS. 2018. Targeting checkpoint receptors and molecules for therapeutic modulation of natural killer cells. Front. Immunol. 9:2041
    [Google Scholar]
  183. 183. 
    Pentcheva-Hoang T, Chen L, Pardoll DM, Allison JP 2007. Programmed death-1 concentration at the immunological synapse is determined by ligand affinity and availability. PNAS 104:17765–70
    [Google Scholar]
  184. 184. 
    Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T 2012. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med. 209:1201–17
    [Google Scholar]
  185. 185. 
    Adams OJ, Stanczak MA, von Gunten S, Laubli H 2018. Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer. Glycobiology 28:640–47
    [Google Scholar]
  186. 186. 
    Wang J, Sun J, Liu LN, Flies DB, Nie X et al. 2019. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med. 25:656–66
    [Google Scholar]
  187. 187. 
    RodrÍguez E, Schetters STT, van Kooyk Y 2018. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat. Rev. Immunol. 18:204–11
    [Google Scholar]
  188. 188. 
    Fuster MM, Esko JD. 2005. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5:526–42
    [Google Scholar]
  189. 189. 
    Bull C, den Brok MH, Adema GJ 2014. Sweet escape: sialic acids in tumor immune evasion. Biochim. Biophys. Acta Rev. Cancer 1846:238–46
    [Google Scholar]
  190. 190. 
    Nicoll G, Ni J, Liu D, Klenerman P, Munday J et al. 1999. Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J. Biol. Chem. 274:34089–95
    [Google Scholar]
  191. 191. 
    Zhang JQ, Nicoll G, Jones C, Crocker PR 2000. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J. Biol. Chem. 275:22121–26
    [Google Scholar]
  192. 192. 
    Crocker PR, McMillan SJ, Richards HE 2012. CD33-related siglecs as potential modulators of inflammatory responses. Ann. N. Y. Acad. Sci. 1253:102–11
    [Google Scholar]
  193. 193. 
    Crocker PR, Paulson JC, Varki A 2007. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7:255–66
    [Google Scholar]
  194. 194. 
    Ikehara Y, Ikehara SK, Paulson JC 2004. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J. Biol. Chem. 279:43117–25
    [Google Scholar]
  195. 195. 
    Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F et al. 2015. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42:265–78
    [Google Scholar]
  196. 196. 
    Stanczak MA, Siddiqui SS, Trefny MP, Thommen DS, Boligan KF et al. 2018. Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J. Clin. Investig. 128:4912–23
    [Google Scholar]
  197. 197. 
    Haas Q, Boligan KF, Jandus C, Schneider C, Simillion C et al. 2019. Siglec-9 regulates an effector memory CD8+ T-cell subset that congregates in the melanoma tumor microenvironment. Cancer Immunol. Res. 7:707–18
    [Google Scholar]
  198. 198. 
    Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L 2012. Targeting natural killer cells and natural killer T cells in cancer. Nat. Rev. Immunol. 12:239–52
    [Google Scholar]
  199. 199. 
    Nicoll G, Avril T, Lock K, Furukawa K, Bovin N, Crocker PR 2003. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur. J. Immunol. 33:1642–48
    [Google Scholar]
  200. 200. 
    Hudak JE, Canham SM, Bertozzi CR 2014. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 10:69–75
    [Google Scholar]
  201. 201. 
    Shaul ME, Fridlender ZG. 2019. Tumour-associated neutrophils in patients with cancer. Nat. Rev. Clin. Oncol. 16:601–20
    [Google Scholar]
  202. 202. 
    Laubli H, Pearce OM, Schwarz F, Siddiqui SS, Deng L et al. 2014. Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. PNAS 111:14211–16
    [Google Scholar]
  203. 203. 
    DeNardo DG, Ruffell B. 2019. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19:369–82
    [Google Scholar]
  204. 204. 
    Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD et al. 2016. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat. Immunol. 17:1273–81
    [Google Scholar]
  205. 205. 
    Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA et al. 2019. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572:392–96
    [Google Scholar]
  206. 206. 
    Angata T, Tabuchi Y, Nakamura K, Nakamura M 2007. Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17:838–46
    [Google Scholar]
  207. 207. 
    Lanier LL. 2009. DAP10- and DAP12-associated receptors in innate immunity. Immunol. Rev. 227:150–60
    [Google Scholar]
  208. 208. 
    Xiao H, Woods EC, Vukojicic P, Bertozzi CR 2016. Precision glycocalyx editing as a strategy for cancer immunotherapy. PNAS 113:10304–9
    [Google Scholar]
  209. 209. 
    Bruhns P. 2012. Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119:5640–49
    [Google Scholar]
  210. 210. 
    Bull C, Boltje TJ, Balneger N, Weischer SM, Wassink M et al. 2018. Sialic acid blockade suppresses tumor growth by enhancing T-cell-mediated tumor immunity. Cancer Res 78:3574–88
    [Google Scholar]
  211. 211. 
    Hardy J, Selkoe DJ. 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–56
    [Google Scholar]
  212. 212. 
    Salter MW, Stevens B. 2017. Microglia emerge as central players in brain disease. Nat. Med. 23:1018–27
    [Google Scholar]
  213. 213. 
    Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC et al. 2011. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43:429–35
    [Google Scholar]
  214. 214. 
    Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN et al. 2011. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat. Genet. 43:436–41
    [Google Scholar]
  215. 215. 
    Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM et al. 2019. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. Nat. Genet. 51:404–13
    [Google Scholar]
  216. 216. 
    Raj T, Ryan KJ, Replogle JM, Chibnik LB, Rosenkrantz L et al. 2014. CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer's disease susceptibility. Hum. Mol. Genet. 23:2729–36
    [Google Scholar]
  217. 217. 
    Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T et al. 2013. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nat. Neurosci. 16:848–50
    [Google Scholar]
  218. 218. 
    Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN et al. 2013. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–43
    [Google Scholar]
  219. 219. 
    Malik M, Simpson JF, Parikh I, Wilfred BR, Fardo DW et al. 2013. CD33 Alzheimer's risk-altering polymorphism, CD33 expression, and exon 2 splicing. J. Neurosci. 33:13320–25
    [Google Scholar]
  220. 220. 
    Siddiqui SS, Springer SA, Verhagen A, Sundaramurthy V, Alisson-Silva F et al. 2017. The Alzheimer's disease-protective CD33 splice variant mediates adaptive loss of function via diversion to an intracellular pool. J. Biol. Chem. 292:15312–20
    [Google Scholar]
  221. 221. 
    Chan G, White CC, Winn PA, Cimpean M, Replogle JM et al. 2015. CD33 modulates TREM2: convergence of Alzheimer loci. Nat. Neurosci. 18:1556–58
    [Google Scholar]
  222. 222. 
    Griciuc A, Patel S, Federico AN, Choi SH, Innes BJ et al. 2019. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer's disease. Neuron 103:820–35.e7
    [Google Scholar]
  223. 223. 
    Pluvinage JV, Haney MS, Smith BAH, Sun J, Iram T et al. 2019. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568:187–92
    [Google Scholar]
  224. 224. 
    Avril T, Wagner ER, Willison HJ, Crocker PR 2006. Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect. Immun. 74:4133–41
    [Google Scholar]
  225. 225. 
    Chang YC, Olson J, Louie A, Crocker PR, Varki A, Nizet V 2014. Role of macrophage sialoadhesin in host defense against the sialylated pathogen group B Streptococcus. J. Mol. Med 92:951–59
    [Google Scholar]
  226. 226. 
    van Dinther D, Veninga H, Iborra S, Borg EGF, Hoogterp L et al. 2018. Functional CD169 on macrophages mediates interaction with dendritic cells for CD8+ T cell cross-priming. Cell Rep 22:1484–95
    [Google Scholar]
  227. 227. 
    Gomez G. 2019. Current strategies to inhibit high affinity FcεRI-mediated signaling for the treatment of allergic disease. Front. Immunol. 10:175
    [Google Scholar]
  228. 228. 
    Malaker SA, Pedram K, Ferracane MJ, Bensing BA, Krishnan V et al. 2019. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. PNAS 116:7278–87
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-102419-035900
Loading
/content/journals/10.1146/annurev-immunol-102419-035900
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error