1932

Abstract

An estimated 35 million people worldwide are infected with HIV, yet a widely applicable cure strategy remains elusive. Recent case reports have suggested that curing HIV infection is possible, renewing excitement about research efforts. We describe those cases and discuss their relevance to the global HIV epidemic. We also review ongoing cure strategies that are transitioning from the lab to the clinic, and the assays and clinical assessments that can be used to evaluate cure interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-011514-023043
2016-01-14
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/med/67/1/annurev-med-011514-023043.html?itemId=/content/journals/10.1146/annurev-med-011514-023043&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Antiretroviral Therapy Cohort Collaboration 2008. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet 372:9635293–99 [Google Scholar]
  2. Al-Dakkak I, Patel S, McCann E. 2.  et al. 2013. The impact of specific HIV treatment-related adverse events on adherence to antiretroviral therapy: a systematic review and meta-analysis. AIDS Care 25:4400–14 [Google Scholar]
  3. Bangsberg DR, Acosta EP, Gupta R. 3.  et al. 2006. Adherence-resistance relationships for protease and non-nucleoside reverse transcriptase inhibitors explained by virological fitness. AIDS 20:2223–31 [Google Scholar]
  4. Deeks SG, Tracy R, Douek DC. 4.  2013. Systemic effects of inflammation on health during chronic HIV infection. Immunity 39:4633–45 [Google Scholar]
  5. Harrigan PR, Whaley M, Montaner JS. 5.  1999. Rate of HIV-1 RNA rebound upon stopping antiretroviral therapy. AIDS 13:8F59–62 [Google Scholar]
  6. Blankson JN, Persaud D, Siliciano RF. 6.  2002. The challenge of viral reservoirs in HIV-1 infection. Annu. Rev. Med. 53:557–93 [Google Scholar]
  7. Chun TW, Finzi D, Margolick J. 7.  et al. 1995. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat. Med. 1:121284–90 [Google Scholar]
  8. Finzi D, Hermankova M, Pierson T. 8.  et al. 1997. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278:53411295–300 [Google Scholar]
  9. Wei X, Ghosh SK, Taylor ME. 9.  et al. 1995. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:6510117–22 [Google Scholar]
  10. Perelson AS, Essunger P, Cao Y. 10.  et al. 1997. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:6629188–91 [Google Scholar]
  11. Siliciano RF, Greene WC. 11.  2011. HIV latency. Cold Spring Harb. Perspect. Med. 1:1a007096 [Google Scholar]
  12. Siliciano JD, Kajdas J, Finzi D. 12.  et al. 2003. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9:6727–28 [Google Scholar]
  13. Crooks AM, Bateson R, Cope AB. 13.  et al. 2015. Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J. Infect. Dis. pii:jiv218 [Google Scholar]
  14. Dinoso JB, Kim SY, Wiegand AM. 14.  et al. 2009. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. PNAS 106:239403–8 [Google Scholar]
  15. Gandhi RT, Zheng L, Bosch RJ. 15.  et al. 2010. The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLOS Med. 7:8e1000321 [Google Scholar]
  16. Guadalupe M, Reay E, Sankaran S. 16.  et al. 2003. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 77:2111708–17 [Google Scholar]
  17. Chun TW, Nickle DC, Justement JS. 17.  et al. 2008. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J. Infect. Dis. 197:5714–20 [Google Scholar]
  18. Valcour V, Sithinamsuwan P, Letendre S, Ances B. 18.  2011. Pathogenesis of HIV in the central nervous system. Curr. HIV/AIDS Rep. 8:154–61 [Google Scholar]
  19. Walter BL, Wehrly K, Swanstrom R. 19.  et al. 2005. Role of low CD4 levels in the influence of human immunodeficiency virus type 1 envelope V1 and V2 regions on entry and spread in macrophages. J. Virol. 79:84828–37 [Google Scholar]
  20. Gartner S, Markovits P, Markovitz DM. 20.  et al. 1986. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:4760215–19 [Google Scholar]
  21. Brown A, Zhang H, Lopez P. 21.  et al. 2006. In vitro modeling of the HIV-macrophage reservoir. J. Leukoc. Biol. 80:51127–35 [Google Scholar]
  22. Calantone N, Wu F, Klase Z. 22.  et al. 2014. Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells. Immunity 41:3493–502 [Google Scholar]
  23. Sigal A, Baltimore D. 23.  2012. As good as it gets? The problem of HIV persistence despite antiretroviral drugs. Cell Host Microbe 12:2132–38 [Google Scholar]
  24. Jolly C, Kashefi K, Hollinshead M, Sattentau QJ. 24.  2004. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199:2283–93 [Google Scholar]
  25. Sigal A, Kim JT, Balazs AB. 25.  et al. 2011. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477:736295–98 [Google Scholar]
  26. Hill AL, Rosenbloom DI, Fu F. 26.  et al. 2014. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. PNAS 111:3713475–80 [Google Scholar]
  27. Dieffenbach CW, Fauci AS. 27.  2011. Thirty years of HIV and AIDS: future challenges and opportunities. Ann. Intern. Med. 154:11766–71 [Google Scholar]
  28. Eisele E, Siliciano RF. 28.  2012. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37:3377–88 [Google Scholar]
  29. Hutter G, Nowak D, Mossner M. 29.  et al. 2009. Long-term control of HIV by CCR5 delta32/delta32 stem-cell transplantation. N. Engl. J. Med. 360:7692–98 [Google Scholar]
  30. Liu R, Paxton WA, Choe S. 30.  et al. 1996. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:3367–77 [Google Scholar]
  31. Henrich TJ, Hanhauser E, Marty FM. 31.  et al. 2014. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann. Intern. Med. 161:5319–27 [Google Scholar]
  32. Persaud D, Gay H, Ziemniak C. 32.  et al. 2013. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N. Engl. J. Med. 369:191828–35 [Google Scholar]
  33. Luzuriaga K, Gay H, Ziemniak C. 33.  et al. 2015. Viremic relapse after HIV-1 remission in a perinatally infected child. N. Engl. J. Med. 372:8786–88 [Google Scholar]
  34. Martinez-Bonet M, Puertas MC, Fortuny C. 34.  et al. 2015. Establishment and replenishment of the viral reservoir in perinatally HIV-1-infected children initiating very early antiretroviral therapy. Clin. Infect. Dis. 61:71169–78 [Google Scholar]
  35. Chun TW, Stuyver L, Mizell SB. 35.  et al. 1997. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. PNAS 94:2413193–97 [Google Scholar]
  36. Buckheit RW 3rd, Allen TG, Alme A. 36.  et al. 2012. Host factors dictate control of viral replication in two HIV-1 controller–chronic progressor transmission pairs. Nat. Commun. 3:716 [Google Scholar]
  37. Blankson JN, Bailey JR, Thayil S. 37.  et al. 2007. Isolation and characterization of replication-competent human immunodeficiency virus type 1 from a subset of elite suppressors. J. Virol. 81:52508–18 [Google Scholar]
  38. Metcalf Pate KA, Pohlmeyer CW, Walker-Sperling VE. 38.  et al. 2015. A murine viral outgrowth assay to detect residual HIV type 1 in patients with undetectable viral loads. J. Infect. Dis. 212(9):1387–96 [Google Scholar]
  39. Saez-Cirion A, Lacabaratz C, Lambotte O. 39.  et al. 2007. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. PNAS 104:166776–81 [Google Scholar]
  40. Emu B, Sinclair E, Hatano H. 40.  et al. 2008. HLA class I-restricted T-cell responses may contribute to the control of human immunodeficiency virus infection, but such responses are not always necessary for long-term virus control. J. Virol. 82:115398–407 [Google Scholar]
  41. Saez-Cirion A, Bacchus C, Hocqueloux L. 41.  et al. 2013. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study. PLOS Pathog. 9:3e1003211 [Google Scholar]
  42. Moir S, Buckner CM, Ho J. 42.  et al. 2010. B cells in early and chronic HIV infection: evidence for preservation of immune function associated with early initiation of antiretroviral therapy. Blood 116:255571–79 [Google Scholar]
  43. Hunt PW, Brenchley J, Sinclair E. 43.  et al. 2008. Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J. Infect. Dis. 197:1126–33 [Google Scholar]
  44. Crowell TA, Gebo KA, Blankson JN. 44.  et al. 2015. Hospitalization rates and reasons among HIV elite controllers and persons with medically controlled HIV infection. J. Infect. Dis. 211:111692–702 [Google Scholar]
  45. Strain MC, Little SJ, Daar ES. 45.  et al. 2005. Effect of treatment, during primary infection, on establishment and clearance of cellular reservoirs of HIV-1. J. Infect. Dis. 191:91410–18 [Google Scholar]
  46. Jain V, Hartogensis W, Bacchetti P. 46.  et al. 2013. Antiretroviral therapy initiated within 6 months of HIV infection is associated with lower T-cell activation and smaller HIV reservoir size. J. Infect. Dis. 208:81202–11 [Google Scholar]
  47. Chun TW, Justement JS, Moir S. 47.  et al. 2007. Decay of the HIV reservoir in patients receiving antiretroviral therapy for extended periods: implications for eradication of virus. J. Infect. Dis. 195:121762–64 [Google Scholar]
  48. Whitney JB, Hill AL, Sanisetty S. 48.  et al. 2014. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512:751274–77 [Google Scholar]
  49. Margolick JB, Imteyaz H, Gallant JE. 49.  et al. 2010. Prolonged viral suppression without therapy in an HIV-1 seroconverter following early antiretroviral therapy and daily interleukin-2. AIDS 24:6932–35 [Google Scholar]
  50. Deeks SG. 50.  2012. HIV: shock and kill. Nature 487:7408439–40 [Google Scholar]
  51. Xing S, Siliciano RF. 51.  2013. Targeting HIV latency: pharmacologic strategies toward eradication. Drug Discov. Today 18:11–12541–51 [Google Scholar]
  52. Manson McManamy ME, Hakre S, Verdin EM, Margolis DM. 52.  2014. Therapy for latent HIV-1 infection: the role of histone deacetylase inhibitors. Antivir. Chem. Chemother. 23:4145–49 [Google Scholar]
  53. Bartholomeeusen K, Fujinaga K, Xiang Y, Peterlin BM. 53.  2013. Histone deacetylase inhibitors (HDACis) that release the positive transcription elongation factor b (P-TEFb) from its inhibitory complex also activate HIV transcription. J. Biol. Chem. 288:2014400–7 [Google Scholar]
  54. Wei DG, Chiang V, Fyne E. 54.  et al. 2014. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLOS Pathog. 10:4e1004071 [Google Scholar]
  55. Archin NM, Liberty AL, Kashuba AD. 55.  et al. 2012. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487:7408482–85 [Google Scholar]
  56. Cillo AR, Sobolewski MD, Bosch RJ. 56.  et al. 2014. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. PNAS 111:197078–83 [Google Scholar]
  57. Shan L, Deng K, Shroff NS. 57.  et al. 2012. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36:3491–501 [Google Scholar]
  58. Esparza J. 58.  2013. A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 31:353502–18 [Google Scholar]
  59. West AP Jr, Scharf L, Scheid JF. 59.  et al. 2014. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 156:4633–48 [Google Scholar]
  60. Chun TW, Murray D, Justement JS. 60.  et al. 2014. Broadly neutralizing antibodies suppress HIV in the persistent viral reservoir. PNAS 111:3613151–56 [Google Scholar]
  61. Caskey M, Klein F, Lorenzi JC. 61.  et al. 2015. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522:7557487–91 [Google Scholar]
  62. Halper-Stromberg A, Lu CL, Klein F. 62.  et al. 2014. Broadly neutralizing antibodies and viral inducers decrease rebound from HIV-1 latent reservoirs in humanized mice. Cell 158:5989–99 [Google Scholar]
  63. Vaccari M, Poonam P, Franchini G. 63.  2010. Phase III HIV vaccine trial in Thailand: a step toward a protective vaccine for HIV. Expert Rev. Vaccines 9:9997–1005 [Google Scholar]
  64. Kim JH, Excler JL, Michael NL. 64.  2015. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu. Rev. Med. 66:423–37 [Google Scholar]
  65. Hansen SG, Ford JC, Lewis MS. 65.  et al. 2011. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473:7348523–27 [Google Scholar]
  66. Hansen SG, Piatak M Jr, Ventura AB. 66.  et al. 2013. Immune clearance of highly pathogenic SIV infection. Nature 502:7469100–4 [Google Scholar]
  67. Manjunath N, Yi G, Dang Y, Shankar P. 67.  2013. Newer gene editing technologies toward HIV gene therapy. Viruses 5:112748–66 [Google Scholar]
  68. Tebas P, Stein D, Tang WW. 68.  et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370:10901–10 [Google Scholar]
  69. Zhu W, Lei R, Le Duff Y. 69.  et al. 2015. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12:22 [Google Scholar]
  70. Hu W, Kaminski R, Yang F. 70.  et al. 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. PNAS 111:3111461–66 [Google Scholar]
  71. Joseph A, Zheng JH, Follenzi A. 71.  et al. 2008. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J. Virol. 82:63078–89 [Google Scholar]
  72. Siliciano JD, Siliciano RF. 72.  2005. Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals. Methods Mol. Biol. 304:3–15 [Google Scholar]
  73. Ho YC, Shan L, Hosmane NN. 73.  et al. 2013. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155:3540–51 [Google Scholar]
  74. Rouzioux C, Melard A, Avettand-Fenoel V. 74.  2014. Quantification of total HIV1-DNA in peripheral blood mononuclear cells. Methods Mol. Biol. 1087:261–70 [Google Scholar]
  75. Strain MC, Lada SM, Luong T. 75.  et al. 2013. Highly precise measurement of HIV DNA by droplet digital PCR. PLOS ONE 8:4e55943 [Google Scholar]
  76. Eriksson S, Graf EH, Dahl V. 76.  et al. 2013. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLOS Pathog. 9:2e1003174 [Google Scholar]
  77. Laird GM, Eisele EE, Rabi SA. 77.  et al. 2013. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLOS Pathog. 9:5e1003398 [Google Scholar]
  78. Shan L, Rabi SA, Laird GM. 78.  et al. 2013. A novel PCR assay for quantification of HIV-1 RNA. J. Virol. 87:116521–25 [Google Scholar]
  79. Bullen CK, Laird GM, Durand CM. 79.  et al. 2014. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat. Med. 20:4425–29 [Google Scholar]
  80. 80. Strategies for Management of Antiretroviral Therapy (SMART) Study Group El-Sadr WM, Lundgren J, et al. 2006. CD4+ count-guided interruption of antiretroviral treatment. N. Engl. J. Med. 355:222283–96 [Google Scholar]
  81. Fox Z, Phillips A, Cohen C. 81.  et al. 2008. Viral resuppression and detection of drug resistance following interruption of a suppressive non-nucleoside reverse transcriptase inhibitor-based regimen. AIDS 22:172279–89 [Google Scholar]
  82. Rothenberger MK, Keele BF, Wietgrefe SW. 82.  et al. 2015. Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. PNAS 112:10E1126–34 [Google Scholar]
/content/journals/10.1146/annurev-med-011514-023043
Loading
/content/journals/10.1146/annurev-med-011514-023043
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error