1932

Abstract

The worldwide pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the unprecedented pace of development of multiple vaccines. This review evaluates how adenovirus (Ad) vector platforms have been leveraged in response to this pandemic. Ad vectors have been used in the past for vaccines against other viruses, most notably HIV and Ebola, but they never have been produced, distributed, or administered to humans at such a large scale. Several different serotypes of Ads encoding SARS-CoV-2 Spike have been tested and found to be efficacious against COVID-19. As vaccine rollouts continue and the number of people receiving these vaccines increases, we will continue to learn about this vaccine platform for COVID-19 prevention and control.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-012621-102252
2022-01-27
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/med/73/1/annurev-med-012621-102252.html?itemId=/content/journals/10.1146/annurev-med-012621-102252&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Wu F, Zhao S, Yu B, et al. 2020.. A new coronavirus associated with human respiratory disease in China. . Nature 579::26569
    [Google Scholar]
  2. 2. 
    Zhou P, Yang X-L, Wang X-G, et al. 2020.. A pneumonia outbreak associated with a new coronavirus of probable bat origin. . Nature 579::27073
    [Google Scholar]
  3. 3. 
    WHO (World Health Organ.). 2020.. WHO COVID-19 Dashboard. https://covid19.who.int/
    [Google Scholar]
  4. 4. 
    Lu R, Zhao X, Li J, et al. 2020.. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. . Lancet 395::56574
    [Google Scholar]
  5. 5. 
    Polack FP, Thomas SJ, Kitchin N, et al. 2020.. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. . N. Engl. J. Med. 383::260315
    [Google Scholar]
  6. 6. 
    Baden LR, El Sahly HM, Essink B, et al. 2021.. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. . N. Engl. J. Med. 384::40316
    [Google Scholar]
  7. 7. 
    Al Kaabi N, Zhang Y, Xia S, et al. 2021.. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. . JAMA 326:(1):3545
    [Google Scholar]
  8. 8. 
    Tanriover MD, Doğanay HL, Akova M, et al. 2021.. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. . Lancet 385::87584
    [Google Scholar]
  9. 9. 
    Heath PT, Galiza EP, Baxter DN, et al. 2021.. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. . N. Engl. J. Med. 385::117283
    [Google Scholar]
  10. 10. 
    Sadoff J, Gray G, Vandebosch A, et al. 2021.. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. . N. Engl. J. Med. 384::2187201
    [Google Scholar]
  11. 11. 
    Voysey M, Clemens SAC, Madhi SA, et al. 2021.. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. . Lancet 397::99111
    [Google Scholar]
  12. 12. 
    Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. 2021.. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. . Lancet 397::67181
    [Google Scholar]
  13. 13. 
    Zhu F-C, Guan X-H, Li Y-H, et al. 2020.. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. . Lancet 396::47988
    [Google Scholar]
  14. 14. 
    Wrapp D, Wang N, Corbett KS, et al. 2020.. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. . Science 367::126063
    [Google Scholar]
  15. 15. 
    Li F. 2016.. Structure, function, and evolution of coronavirus spike proteins. . Annu. Rev. Virol. 3::23761
    [Google Scholar]
  16. 16. 
    Bosch BJ, Van der Zee R, De Haan CA, Rottier PJ. 2003.. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. . J. Virol. 77::880111
    [Google Scholar]
  17. 17. 
    Brouwer PJ, Caniels TG, van der Straten K, et al. 2020.. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. . Science 369::64350
    [Google Scholar]
  18. 18. 
    Ju B, Zhang Q, Ge J, et al. 2020.. Human neutralizing antibodies elicited by SARS-CoV-2 infection. . Nature 584::11519
    [Google Scholar]
  19. 19. 
    Kreer C, Zehner M, Weber T, et al. 2020.. Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients. . Cell 182::84354.e12
    [Google Scholar]
  20. 20. 
    Robbiani DF, Gaebler C, Muecksch F, et al. 2020.. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. . Nature 584::43742
    [Google Scholar]
  21. 21. 
    Wec AZ, Wrapp D, Herbert AS, et al. 2020.. Broad neutralization of SARS-related viruses by human monoclonal antibodies. . Science 369::73136
    [Google Scholar]
  22. 22. 
    Zost SJ, Gilchuk P, Chen RE, et al. 2020.. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. . Nat. Med. 26::142227
    [Google Scholar]
  23. 23. 
    Bootz A, Karbach A, Spindler J, et al. 2017.. Protective capacity of neutralizing and non-neutralizing antibodies against glycoprotein B of cytomegalovirus. . PLOS Pathog. 13::e1006601
    [Google Scholar]
  24. 24. 
    McMahan K, Yu J, Mercado NB, et al. 2021.. Correlates of protection against SARS-CoV-2 in rhesus macaques. . Nature 590::63034
    [Google Scholar]
  25. 25. 
    Gebre MS, Brito LA, Tostanoski LH, et al. 2021.. Novel approaches for vaccine development. . Cell 184::1589603
    [Google Scholar]
  26. 26. 
    Ginsberg HS. 1984.. The Adenoviruses. Berlin:: Springer
    [Google Scholar]
  27. 27. 
    Wold W, Horwitz M. 2007.. Adenoviruses. . In Fields Virology, ed. DM Knipe, PM Howley , pp. 2395436. Philadelphia:: Lippincott Williams & Wilkins
    [Google Scholar]
  28. 28. 
    HAdV Working Group. 2021.. HAdV Working Group. http://hadvwg.gmu.edu/
    [Google Scholar]
  29. 29. 
    Crystal RG, McElvaney NG, Rosenfeld MA, et al. 1994.. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. . Nat. Genet. 8::4251
    [Google Scholar]
  30. 30. 
    Lemarchand P, Jaffe HA, Danel C, et al. 1992.. Adenovirus-mediated transfer of a recombinant human α1-antitrypsin cDNA to human endothelial cells. . PNAS 89::648286
    [Google Scholar]
  31. 31. 
    Crystal RG. 2014.. Adenovirus: the first effective in vivo gene delivery vector. . Hum. Gene Ther. 25::311
    [Google Scholar]
  32. 32. 
    Iacobelli-Martinez M, Nemerow GR. 2007.. Preferential activation of Toll-like receptor nine by CD46-utilizing adenoviruses. . J. Virol. 81::130512
    [Google Scholar]
  33. 33. 
    Sallusto F, Lanzavecchia A, Araki K, Ahmed R. 2010.. From vaccines to memory and back. . Immunity 33::45163
    [Google Scholar]
  34. 34. 
    Salisch NC, Stephenson KE, Williams K, et al. 2021.. A double-blind, randomized, placebo-controlled phase 1 study of Ad26.ZIKV.001, an Ad26-vectored anti–Zika virus vaccine. . Ann. Int. Med. 174::58594
    [Google Scholar]
  35. 35. 
    Baden LR, Stieh DJ, Sarnecki M, et al. 2020.. Safety and immunogenicity of two heterologous HIV vaccine regimens in healthy, HIV-uninfected adults (TRAVERSE): a randomised, parallel-group, placebo-controlled, double-blind, phase 1/2a study. . Lancet HIV 7::e688e698
    [Google Scholar]
  36. 36. 
    Pollard AJ, Launay O, Lelievre J-D, et al. 2021.. Safety and immunogenicity of a two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in adults in Europe (EBOVAC2): a randomised, observer-blind, participant-blind, placebo-controlled, phase 2 trial. . Lancet Infect. Dis. 21::493506
    [Google Scholar]
  37. 37. 
    Sadoff J, Le Gars M, Shukarev G, et al. 2021.. Interim results of a phase 1–2a trial of Ad26.COV2.S Covid-19 vaccine. . N. Engl. J. Med. 384::182435
    [Google Scholar]
  38. 38. 
    Stephenson KE, Le Gars M, Sadoff J, et al. 2021.. Immunogenicity of the Ad26.COV2.S vaccine for COVID-19. . JAMA 325::153544
    [Google Scholar]
  39. 39. 
    Dicks MD, Spencer AJ, Edwards NJ, et al. 2012.. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. . PLOS ONE 7::e40385
    [Google Scholar]
  40. 40. 
    Abbink P, Kirilova M, Boyd M, et al. 2018.. Rapid cloning of novel rhesus adenoviral vaccine vectors. . J. Virol. 92::e0192417
    [Google Scholar]
  41. 41. 
    Coughlan L. 2020.. Factors which contribute to the immunogenicity of non-replicating adenoviral vectored vaccines. . Front. Immunol. 11::909
    [Google Scholar]
  42. 42. 
    Palm A-KE, Henry C. 2019.. Remembrance of things past: long-term B cell memory after infection and vaccination. . Front. Immunol. 10::1787
    [Google Scholar]
  43. 43. 
    Danthinne X, Imperiale M. 2000.. Production of first generation adenovirus vectors: a review. . Gene Ther. 7::170714
    [Google Scholar]
  44. 44. 
    Bett AJ, Prevec L, Graham FL. 1993.. Packaging capacity and stability of human adenovirus type 5 vectors. . J. Virol. 67::591121
    [Google Scholar]
  45. 45. 
    Barouch DH, Kik SV, Weverling GJ, et al. 2011.. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. . Vaccine 29::52039
    [Google Scholar]
  46. 46. 
    Saxena M, Van TTH, Baird FJ, et al. 2013.. Pre-existing immunity against vaccine vectors—friend or foe. Microbiology 159:(Part 1):111
    [Google Scholar]
  47. 47. 
    Pichla-Gollon SL, Lin S-W, Hensley SE, et al. 2009.. Effect of preexisting immunity on an adenovirus vaccine vector: in vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo. . J. Virol. 83::556773
    [Google Scholar]
  48. 48. 
    Abbink P, Lemckert AA, Ewald BA, et al. 2007.. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. . J. Virol. 81::465463
    [Google Scholar]
  49. 49. 
    Mercado NB, Zahn R, Wegmann F, et al. 2020.. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. . Nature 586::58388
    [Google Scholar]
  50. 50. 
    Hsieh C-L, Goldsmith JA, Schaub JM, et al. 2020.. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. . Science 369::15015
    [Google Scholar]
  51. 51. 
    van Doremalen N, Lambe T, Spencer A, et al. 2020.. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. . Nature 586::57882
    [Google Scholar]
  52. 52. 
    Chandrashekar A, Liu J, Martinot AJ, et al. 2020.. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. . Science 369::81217
    [Google Scholar]
  53. 53. 
    Deng W, Bao L, Liu J, et al. 2020.. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. . Science 369::81823
    [Google Scholar]
  54. 54. 
    Rockx B, Kuiken T, Herfst S, et al. 2020.. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. . Science 368::101215
    [Google Scholar]
  55. 55. 
    Munster VJ, Feldmann F, Williamson BN, et al. 2020.. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. . Nature 585::26872
    [Google Scholar]
  56. 56. 
    Chan JF-W, Zhang AJ, Yuan S, et al. 2020.. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. . Clin. Infect. Dis. 71::242846
    [Google Scholar]
  57. 57. 
    Imai M, Iwatsuki-Horimoto K, Hatta M, et al. 2020.. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. . PNAS 117::1658795
    [Google Scholar]
  58. 58. 
    Sia SF, Yan L-M, Chin AW, et al. 2020.. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. . Nature 583::83438
    [Google Scholar]
  59. 59. 
    Kim Y-I, Kim S-G, Kim S-M, et al. 2020.. Infection and rapid transmission of SARS-CoV-2 in ferrets. . Cell Host Microbe 27::7049.e2
    [Google Scholar]
  60. 60. 
    Shi J, Wen Z, Zhong G, et al. 2020.. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. . Science 368::101620
    [Google Scholar]
  61. 61. 
    Bao L, Deng W, Huang B, et al. 2020.. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. . Nature 583::83033
    [Google Scholar]
  62. 62. 
    Dinnon KH, Leist SR, Schäfer A, et al. 2020.. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. . Nature 586::56066
    [Google Scholar]
  63. 63. 
    Dagotto G, Mercado NB, Martinez DR, et al. 2021.. Comparison of subgenomic and total RNA in SARS-CoV-2-challenged rhesus macaques. . J. Virol. 95::e02370-20
    [Google Scholar]
  64. 64. 
    Tostanoski LH, Wegmann F, Martinot AJ, et al. 2020.. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. . Nat. Med. 26::1694700
    [Google Scholar]
  65. 65. 
    Yu J, Tostanoski LH, Mercado NB, et al. 2021.. Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques. . Nature 596::42327
    [Google Scholar]
  66. 66. 
    van Doremalen N, Purushotham J, Schulz J, et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces shedding of SARS-CoV-2 D614G in rhesus macaques. . bioRxiv 426058. https://doi.org/10.1101/2021.01.09.426058
    [Crossref]
  67. 67. 
    Marsh GA, McAuley AJ, Au GG, et al. 2021.. ChAdOx1 nCoV-19 (AZD1222) vaccine candidate significantly reduces SARS-CoV-2 shedding in ferrets. . NPJ Vaccines 6::67
    [Google Scholar]
  68. 68. 
    Wu S, Zhong G, Zhang J, et al. 2020.. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. . Nat. Commun. 11::4081
    [Google Scholar]
  69. 69. 
    Logunov DY, Dolzhikova IV, Zubkova OV, et al. 2020.. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. . Lancet 396::88797
    [Google Scholar]
  70. 70. 
    Liu J, Ewald BA, Lynch DM, et al. 2008.. Magnitude and phenotype of cellular immune responses elicited by recombinant adenovirus vectors and heterologous prime-boost regimens in rhesus monkeys. . J. Virol. 82::484452
    [Google Scholar]
  71. 71. 
    Folegatti PM, Ewer KJ, Aley PK, et al. 2020.. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. . Lancet 396::46778
    [Google Scholar]
  72. 72. 
    Barrett JR, Belij-Rammerstorfer S, Dold C, et al. 2021.. Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses. . Nat. Med. 27::27988
    [Google Scholar]
  73. 73. 
    Ewer KJ, Barrett JR, Belij-Rammerstorfer S, et al. 2021.. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. . Nat. Med. 27::27078
    [Google Scholar]
  74. 74. 
    Zhu F-C, Li Y-H, Guan X-H, et al. 2020.. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. . Lancet 395::184554
    [Google Scholar]
  75. 75. 
    Madhi SA, Baillie V, Cutland CL, et al. 2021.. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. . N. Engl. J. Med. 384::188598
    [Google Scholar]
  76. 76. 
    Emary KR, Golubchik T, Aley PK, et al. 2021.. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. . Lancet 397::135162
    [Google Scholar]
  77. 77. 
    Muir K-L, Kallam A, Koepsell SA, Gundabolu K. 2021.. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination. . N. Engl. J. Med. 384::196465
    [Google Scholar]
  78. 78. 
    Sadoff J, Davis K, Douoguih M. 2021.. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination—response from the manufacturer. . N. Engl. J. Med. 384::196566
    [Google Scholar]
  79. 79. 
    Schultz NH, Sørvoll IH, Michelsen AE, et al. 2021.. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. . N. Engl. J. Med. 384::212430
    [Google Scholar]
  80. 80. 
    Greinacher A, Thiele T, Warkentin TE, et al. 2021.. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. . N. Engl. J. Med. 384::2092101
    [Google Scholar]
  81. 81. 
    Sangli S, Virani A, Cheronis N, et al. 2021.. Thrombosis with thrombocytopenia after the messenger RNA–1273 vaccine. . Ann. Int. Med. 174::148082
    [Google Scholar]
  82. 82. 
    Sanjuán R, Nebot MR, Chirico N, et al. 2010.. Viral mutation rates. . J. Virol. 84::973348
    [Google Scholar]
  83. 83. 
    Denison MR, Graham RL, Donaldson EF, et al. 2011.. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. . RNA Biol. 8::27079
    [Google Scholar]
  84. 84. 
    CDC (Cent. Dis. Control Prev.). 2021.. SARS-CoV-2 variant classifications and definitions. https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html. Accessed Mar. 16, 2021
    [Google Scholar]
  85. 85. 
    Ramanathan M, Ferguson ID, Miao W, Khavari PA. 2021.. SARS-CoV-2 B.1.1.7 and B.1.351 Spike variants bind human ACE2 with increased affinity. . Lancet Infect. Dis. 8::1070
    [Google Scholar]
  86. 86. 
    Yuan M, Huang D, Lee C-CD, et al. 2021.. Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. . Science 373::81823
    [Google Scholar]
  87. 87. 
    Alter G, Yu J, Liu J, et al. 2021.. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. . Nature 596::26872
    [Google Scholar]
  88. 88. 
    Ikegame S, Siddiquey M, Hung C-T, et al. 2021.. Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants. . Res. Square. https://doi.org/10.21203/rs.3.rs-400230/v1
    [Crossref] [Google Scholar]
  89. 89. 
    Barouch DH, Stephenson KE, Sadoff J, et al. 2021.. Durable humoral and cellular immune responses 8 months after Ad26.COV2.S vaccination. . N. Engl. J. Med. 385::95153
    [Google Scholar]
/content/journals/10.1146/annurev-med-012621-102252
Loading
/content/journals/10.1146/annurev-med-012621-102252
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error