1932

Abstract

Common gamma receptor–dependent cytokines and their JAK/STAT pathways play pivotal roles in T cell immunity. Abnormal activation of this system was pervasive in diverse T cell malignancies assessed by pSTAT3/pSTAT5 phosphorylation. Activating mutations were described in some but not all cases. JAK1 and STAT3 were required for proliferation and survival of these T cell lines whether or not JAKs or STATs were mutated. Activating JAK and STAT mutations were not sufficient to initiate leukemic cell proliferation but rather only augmented signals from upstream in the cytokine pathway. Activation required the full pathway, including cytokine receptors acting as scaffolds and docking sites for required downstream JAK/STAT proteins. JAK kinase inhibitors have depressed leukemic T cell line proliferation. The insight that JAK/STAT system activation is pervasive in T cell malignancies suggests novel therapeutic approaches that include antibodies to common gamma cytokines, inhibitors of cytokine-receptor interactions, and JAK kinase inhibitors that may revolutionize therapy for T cell malignancies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-110416-120628
2017-04-26
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/immunol/35/1/annurev-immunol-110416-120628.html?itemId=/content/journals/10.1146/annurev-immunol-110416-120628&mimeType=html&fmt=ahah

Literature Cited

  1. Rochman Y, Spolski R, Leonard WJ. 1.  2009. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9:7480–90 [Google Scholar]
  2. Leonard WJ. 2.  2001. Cytokines and immunodeficiency diseases. Nat. Rev. Immunol. 1:3200–8 [Google Scholar]
  3. Kovanen PE, Leonard WJ. 3.  2004. Cytokines and immunodeficiency diseases: critical roles of the γc-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol. Rev. 202:67–83 [Google Scholar]
  4. Waldmann TA. 4.  2006. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6:8595–601 [Google Scholar]
  5. Waldmann TA. 5.  2015. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol. Res. 3:3219–27 [Google Scholar]
  6. Rui LX, Emre NCT, Kruhlak MJ, Chung HJ, Steidl C. 6.  et al. 2010. Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 18:6590–605 [Google Scholar]
  7. Chen E, Staudt LM, Green AR. 7.  2012. Janus kinase deregulation in leukemia and lymphoma. Immunity 36:4529–41 [Google Scholar]
  8. Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T. 8.  et al. 2009. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature 461:7265819–22 [Google Scholar]
  9. Yan J, Li B, Lin B, Lee PT, Chung TH. 9.  et al. 2016. EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma. Blood 128:7948–58 [Google Scholar]
  10. Wegrzyn J, Potla R, Chwae Y-J, Sepuri NBV, Zhang Q. 10.  et al. 2009. Function of mitochondrial Stat3 in cellular respiration. Science 323:5915793–97 [Google Scholar]
  11. Vainchenker W, Constantinescu SN. 11.  2013. JAK/STAT signaling in hematological malignancies. Oncogene 32:212601–13 [Google Scholar]
  12. Migone TS, Lin JX, Cereseto A, Mulloy JC, O'Shea JJ. 12.  et al. 1995. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269:522079–81 [Google Scholar]
  13. Koskela HLM, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H. 13.  et al. 2012. Somatic STAT3 mutations in large granular lymphocytic leukemia. N. Engl. J. Med. 366:201905–913 [Google Scholar]
  14. Jerez A, Clemente MJ, Makishima H, Koskela H, LeBlanc F. 14.  et al. 2012. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood 120:153048–57 [Google Scholar]
  15. Ohgami RS, Ma L, Merker JD, Martinez B, Zehnder JL, Arber DA. 15.  2013. STAT3 mutations are frequent in CD30+ T-cell lymphomas and T-cell large granular lymphocytic leukemia. Leukemia 27:112244–47 [Google Scholar]
  16. Crescenzo R, Abate F, Lasorsa E, Tabbo F, Gaudiano M. 16.  et al. 2015. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27:4516–32 [Google Scholar]
  17. Chiarle R, Simmons WJ, Cai HY, Dhall G, Zamo A. 17.  et al. 2005. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat. Med. 11:6623–29 [Google Scholar]
  18. Khoury JD, Medeiros LJ, Rassidakis GZ, Yared MA, Tsioli P. 18.  et al. 2003. Differential expression and clinical significance of tyrosine-phosphorylated STAT3 in ALK+ and ALK anaplastic large cell lymphoma. Clin. Cancer Res. 9:103692–699 [Google Scholar]
  19. Kucuk C, Jiang B, Hu XZ, Gaulard P, Zhang Y. 19.  et al. 2013. Frequent activating mutations of JAK-STAT pathway genes in natural killer cell lymphomas. Blood 122:21812 Abstr. [Google Scholar]
  20. Bouchekioua A, Scourzic L, de Wever O, Zyang Y, Cervera P. 20.  et al. 2014. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia 28:2338–48 [Google Scholar]
  21. Coppo P, Gouilleux-Gruart V, Huang Y, Bouhlal H, Bouamar H. 21.  et al. 2009. STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma. Leukemia 23:91667–678 [Google Scholar]
  22. Koo GC, Tan SY, Tang T, Poon SL, Allen GE. 22.  et al. 2012. Janus kinase 3-activating mutations identified in natural/killer/T-cell lymphoma. Cancer Discov 2:7591–97 [Google Scholar]
  23. Küçük C, Jiang B, Hu XZ, Zhang WY, Chan JKC. 23.  et al. 2015. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat. Commun. 6:6025 [Google Scholar]
  24. Nicolae A, Xi L, Pittaluga S, Abdullaev Z, Pack SD. 24.  et al. 2014. Frequent STAT5B mutations in γδ hepatosplenic T-cell lymphomas. Leukemia 28:112244–48 [Google Scholar]
  25. Bergmann AK, Schneppenheim S, Seifert M, Betts MJ, Haake A. 25.  et al. 2014. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer 53:4309–16 [Google Scholar]
  26. Kiel MJ, Velusamy T, Rolland D, Sahasrabuddhe AA, Chung F. 26.  et al. 2014. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood 124:91460–72 [Google Scholar]
  27. Bellanger D, Jacquemin V, Chopin M, Pierron G, Bernard OA. 27.  et al. 2014. Recurrent JAK1 and JAK3 somatic mutations in T-cell prolymphocytic leukemia. Leukemia 28:2417–19 [Google Scholar]
  28. Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q. 28.  et al. 2001. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia 15:5787–93 [Google Scholar]
  29. Zhang Q, Nowak I, Vonderheid EC, Rook AH, Kadin ME. 29.  et al. 1996. Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. PNAS 93:179148–53 [Google Scholar]
  30. Choi J, Goh G, Walradt T, Hong BS, Bunick CG. 30.  et al. 2015. Genomic landscape of cutaneous T cell lymphoma. Nat. Genet. 47:91011–19 [Google Scholar]
  31. Zhang JH, Ding L, Holmfeldt L, Wu G, Heatley SL. 31.  et al. 2012. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481:7380157–63 [Google Scholar]
  32. Odejide O, Weigert O, Lane AA. 32.  2014. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123:91293–96 [Google Scholar]
  33. Takemoto S, Mulloy JC, Cereseto A, Migone TS, Patel BKR. 33.  et al. 1997. Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. PNAS 94:2513897–902 [Google Scholar]
  34. Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T. 34.  et al. 2015. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat. Genet. 47:111304–15 [Google Scholar]
  35. Lacronique V, Boureux A, DellaValle V, Poirel H, Quang CT. 35.  et al. 1997. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278:53411309–12 [Google Scholar]
  36. Schwaller J, Parganas E, Wang DM, Cain D, Aster JC. 36.  et al. 2000. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol. Cell 6:3693–704 [Google Scholar]
  37. Carron C, Cormier F, Janin A, Lacronique V, Giovannini M. 37.  et al. 2000. TEL-JAK2 transgenic mice develop T-cell leukemia. Blood 95:123891–99 [Google Scholar]
  38. Feldman AL, Vasmatzis G, Asmann YW, Davila J, Middha S. 38.  et al. 2013. Novel TRAF1-ALK fusion identified by deep RNA sequencing of anaplastic large cell lymphoma. Genes Chromosomes Cancer 52:111097–102 [Google Scholar]
  39. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N. 39.  et al. 2005. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:94641054–61 [Google Scholar]
  40. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G. 40.  et al. 2005. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:4387–97 [Google Scholar]
  41. Kralovics R, Passamonti F, Buser AS, Teo S, Tiedt R. 41.  et al. 2005. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352:171779–90 [Google Scholar]
  42. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F. 42.  et al. 2005. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:70371144–48 [Google Scholar]
  43. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. 43.  2015. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66:311–28 [Google Scholar]
  44. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R. 44.  et al. 2012. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl. J. Med. 366:9787–98 [Google Scholar]
  45. Firwana B, Sonbol MB, Diab M, Raza S, Hasan R. 45.  et al. 2016. Tyrosine kinase inhibitors as a first-line treatment in patients with newly diagnosed chronic myeloid leukemia in chronic phase: a mixed-treatment comparison. Int. J. Cancer 138:61545–53 [Google Scholar]
  46. O'Shea JJ, Holland SM, Staudt LM. 46.  2013. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 368:2161–70 [Google Scholar]
  47. Schatz JH, Horwitz SM, Lunning MA, Dolgalev I, Huberman K. 47.  et al. 2013. Next-generation sequencing suggests complex, heterogeneous pathogenesis in peripheral T-cell lymphoma unspecified. Blood 122:21843 Abstr. [Google Scholar]
  48. Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, O'Shea JJ. 48.  2008. Therapeutic targeting of Janus kinases. Immunol. Rev. 223:132–42 [Google Scholar]
  49. Ju W, Zhang ML, Jiang JK, Thomas CJ, Oh U. 49.  et al. 2011. CP-690,550, a therapeutic agent, inhibits cytokine-mediated Jak3 activation and proliferation of T cells from patients with ATL and HAM/TSP. Blood 117:61938–46 [Google Scholar]
  50. Wei M, Koshy N, van Besien K, Inghirami G, Horwitz SM. 50.  2015. Refractory T-cell prolymphocytic leukemia with JAK3 mutation: in vitro and clinical synergy of tofacitinib and ruxolitinib. Blood 126:235486 Abstr. [Google Scholar]
  51. Conlon KC, Waldmann TA. 51.  2016. Ruxolitinib for adult T-cell leukemia Clin. Study Rec. NCT01712659, updated Sep. 28. Natl. Inst. Health. https://clinicaltrials.gov/ct2/show/NCT01712659 [Google Scholar]
  52. Zamo A, Chiarle R, Piva R, Howes J, Fan Y. 52.  et al. 2002. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21:71038–47 [Google Scholar]
  53. Roskoski R Jr.. 53.  2013. Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol. Res. 68:168–94 [Google Scholar]
  54. Chen J, Petrus M, Bryant BR, Nguyen VP, Stamer M. 54.  et al. 2008. Induction of the IL-9 gene by HTLV-1 Tax stimulates the spontaneous proliferation of primary adult T-cell leukemia cells by a paracrine mechanism. Blood 111:105163–72 [Google Scholar]
  55. Chen J, Petrus M, Bryant BR, Nguyen VP, Goldman CK. 55.  et al. 2010. Autocrine/paracrine cytokine stimulation of leukemic cell proliferation in smoldering and chronic adult T-cell leukemia. Blood 116:265948–56 [Google Scholar]
  56. Filippakopoulos P, Muller S, Knapp S. 56.  2009. SH2 domains: modulators of nonreceptor tyrosine kinase activity. Curr. Opin. Struct. Biol. 19:6643–49 [Google Scholar]
  57. Heim MH, Kerr IM, Stark GR, Darnell JE. 57.  1995. Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Sci 267:52021347–49 [Google Scholar]
  58. McGirt LY, Jia P, Baerenwald DA, Duszynski RJ, Dahlman KB. 58.  et al. 2015. Whole-genome sequening reveals oncogenic mutations in mycosis fungoides. Blood 126:4508–19 [Google Scholar]
  59. Rajala HLM, Eldfors S, Kuusanmaki H, van Adrichem AJ, Olson T. 59.  et al. 2013. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood 121:224541–50 [Google Scholar]
  60. Rajala HLM, Porkka K, Maciejewski JP, Loughran TP, Mustjoki S. 60.  2014. Uncovering the pathogenesis of large granular lymphocytic leukemia-novel STAT3 and STAT5b mutations. Ann. Med. 46:3114–22 [Google Scholar]
  61. Saharinen P, Silvennoinen O. 61.  2002. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J. Biol. Chem. 277:4947954–63 [Google Scholar]
  62. Saharinen P, Takaluoma K, Silvennoinen O. 62.  2000. Regulation of the Jak2 tyrosine kinase by its pseudo-kinase domain. Mol. Cell Biol. 20:103387–95 [Google Scholar]
  63. Elliott NE, Cleveland SM, Grann V, Janik J, Waldmann TA, Dave UP. 63.  2011. FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma. Blood 118:143911–21 [Google Scholar]
  64. Yamashita Y, Shimada A, Yamada T, Yamaji K, Hon T. 64.  et al. 2013. IKZF1 and CRLF2 gene alterations correlate with poor prognosis in Japanese BCR-ABL1-negative high-risk B-cell precursor acute lymphoblastic leukemia. Pediatr. Blood Cancer 60:101587–92 [Google Scholar]
  65. Flex E, Petrangeli V, Stella L, Chiaretti S, Hornakova T. 65.  et al. 2008. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J. Exp. Med. 205:4751–58 [Google Scholar]
  66. Mullighan CG, Zhang JH, Harvey RC, Collins-Underwood JR, Schulman BA. 66.  et al. 2009. JAK mutations in high-risk childhood acute lymphoblastic leukemia. PNAS 106:239414–18 [Google Scholar]
  67. Lu XH, Levine R, Tong W, Wernig G, Pikman Y. 67.  et al. 2005. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. PNAS 102:5218962–67 [Google Scholar]
  68. Hornakova T, Staerk J, Royer Y, Flex E, Tartaglia M. 68.  et al. 2009. Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor α homodimers. J. Biol. Chem. 284:116773–81 [Google Scholar]
  69. Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I. 69.  et al. 2011. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias. J. Exp. Med. 208:5901 [Google Scholar]
  70. Zenatti PP, Ribeiro D, Li WQ, Zuurbier L, Silva MC. 70.  et al. 2011. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat. Genet. 43:10932–39 [Google Scholar]
  71. Tendler CL, Greenberg SJ, Blattner WA, Manns A, Murphy E. 71.  et al. 1990. Transactivation of interleukin 2 and its receptor induces immune activation in human T-cell lymphotropic virus type I-associated myelopathy: pathogenic implications and a rationale for immunotherapy. PNAS 87:135218–22 [Google Scholar]
  72. Azimi N, Brown K, Bamford RN, Tagaya Y, Siebenlist U, Waldmann TA. 72.  1998. Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-κB site. PNAS 95:52452–57 [Google Scholar]
  73. Leroy S, Dubois S, Tenaud I, Chebassier N, Godard A. 73.  et al. 2001. Interleukin-15 expression in cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome). Br. J. Dermatol. 144:51016–23 [Google Scholar]
  74. Döbbeling U, Dummer R, Laine E, Potoczna N, Gin JZ, Burg G. 74.  1998. Interleukin-15 is an autocrine/paracrine viability factor for cutaneous T-cell lymphoma cells. Blood 92:1252–58 [Google Scholar]
  75. Mishra A, Kwiatkowski S, Sullivan L, Grinshpun L, Russo G. 75.  et al. 2015. Epigenetic disruption of ZEB1 binding causes constitutive activation of IL-15 in cutaneous T-cell lymphoma. Blood 126:232 [Google Scholar]
  76. Nakahata S, Yamazaki S, Nakauchi H, Morishita K. 76.  2010. Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-β1-mediated growth suppression in adult T-cell leukemia/lymphoma. Oncogene 29:294157–69 [Google Scholar]
  77. Jain S, Chen J, Nicolae A, Wang HS, Shin DM. 77.  et al. 2015. IL-21-driven neoplasms in SJL mice mimic some key features of human angioimmunoblastic T-cell lymphoma. Am. J. Pathol. 185:113102–14 [Google Scholar]
  78. Kleppe M, Lahortiga I, El Chaar T, De Keersmaecker K, Mentens N. 78.  et al. 2010. Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat. Genet. 42:6530–35 [Google Scholar]
  79. Kleppe M, Soulier J, Asnafi V, Mentens N, Hornakova T. 79.  et al. 2011. PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia. Blood 117:267090–98 [Google Scholar]
  80. Porcu M, Kleppe M, Gianfelici V, Geerdens E, De Keersmaecker K. 80.  et al. 2012. Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood 119:194476–79 [Google Scholar]
  81. Alexander WS. 81.  2002. Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2:6410–16 [Google Scholar]
  82. Küçük C, Hu X, Jiang B, Klinkebiel D, Geng HM. 82.  et al. 2015. Global promoter methylation analysis reveals novel candidate tumor suppressor genes in natural killer cell lymphoma. Clin. Can. Res. 21:71699–711 [Google Scholar]
  83. Baslund B, Tvede N, Danneskiold-Samsoe B, Larsson P, Panayi G. 83.  et al. 2005. Targeting interleukin-15 in patients with rheumatoid arthritis: a proof-of-concept study. Arthritis Rheum 52:92686–692 [Google Scholar]
  84. Waldmann TA. 84.  2007. Anti-Tac (daclizumab, Zenapax) in the treatment of leukemia, autoimmune diseases, and in the prevention of allograft rejection: a 25-year personal odyssey. J. Clin. Immunol. 27:11–18 [Google Scholar]
  85. Berkowitz JL, Janik JE, Stewart DM, Jaffe ES, Stetler-Stevenson M. 85.  et al. 2014. Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma. Clin. Immunol. 155:2176–87 [Google Scholar]
  86. Nata T, Basheer A, Cocchi F, van Besien R, Massoud R. 86.  et al. 2015. Targeting the binding interface on a shared receptor subunit of a cytokine family enables the inhibition of multiple member cytokines with selectable target spectrum. J. Biol. Chem. 290:3722338–51 [Google Scholar]
  87. Mitra S, Ring AM, Amarnath S, Spangler JB, Li P. 87.  et al. 2015. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42:5826–38 [Google Scholar]
  88. O'Shea JJ, Notarangelo LD, Johnston JA, Candotti F. 88.  1997. Advances in the understanding of cytokine signal transduction: the role of Jaks and STATs in immunoregulation and the pathogenesis of immunodeficiency. J. Clin. Immunol. 17:6431–47 [Google Scholar]
  89. Leonard WJ, O'Shea JJ. 89.  1998. JAKS AND STATS: Biological implications. Annu. Rev. Immunol. 16:293–322 [Google Scholar]
  90. Bilori B, Thota S, Clemente MJ, Patel B, Jerez A. 90.  et al. 2015. Tofacitinib as a novel salvage therapy for refractory T-cell large granular lymphocytic leukemia. Leukemia 29:122427–29 [Google Scholar]
  91. Haan C, Rolvering C, Raulf F, Kapp M, Druckes P. 91.  et al. 2011. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chem. Biol. 18:3314–23 [Google Scholar]
  92. Smith GA, Uchida K, Weiss A, Taunton J. 92.  2016. Essential biphasic role for JAK3 catalytic activity in IL-2 receptor signaling. Nat. Chem. Biol. 12:5373–79 [Google Scholar]
  93. Buettner R, Mora LB, Jove R. 93.  2002. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res. 8:4945–54 [Google Scholar]
  94. Zhang ML, Griner LAM, Ju W, Duveau DY, Guha R. 94.  et al. 2015. Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2-dependent adult T-cell leukemia. PNAS 112:4012480–85 [Google Scholar]
  95. Schatz JH, Horwitz SM, Teruya-Feldstein J, Lunning MA, Viale A. 95.  et al. 2015. Targeting mutational profiling of peripheral T-cell lymphoma not otherwise specified highlights new mechanisms in a heterogeneous pathogenesis. Leukemia 29:1237–41 [Google Scholar]
/content/journals/10.1146/annurev-immunol-110416-120628
Loading
/content/journals/10.1146/annurev-immunol-110416-120628
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error