1932

Abstract

The discovery of CD4+ T cell subset–defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-103019-085803
2020-04-26
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-103019-085803.html?itemId=/content/journals/10.1146/annurev-immunol-103019-085803&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Casrouge A, Beaudoing E, Dalle S, Pannetier C, Kanellopoulos J, Kourilsky P 2000. Size estimate of the αβ TCR repertoire of naive mouse splenocytes. J. Immunol. 164:5782–87
    [Google Scholar]
  2. 2. 
    Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J et al. 1998. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16:523–44
    [Google Scholar]
  3. 3. 
    Zhou L, Chong MM, Littman DR 2009. Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–55
    [Google Scholar]
  4. 4. 
    Hogan SP, Koskinen A, Matthaei KI, Young IG, Foster PS 1998. Interleukin-5-producing CD4+ T cells play a pivotal role in aeroallergen-induced eosinophilia, bronchial hyperreactivity, and lung damage in mice. Am. J. Respir. Crit. Care Med. 157:210–18
    [Google Scholar]
  5. 5. 
    Lu KT, Kanno Y, Cannons JL, Handon R, Bible P et al. 2011. Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 35:622–32
    [Google Scholar]
  6. 6. 
    Kobayashi T, Iijima K, Dent AL, Kita H 2017. Follicular helper T cells mediate IgE antibody response to airborne allergens. J. Allergy Clin. Immunol. 139:300–13.e7
    [Google Scholar]
  7. 7. 
    Turner H, Kinet JP. 1999. Signalling through the high-affinity IgE receptor FcεRI. Nature 402:B24–30
    [Google Scholar]
  8. 8. 
    Jandinski J, Cantor H, Tadakuma T, Peavy DL, Pierce CW 1976. Separation of helper T cells from suppressor T cells expressing different Ly components. I. Polyclonal activation: Suppressor and helper activities are inherent properties of distinct T-cell subclasses. J. Exp. Med. 143:1382–90
    [Google Scholar]
  9. 9. 
    Miller JF, Mitchell GF. 1969. Thymus and antigen-reactive cells. Transplant. Rev. 1:3–42
    [Google Scholar]
  10. 10. 
    Claman HN, Chaperon EA. 1969. Immunologic complementation between thymus and marrow cells—a model for the two-cell theory of immunocompetence. Transplant. Rev. 1:92–113
    [Google Scholar]
  11. 11. 
    Parish CR, Liew FY. 1972. Immune response to chemically modified flagellin. 3. Enhanced cell-mediated immunity during high and low zone antibody tolerance to flagellin. J. Exp. Med. 135:298–311
    [Google Scholar]
  12. 12. 
    Masur H, Michelis MA, Greene JB, Onorato I, Stouwe RA et al. 1981. An outbreak of community-acquired Pneumocystiscarinii pneumonia: initial manifestation of cellular immune dysfunction. N. Engl. J. Med. 305:1431–38
    [Google Scholar]
  13. 13. 
    Gottlieb MS, Schroff R, Schanker HM, Weisman JD, Fan PT et al. 1981. Pneumocystiscarinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N. Engl. J. Med. 305:1425–31
    [Google Scholar]
  14. 14. 
    Siegal FP, Lopez C, Hammer GS, Brown AE, Kornfeld SJ et al. 1981. Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions. N. Engl. J. Med. 305:1439–44
    [Google Scholar]
  15. 15. 
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:2348–57
    [Google Scholar]
  16. 16. 
    Kim J, Woods A, Becker-Dunn E, Bottomly K 1985. Distinct functional phenotypes of cloned Ia-restricted helper T cells. J. Exp. Med. 162:188–201
    [Google Scholar]
  17. 17. 
    Zheng W, Flavell RA. 1997. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587–96
    [Google Scholar]
  18. 18. 
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–69
    [Google Scholar]
  19. 19. 
    Glimcher LH. 2007. Trawling for treasure: tales of T-bet. Nat. Immunol. 8:448–50
    [Google Scholar]
  20. 20. 
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A et al. 2006. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–33
    [Google Scholar]
  21. 21. 
    Kanno Y, Vahedi G, Hirahara K, Singleton K, O'Shea JJ 2012. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30:707–31
    [Google Scholar]
  22. 22. 
    O'Shea JJ, Paul WE. 2010. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327:1098–102
    [Google Scholar]
  23. 23. 
    Zhu J, Yamane H, Paul WE 2010. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28:445–89
    [Google Scholar]
  24. 24. 
    Jenkins MK. 2008. Imaging the immune system. Immunol. Rev. 221:5–6
    [Google Scholar]
  25. 25. 
    Pape KA, Kearney ER, Khoruts A, Mondino A, Merica R et al. 1997. Use of adoptive transfer of T-cell-antigen-receptor-transgenic T cell for the study of T-cell activation in vivo. Immunol. Rev. 156:67–78
    [Google Scholar]
  26. 26. 
    Ingulli E, Mondino A, Khoruts A, Jenkins MK 1997. In vivo detection of dendritic cell antigen presentation to CD4+ T cells. J. Exp. Med. 185:2133–41
    [Google Scholar]
  27. 27. 
    Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK 2001. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410:101–5
    [Google Scholar]
  28. 28. 
    Croxford AL, Buch T. 2011. Cytokine reporter mice in immunological research: perspectives and lessons learned. Immunology 132:1–8
    [Google Scholar]
  29. 29. 
    Tomura M, Yoshida N, Tanaka J, Karasawa S, Miwa Y et al. 2008. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. PNAS 105:10871–76
    [Google Scholar]
  30. 30. 
    Chisolm DA, Cheng W, Colburn SA, Silva-Sanchez A, Meza-Perez S et al. 2019. Defining genetic variation in widely used congenic and backcrossed mouse models reveals varied regulation of genes important for immune responses. Immunity 51:155–68.e5
    [Google Scholar]
  31. 31. 
    Smith AL, Wikstrom ME, Fazekas de St. Groth B 2000. Visualizing T cell competition for peptide/MHC complexes: a specific mechanism to minimize the effect of precursor frequency. Immunity 13:783–94
    [Google Scholar]
  32. 32. 
    Marzo AL, Klonowski KD, Le Bon A, Borrow P, Tough DF, Lefrançois L 2005. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat. Immunol. 6:793–99
    [Google Scholar]
  33. 33. 
    Hataye J, Moon JJ, Khoruts A, Reilly C, Jenkins MK 2006. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 312:114–16
    [Google Scholar]
  34. 34. 
    Kwok WW, Tan V, Gillette L, Littell CT, Soltis MA et al. 2012. Frequency of epitope-specific naive CD4+ T cells correlates with immunodominance in the human memory repertoire. J. Immunol. 188:2537–44
    [Google Scholar]
  35. 35. 
    Nelson RW, Beisang D, Tubo NJ, Dileepan T, Wiesner DL et al. 2015. T cell receptor cross-reactivity between similar foreign and self peptides influences naive cell population size and autoimmunity. Immunity 42:95–107
    [Google Scholar]
  36. 36. 
    Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC et al. 2007. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:203–13
    [Google Scholar]
  37. 37. 
    Nepom GT. 2012. MHC class II tetramers. J. Immunol. 188:2477–82
    [Google Scholar]
  38. 38. 
    Miller JF, De Burgh PM, Grant GA 1965. Thymus and the production of antibody-plaque-forming cells. Nature 208:1332–34
    [Google Scholar]
  39. 39. 
    MacLennan IC. 1994. Germinal centers. Annu. Rev. Immunol. 12:117–39
    [Google Scholar]
  40. 40. 
    Förster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M 1996. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87:1037–47
    [Google Scholar]
  41. 41. 
    Ansel KM, McHeyzer-Williams LJ, Ngo VN, McHeyzer-Williams MG, Cyster JG 1999. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190:1123–34
    [Google Scholar]
  42. 42. 
    Gunn MD, Ngo VN, Ansel KM, Ekland EH, Cyster JG, Williams LT 1998. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391:799–803
    [Google Scholar]
  43. 43. 
    Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B 2000. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192:1553–62
    [Google Scholar]
  44. 44. 
    Kim CH, Rott LS, Clark-Lewis I, Campbell DJ, Wu L, Butcher EC 2001. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center–localized subset of CXCR5+ T cells. J. Exp. Med. 193:1373–81
    [Google Scholar]
  45. 45. 
    Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F et al. 2000. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192:1545–52
    [Google Scholar]
  46. 46. 
    King C, Tangye SG, Mackay CR 2008. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26:741–66
    [Google Scholar]
  47. 47. 
    Chtanova T, Tangye SG, Newton R, Frank N, Hodge MR et al. 2004. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173:68–78
    [Google Scholar]
  48. 48. 
    Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L et al. 2005. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435:452–58
    [Google Scholar]
  49. 49. 
    Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D et al. 2009. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325:1006–10
    [Google Scholar]
  50. 50. 
    Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S et al. 2009. Bcl6 mediates the development of T follicular helper cells. Science 325:1001–5
    [Google Scholar]
  51. 51. 
    Yu D, Rao S, Tsai LM, Lee SK, He Y et al. 2009. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31:457–68
    [Google Scholar]
  52. 52. 
    Martins G, Calame K. 2008. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26:133–69
    [Google Scholar]
  53. 53. 
    Vinuesa CG, Linterman MA, Yu D, MacLennan IC 2016. Follicular helper T cells. Annu. Rev. Immunol. 34:335–68
    [Google Scholar]
  54. 54. 
    Crotty S. 2019. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50:1132–48
    [Google Scholar]
  55. 55. 
    Crotty S. 2011. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29:621–63
    [Google Scholar]
  56. 56. 
    Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG 2009. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10:375–84
    [Google Scholar]
  57. 57. 
    Eto D, Lao C, DiToro D, Barnett B, Escobar TC et al. 2011. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLOS ONE 6:e17739
    [Google Scholar]
  58. 58. 
    Poholek AC, Hansen K, Hernandez SG, Eto D, Chandele A et al. 2010. In vivo regulation of Bcl6 and T follicular helper cell development. J. Immunol. 185:313–26
    [Google Scholar]
  59. 59. 
    Baumjohann D, Okada T, Ansel KM 2011. Cutting edge: distinct waves of BCL6 expression during T follicular helper cell development. J. Immunol. 187:2089–92
    [Google Scholar]
  60. 60. 
    Lund R, Ahlfors H, Kainonen E, Lahesmaa AM, Dixon C, Lahesmaa R 2005. Identification of genes involved in the initiation of human Th1 or Th2 cell commitment. Eur. J. Immunol. 35:3307–19
    [Google Scholar]
  61. 61. 
    Nakayamada S, Kanno Y, Takahashi H, Jankovic D, Lu KT et al. 2011. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35:919–31
    [Google Scholar]
  62. 62. 
    Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L et al. 2011. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34:108–21
    [Google Scholar]
  63. 63. 
    Chevalier N, Jarrossay D, Ho E, Avery DT, Ma CS et al. 2011. CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. J. Immunol. 186:5556–68
    [Google Scholar]
  64. 64. 
    Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ et al. 2011. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34:932–46
    [Google Scholar]
  65. 65. 
    Pepper M, Pagán AJ, Igyártó BZ, Taylor JJ, Jenkins MK 2011. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35:583–95
    [Google Scholar]
  66. 66. 
    Marshall HD, Chandele A, Jung YW, Meng H, Poholek AC et al. 2011. Differential expression of Ly6C and T-bet distinguish effector and memory Th1 CD4+ cell properties during viral infection. Immunity 35:633–46
    [Google Scholar]
  67. 67. 
    Lee SK, Rigby RJ, Zotos D, Tsai LM, Kawamoto S et al. 2011. B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J. Exp. Med. 208:1377–88
    [Google Scholar]
  68. 68. 
    Weinstein JS, Herman EI, Lainez B, Licona-Limón P, Esplugues E et al. 2016. TFH cells progressively differentiate to regulate the germinal center response. Nat. Immunol. 17:1197–205
    [Google Scholar]
  69. 69. 
    Fang D, Cui K, Mao K, Hu G, Li R et al. 2018. Transient T-bet expression functionally specifies a distinct T follicular helper subset. J. Exp. Med. 215:2705–14
    [Google Scholar]
  70. 70. 
    Liu X, Yan X, Zhong B, Nurieva RI, Wang A et al. 2012. Bcl6 expression specifies the T follicular helper cell program in vivo. J. Exp. Med. 209:1841–52S1–24
    [Google Scholar]
  71. 71. 
    Oestreich KJ, Huang AC, Weinmann AS 2011. The lineage-defining factors T-bet and Bcl-6 collaborate to regulate Th1 gene expression patterns. J. Exp. Med. 208:1001–13
    [Google Scholar]
  72. 72. 
    Pape KA, Kouskoff V, Nemazee D, Tang HL, Cyster JG et al. 2003. Visualization of the genesis and fate of isotype-switched B cells during a primary immune response. J. Exp. Med. 197:1677–87
    [Google Scholar]
  73. 73. 
    Roco JA, Mesin L, Binder SC, Nefzger C, Gonzalez-Figueroa P et al. 2019. Class-switch recombination occurs infrequently in germinal centers. Immunity 51:337–50
    [Google Scholar]
  74. 74. 
    Oestreich KJ, Mohn SE, Weinmann AS 2012. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat. Immunol. 13:405–11
    [Google Scholar]
  75. 75. 
    Hondowicz BD, An D, Schenkel JM, Kim KS, Steach HR et al. 2016. Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity 44:155–66
    [Google Scholar]
  76. 76. 
    Kotov JA, Kotov DI, Linehan JL, Bardwell VJ, Gearhart MD, Jenkins MK 2019. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J. Exp. Med. 216:1450–64
    [Google Scholar]
  77. 77. 
    Gowthaman U, Chen JS, Zhang B, Flynn WF, Lu Y et al. 2019. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science 365:eaaw6433
    [Google Scholar]
  78. 78. 
    Bretscher PA, Wei G, Menon JN, Bielefeldt-Ohmann H 1992. Establishment of stable, cell-mediated immunity that makes “susceptible” mice resistant to Leishmaniamajor. . Science 257:539–42
    [Google Scholar]
  79. 79. 
    Constant S, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K 1995. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J. Exp. Med. 182:1591–96
    [Google Scholar]
  80. 80. 
    Deenick EK, Chan A, Ma CS, Gatto D, Schwartzberg PL et al. 2010. Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33:241–53
    [Google Scholar]
  81. 81. 
    Hosken NA, Shibuya K, Heath AW, Murphy KM, O'Garra A 1995. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor–αβ–transgenic model. J. Exp. Med. 182:1579–84
    [Google Scholar]
  82. 82. 
    Tubo NJ, Pagán AJ, Taylor JJ, Nelson RW, Linehan JL et al. 2013. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153:785–96
    [Google Scholar]
  83. 83. 
    DiToro D, Winstead CJ, Pham D, Witte S, Andargachew R et al. 2018. Differential IL-2 expression defines developmental fates of follicular versus nonfollicular helper T cells. Science 361:eaao2933
    [Google Scholar]
  84. 84. 
    Keck S, Schmaler M, Ganter S, Wyss L, Oberle S et al. 2014. Antigen affinity and antigen dose exert distinct influences on CD4 T-cell differentiation. PNAS 111:14852–57
    [Google Scholar]
  85. 85. 
    Snook JP, Kim C, Williams MA 2018. TCR signal strength controls the differentiation of CD4+ effector and memory T cells. Sci. Immunol. 3:25eaas9103
    [Google Scholar]
  86. 86. 
    Baumjohann D, Preite S, Reboldi A, Ronchi F, Ansel KM et al. 2013. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38:596–605
    [Google Scholar]
  87. 87. 
    Liu D, Xu H, Shih C, Wan Z, Ma X et al. 2015. T-B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature 517:214–18
    [Google Scholar]
  88. 88. 
    Krishnamoorthy V, Kannanganat S, Maienschein-Cline M, Cook SL, Chen J et al. 2017. The IRF4 gene regulatory module functions as a read-write integrator to dynamically coordinate T helper cell fate. Immunity 47:481–97.e7
    [Google Scholar]
  89. 89. 
    Mahnke J, Schumacher V, Ahrens S, Käding N, Feldhoff LM et al. 2016. Interferon Regulatory Factor 4 controls TH1 cell effector function and metabolism. Sci. Rep. 6:35521
    [Google Scholar]
  90. 90. 
    Kratchmarov R, Nish SA, Lin WW, Adams WC, Chen YH et al. 2017. IRF4 couples anabolic metabolism to Th1 cell fate determination. Immunohorizons 1:156–61
    [Google Scholar]
  91. 91. 
    Kotov DI, Mitchell JS, Pengo T, Ruedl C, Way SS et al. 2019. TCR affinity biases Th cell differentiation by regulating CD25, Eef1e1, and Gbp2. J. Immunol. 202:2535–45
    [Google Scholar]
  92. 92. 
    Schlitzer A, Ginhoux F. 2014. Organization of the mouse and human DC network. Curr. Opin. Immunol. 26:90–99
    [Google Scholar]
  93. 93. 
    Merad M, Sathe P, Helft J, Miller J, Mortha A 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604
    [Google Scholar]
  94. 94. 
    Eisenbarth SC. 2019. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19:89–103
    [Google Scholar]
  95. 95. 
    Li J, Lu E, Yi T, Cyster JG 2016. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature 533:110–14
    [Google Scholar]
  96. 96. 
    Krishnaswamy JK, Gowthaman U, Zhang B, Mattsson J, Szeponik L et al. 2017. Migratory CD11b+ conventional dendritic cells induce T follicular helper cell-dependent antibody responses. Sci. Immunol. 2:eaam9169
    [Google Scholar]
  97. 97. 
    Hong S, Zhang Z, Liu H, Tian M, Zhu X et al. 2018. B cells are the dominant antigen-presenting cells that activate naive CD4. Immunity 49:695–708.e4
    [Google Scholar]
  98. 98. 
    Arroyo EN, Pepper M. 2020. B cells are sufficient to prime the dominant CD4+ Tfh response to Plasmodium infection. J. Exp. Med. 217:e20190849
    [Google Scholar]
  99. 99. 
    Zens KD, Farber DL. 2015. Memory CD4 T cells in influenza. Curr. Top. Microbiol. Immunol. 386:399–421
    [Google Scholar]
  100. 100. 
    Turner DL, Farber DL. 2014. Mucosal resident memory CD4 T cells in protection and immunopathology. Front. Immunol. 5:331
    [Google Scholar]
  101. 101. 
    Masopust D, Soerens AG. 2019. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 37:521–46
    [Google Scholar]
  102. 102. 
    Sallusto F. 2016. Heterogeneity of human CD4+ T cells against microbes. Annu. Rev. Immunol. 34:317–34
    [Google Scholar]
  103. 103. 
    McLachlan JB, Catron DM, Moon JJ, Jenkins MK 2009. Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatory T cells in inflamed skin. Immunity 30:277–88
    [Google Scholar]
  104. 104. 
    Honda T, Egen JG, Lämmermann T, Kastenmüller W, Torabi-Parizi P, Germain RN 2014. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40:235–47
    [Google Scholar]
  105. 105. 
    Torabi-Parizi P, Vrisekoop N, Kastenmuller W, Gerner MY, Egen JG, Germain RN 2014. Pathogen-related differences in the abundance of presented antigen are reflected in CD4+ T cell dynamic behavior and effector function in the lung. J. Immunol. 192:1651–60
    [Google Scholar]
  106. 106. 
    Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A 2013. CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39:733–43
    [Google Scholar]
  107. 107. 
    Sokol CL, Camire RB, Jones MC, Luster AD 2018. The chemokine receptor CCR8 promotes the migration of dendritic cells into the lymph node parenchyma to initiate the allergic immune response. Immunity 49:449–63.e6
    [Google Scholar]
  108. 108. 
    Choi HW, Suwanpradid J, Kim IH, Staats HF, Haniffa M et al. 2018. Perivascular dendritic cells elicit anaphylaxis by relaying allergens to mast cells via microvesicles. Science 362:6415eaao0666
    [Google Scholar]
  109. 109. 
    Van Dyken SJ, Nussbaum JC, Lee J, Molofsky AB, Liang HE et al. 2016. A tissue checkpoint regulates type 2 immunity. Nat. Immunol. 17:1381–87
    [Google Scholar]
  110. 110. 
    Endo Y, Hirahara K, Iinuma T, Shinoda K, Tumes DJ et al. 2015. The interleukin-33-p38 kinase axis confers memory T helper 2 cell pathogenicity in the airway. Immunity 42:294–308
    [Google Scholar]
  111. 111. 
    Wambre E, Bajzik V, DeLong JH, O'Brien K, Nguyen QA et al. 2017. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci. Transl. Med. 9:eaam9171
    [Google Scholar]
  112. 112. 
    Saglani S, Gregory LG, Manghera AK, Branchett WJ, Uwadiae F et al. 2018. Inception of early-life allergen-induced airway hyperresponsiveness is reliant on IL-13. Sci. Immunol. 3:eaan4128
    [Google Scholar]
  113. 113. 
    Minutti CM, Drube S, Blair N, Schwartz C, McCrae JC et al. 2017. Epidermal growth factor receptor expression licenses type-2 helper T cells to function in a T cell receptor-independent fashion. Immunity 47:710–22.e6
    [Google Scholar]
  114. 114. 
    Morimoto Y, Hirahara K, Kiuchi M, Wada T, Ichikawa T et al. 2018. Amphiregulin-producing pathogenic memory T helper 2 cells instruct eosinophils to secrete osteopontin and facilitate airway fibrosis. Immunity 49:134–50.e6
    [Google Scholar]
  115. 115. 
    Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H et al. 2017. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 171:217–28.e13
    [Google Scholar]
  116. 116. 
    Dahlgren MW, Jones SW, Cautivo KM, Dubinin A, Ortiz-Carpena JF et al. 2019. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity 50:707–22.e6
    [Google Scholar]
  117. 117. 
    Pepper M, Jenkins MK. 2011. Origins of CD4+ effector and central memory T cells. Nat. Immunol. 12:467–71
    [Google Scholar]
  118. 118. 
    Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–12
    [Google Scholar]
  119. 119. 
    Tubo NJ, Fife BT, Pagan AJ, Kotov DI, Goldberg MF, Jenkins MK 2016. Most microbe-specific naïve CD4+ T cells produce memory cells during infection. Science 351:511–14
    [Google Scholar]
  120. 120. 
    Harrington LE, Janowski KM, Oliver JR, Zajac AJ, Weaver CT 2008. Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452:356–60
    [Google Scholar]
  121. 121. 
    Ciucci T, Vacchio MS, Gao Y, Tomassoni Ardori F, Candia J et al. 2019. The emergence and functional fitness of memory CD4+ T cells require the transcription factor Thpok. Immunity 50:91–105.e4
    [Google Scholar]
  122. 122. 
    Beura LK, Fares-Frederickson NJ, Steinert EM, Scott MC, Thompson EA et al. 2019. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. J. Exp. Med. 216:1214–29
    [Google Scholar]
  123. 123. 
    Glennie ND, Yeramilli VA, Beiting DP, Volk SW, Weaver CT, Scott P 2015. Skin-resident memory CD4+ T cells enhance protection against Leishmaniamajor infection. J. Exp. Med. 212:1405–14
    [Google Scholar]
  124. 124. 
    Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrançois L, Farber DL 2011. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187:5510–14
    [Google Scholar]
  125. 125. 
    Zens KD, Chen JK, Farber DL 2016. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 1:85832
    [Google Scholar]
  126. 126. 
    Hondowicz BD, Kim KS, Ruterbusch MJ, Keitany GJ, Pepper M 2018. IL-2 is required for the generation of viral-specific CD4. Eur. J. Immunol. 48:80–86
    [Google Scholar]
  127. 127. 
    Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F et al. 2004. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10:927–34
    [Google Scholar]
  128. 128. 
    Fleige H, Bosnjak B, Permanyer M, Ristenpart J, Bubke A et al. 2018. Manifold roles of CCR7 and its ligands in the induction and maintenance of bronchus-associated lymphoid tissue. Cell Rep 23:783–95
    [Google Scholar]
  129. 129. 
    Yeon SM, Halim L, Chandele A, Perry CJ, Kim SH et al. 2017. IL-7 plays a critical role for the homeostasis of allergen-specific memory CD4 T cells in the lung and airways. Sci. Rep. 7:11155
    [Google Scholar]
  130. 130. 
    Shinoda K, Hirahara K, Iinuma T, Ichikawa T, Suzuki AS et al. 2016. Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. PNAS 113:E2842–51
    [Google Scholar]
  131. 131. 
    Iijima N, Iwasaki A. 2014. T cell memory: A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346:93–98
    [Google Scholar]
  132. 132. 
    Campbell DJ, Butcher EC. 2002. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195:135–41
    [Google Scholar]
  133. 133. 
    Liang HE, Reinhardt RL, Bando JK, Sullivan BM, Ho IC, Locksley RM 2011. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat. Immunol. 13:58–66
    [Google Scholar]
  134. 134. 
    Bryant VL, Ma CS, Avery DT, Li Y, Good KL et al. 2007. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J. Immunol. 179:8180–90
    [Google Scholar]
  135. 135. 
    Gonzalez DG, Cote CM, Patel JR, Smith CB, Zhang Y et al. 2018. Nonredundant roles of IL-21 and IL-4 in the phased initiation of germinal center B cells and subsequent self-renewal transitions. J. Immunol. 201:3569–79
    [Google Scholar]
  136. 136. 
    Lüthje K, Kallies A, Shimohakamada Y, Belz GT, Light A et al. 2012. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat. Immunol. 13:491–98
    [Google Scholar]
  137. 137. 
    Victora GD, Nussenzweig MC. 2012. Germinal centers. Annu. Rev. Immunol. 30:429–57
    [Google Scholar]
  138. 138. 
    Cannons JL, Lu KT, Schwartzberg PL 2013. T follicular helper cell diversity and plasticity. Trends Immunol 34:200–7
    [Google Scholar]
  139. 139. 
    Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS et al. 2008. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29:138–49
    [Google Scholar]
  140. 140. 
    Mohrs M, Shinkai K, Mohrs K, Locksley RM 2001. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15:303–11
    [Google Scholar]
  141. 141. 
    Ho IC, Kaplan MH, Jackson-Grusby L, Glimcher LH, Grusby MJ 1999. Marking IL-4-producing cells by knock-in of the IL-4 gene. Int. Immunol. 11:243–47
    [Google Scholar]
  142. 142. 
    Hu-Li J, Pannetier C, Guo L, Löhning M, Gu H et al. 2001. Regulation of expression of IL-4 alleles: analysis using a chimeric GFP/IL-4 gene. Immunity 14:1–11
    [Google Scholar]
  143. 143. 
    Rivière I, Sunshine MJ, Littman DR 1998. Regulation of IL-4 expression by activation of individual alleles. Immunity 9:217–28
    [Google Scholar]
  144. 144. 
    Mohrs K, Wakil AE, Killeen N, Locksley RM, Mohrs M 2005. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity 23:419–29
    [Google Scholar]
  145. 145. 
    Reinhardt RL, Liang HE, Locksley RM 2009. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10:385–93
    [Google Scholar]
  146. 146. 
    King IL, Mohrs M. 2009. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med. 206:1001–7
    [Google Scholar]
  147. 147. 
    Glatman Zaretsky A, Taylor JJ, King IL, Marshall FA, Mohrs M, Pearce EJ 2009. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med. 206:991–99
    [Google Scholar]
  148. 148. 
    Vijayanand P, Seumois G, Simpson LJ, Abdul-Wajid S, Baumjohann D et al. 2012. Interleukin-4 production by follicular helper T cells requires the conserved Il4 enhancer hypersensitivity site V. Immunity 36:175–87
    [Google Scholar]
  149. 149. 
    Harada Y, Tanaka S, Motomura Y, Ohno S, Yanagi Y et al. 2012. The 3′ enhancer CNS2 is a critical regulator of interleukin-4-mediated humoral immunity in follicular helper T cells. Immunity 36:188–200
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-103019-085803
Loading
/content/journals/10.1146/annurev-immunol-103019-085803
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error