1932

Abstract

Cardiovascular magnetic resonance imaging (CMR) is a comprehensive and versatile diagnostic and prognostic imaging modality that plays an increasingly important role in management of patients with cardiovascular disease. In this review, we discuss CMR applications in nonischemic cardiomyopathy, ischemic heart disease, arrhythmias, right ventricular diseases, and valvular heart disease. We emphasize the quantitative nature of CMR in current practice, from volumes, function, myocardial strain analysis, and late gadolinium enhancement to parametric mapping, including T1, T2, and T2* relaxation times and extracellular volume fraction assessment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-041818-015923
2020-01-27
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/med/71/1/annurev-med-041818-015923.html?itemId=/content/journals/10.1146/annurev-med-041818-015923&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mahrholdt H, Wagner A, Judd RM et al. 2005. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur. Heart J. 26:1461–74
    [Google Scholar]
  2. 2. 
    Nakamori S, Dohi K, Ishida M et al. 2018. Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy. JACC Cardiovasc. Imag. 11:48–59
    [Google Scholar]
  3. 3. 
    Becker MAJ, Cornel JH, van de Ven PM et al. 2018. The prognostic value of late gadolinium-enhanced cardiac magnetic resonance imaging in nonischemic dilated cardiomyopathy: a review and meta-analysis. JACC Cardiovasc. Imaging 11:1274–84
    [Google Scholar]
  4. 4. 
    Halliday BP, Baksi AJ, Gulati A et al. 2019. Outcome in dilated cardiomyopathy related to the extent, location, and pattern of late gadolinium enhancement. JACC Cardiovasc. Imaging 12:1645–55
    [Google Scholar]
  5. 5. 
    Vita T, Grani C, Abbasi SA et al. 2019. Comparing CMR mapping methods and myocardial patterns toward heart failure outcomes in nonischemic dilated cardiomyopathy. JACC Cardiovasc. Imaging 12:1659–69
    [Google Scholar]
  6. 6. 
    Gupta A, Goyal P, Bahl A 2014. Frequency of recovery and relapse in patients with nonischemic dilated cardiomyopathy on guideline-directed medical therapy. Am. J. Cardiol. 114:883–89
    [Google Scholar]
  7. 7. 
    Masci PG, Schuurman R, Andrea B et al. 2013. Myocardial fibrosis as a key determinant of left ventricular remodeling in idiopathic dilated cardiomyopathy. Circ. Cardiovasc. Imaging 6:790–99
    [Google Scholar]
  8. 8. 
    Spieker M, Katsianos E, Gastl M et al. 2018. T2 mapping cardiovascular magnetic resonance identifies the presence of myocardial inflammation in patients with dilated cardiomyopathy as compared to endomyocardial biopsy. Eur. Heart J. Cardiovasc. Imaging 19:574–82
    [Google Scholar]
  9. 9. 
    Buss SJ, Breuninger K, Lehrke S et al. 2015. Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 16:307–15
    [Google Scholar]
  10. 10. 
    Liang Y, Li W, Zeng R et al. 2019. Left ventricular spherical index is an independent predictor for clinical outcomes in patients with nonischemic dilated cardiomyopathy. JACC Cardiovasc. Imaging 12:1578–80
    [Google Scholar]
  11. 11. 
    Halliday BP, Wassall R, Lota AS et al. 2019. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 393:61–73
    [Google Scholar]
  12. 12. 
    Semsarian C, Ingles J, Maron MS, Maron BJ 2015. New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 65:1249–54
    [Google Scholar]
  13. 13. 
    Rudolph A, Abdel-Aty H, Bohl S et al. 2009. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J. Am. Coll. Cardiol. 53:284–91
    [Google Scholar]
  14. 14. 
    Ho CY, Abbasi SA, Neilan TG et al. 2013. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ. Cardiovasc. Imaging 6:415–22
    [Google Scholar]
  15. 15. 
    Hinojar R, Varma N, Child N et al. 2015. T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the International T1 Multicenter cardiovascular magnetic resonance study. Circ. Cardiovasc. Imaging 8:e003285
    [Google Scholar]
  16. 16. 
    Raman B, Ariga R, Spartera M et al. 2019. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: mechanisms and clinical implications. Eur. Heart J. Cardiovasc. Imaging 20:157–67
    [Google Scholar]
  17. 17. 
    Deva DP, Williams LK, Care M et al. 2013. Deep basal inferoseptal crypts occur more commonly in patients with hypertrophic cardiomyopathy due to disease-causing myofilament mutations. Radiology 269:68–76
    [Google Scholar]
  18. 18. 
    Maron MS, Olivotto I, Harrigan C et al. 2011. Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation 124:40–47
    [Google Scholar]
  19. 19. 
    Swoboda PP, McDiarmid AK, Erhayiem B et al. 2016. Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from athlete's heart. J. Am. Coll. Cardiol. 67:2189–90
    [Google Scholar]
  20. 20. 
    Martinez-Naharro A, Kotecha T, Norrington K et al. 2018. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc. Imaging 12:810–19
    [Google Scholar]
  21. 21. 
    Karur GR, Robison S, Iwanochko RM et al. 2018. Use of myocardial T1 mapping at 3.0 T to differentiate Anderson-Fabry disease from hypertrophic cardiomyopathy. Radiology 288:398–406
    [Google Scholar]
  22. 22. 
    Weng Z, Yao J, Chan RH et al. 2016. Prognostic value of LGE-CMR in HCM: a meta-analysis. JACC Cardiovasc. Imaging 9:1392–402
    [Google Scholar]
  23. 23. 
    Shah JP, Yang Y, Chen S et al. 2018. Prevalence and prognostic significance of right ventricular dysfunction in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 122:1932–38
    [Google Scholar]
  24. 24. 
    Hinojar R, Zamorano JL, Fernandez-Mendez M et al. 2019. Prognostic value of left atrial function by cardiovascular magnetic resonance feature tracking in hypertrophic cardiomyopathy. Int. J. Cardiovasc. Imaging 35:1055–65
    [Google Scholar]
  25. 25. 
    Hinojar R, Fernandez-Golfin C, Gonzalez-Gomez A et al. 2017. Prognostic implications of global myocardial mechanics in hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking. Relations to left ventricular hypertrophy and fibrosis. Int. J. Cardiol. 249:467–72
    [Google Scholar]
  26. 26. 
    Hen Y, Takara A, Iguchi N et al. 2018. High signal intensity on T2-weighted cardiovascular magnetic resonance imaging predicts life-threatening arrhythmic events in hypertrophic cardiomyopathy patients. Circ. J. 82:1062–69
    [Google Scholar]
  27. 27. 
    Cheng S, Fang M, Cui C et al. 2018. LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results. Eur. Radiol. 28:4615–24
    [Google Scholar]
  28. 28. 
    Vogelsberg H, Mahrholdt H, Deluigi CC et al. 2008. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J. Am. Coll. Cardiol. 51:1022–30
    [Google Scholar]
  29. 29. 
    Banypersad SM, Sado DM, Flett AS et al. 2013. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ. Cardiovasc. Imaging 6:34–39
    [Google Scholar]
  30. 30. 
    Wan K, Sun J, Yang D et al. 2018. Left ventricular myocardial deformation on cine MR images: relationship to severity of disease and prognosis in light-chain amyloidosis. Radiology 288:73–80
    [Google Scholar]
  31. 31. 
    Wan K, Li W, Sun J et al. 2019. Regional amyloid distribution and impact on mortality in light-chain amyloidosis: a T1 mapping cardiac magnetic resonance study. Amyloid 26:45–51
    [Google Scholar]
  32. 32. 
    Kotecha T, Martinez-Naharro A, Treibel TA et al. 2018. Myocardial edema and prognosis in amyloidosis. J. Am. Coll. Cardiol. 71:2919–31
    [Google Scholar]
  33. 33. 
    Raina S, Lensing SY, Nairooz RS et al. 2016. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis. JACC Cardiovasc. Imaging 9:1267–77
    [Google Scholar]
  34. 34. 
    Wan K, Sun J, Han Y et al. 2018. Increased prognostic value of query amyloid late enhancement score in light-chain cardiac amyloidosis. Circ. J. 82:739–46
    [Google Scholar]
  35. 35. 
    Boynton SJ, Geske JB, Dispenzieri A et al. 2016. LGE provides incremental prognostic information over serum biomarkers in AL cardiac amyloidosis. JACC Cardiovasc. Imaging 9:680–86
    [Google Scholar]
  36. 36. 
    Wan K, Sun J, Han Y et al. 2018. Right ventricular involvement evaluated by cardiac magnetic resonance imaging predicts mortality in patients with light chain amyloidosis. Heart Vessels 33:170–79
    [Google Scholar]
  37. 37. 
    Illman JE, Arunachalam SP, Arani A et al. 2018. MRI feature tracking strain is prognostic for all-cause mortality in AL amyloidosis. Amyloid Int. J. Exp. Clin. Investig. 25:101–8
    [Google Scholar]
  38. 38. 
    Kouranos V, Tzelepis GE, Rapti A et al. 2017. Complementary role of CMR to conventional screening in the diagnosis and prognosis of cardiac sarcoidosis. JACC Cardiovasc. Imaging 10:1437–47
    [Google Scholar]
  39. 39. 
    Greulich S, Kitterer D, Latus J et al. 2016. Comprehensive cardiovascular magnetic resonance assessment in patients with sarcoidosis and preserved left ventricular ejection fraction. Circ. Cardiovasc. Imaging 9:e005022
    [Google Scholar]
  40. 40. 
    Puntmann VO, Isted A, Hinojar R et al. 2017. T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis. Radiology 285:63–72
    [Google Scholar]
  41. 41. 
    Patel MR, Cawley PJ, Heitner JF et al. 2009. Detection of myocardial damage in patients with sarcoidosis. Circulation 120:1969–77
    [Google Scholar]
  42. 42. 
    Coleman GC, Shaw PW, Balfour PC Jr et al. 2017. Prognostic value of myocardial scarring on CMR in patients with cardiac sarcoidosis. JACC Cardiovasc. Imaging 10:411–20
    [Google Scholar]
  43. 43. 
    Carpenter JP, Roughton M, Pennell DJ 2013. International survey of T2* cardiovascular magnetic resonance in beta-thalassemia major. Haematologica 98:1368–74
    [Google Scholar]
  44. 44. 
    Casale M, Filosa A, Ragozzino A et al. 2019. Long-term improvement in cardiac magnetic resonance in beta-thalassemia major patients treated with deferasirox extends to patients with abnormal baseline cardiac function. Am. J. Hematol. 94:312–18
    [Google Scholar]
  45. 45. 
    Modell B, Khan M, Darlison M et al. 2008. Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 10:42
    [Google Scholar]
  46. 46. 
    Krittayaphong R, Zhang S, Saiviroonporn P et al. 2017. Detection of cardiac iron overload with native magnetic resonance T1 and T2 mapping in patients with thalassemia. Int. J. Cardiol. 248:421–26
    [Google Scholar]
  47. 47. 
    Basso C, Corrado D, Marcus FI et al. 2009. Arrhythmogenic right ventricular cardiomyopathy. Lancet 373:1289–300
    [Google Scholar]
  48. 48. 
    Marra MP, Leoni L, Bauce B et al. 2012. Imaging study of ventricular scar in arrhythmogenic right ventricular cardiomyopathy: comparison of 3D standard electroanatomical voltage mapping and contrast-enhanced cardiac magnetic resonance. Circ. Arrhythmia Electrophysiol. 5:91–100
    [Google Scholar]
  49. 49. 
    Te Riele AS, James CA, Philips B et al. 2013. Mutation-positive arrhythmogenic right ventricular dysplasia/cardiomyopathy: the triangle of dysplasia displaced. J. Cardiovasc. Electrophysiol. 24:1311–20
    [Google Scholar]
  50. 50. 
    Pfluger HB, Phrommintikul A, Mariani JA et al. 2008. Utility of myocardial fibrosis and fatty infiltration detected by cardiac magnetic resonance imaging in the diagnosis of arrhythmogenic right ventricular dysplasia—a single centre experience. Heart Lung Circ 17:478–83
    [Google Scholar]
  51. 51. 
    Tandri H, Saranathan M, Rodriguez ER et al. 2005. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J. Am. Coll. Cardiol. 45:98–103
    [Google Scholar]
  52. 52. 
    Petersen SE, Selvanayagam JB, Wiesmann F et al. 2005. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 46:101–5
    [Google Scholar]
  53. 53. 
    Jacquier A, Thuny F, Jop B et al. 2010. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur. Heart J. 31:1098–104
    [Google Scholar]
  54. 54. 
    Japp AG, Gulati A, Cook SA et al. 2016. The diagnosis and evaluation of dilated cardiomyopathy. J. Am. Coll. Cardiol. 67:2996–3010
    [Google Scholar]
  55. 55. 
    Amzulescu MS, Rousseau MF, Ahn SA et al. 2015. Prognostic impact of hypertrabeculation and noncompaction phenotype in dilated cardiomyopathy: a CMR study. JACC Cardiovasc. Imaging 8:934–46
    [Google Scholar]
  56. 56. 
    Paetsch I, Jahnke C, Wahl A et al. 2004. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 110:835–42
    [Google Scholar]
  57. 57. 
    Karamitsos TD, Ntusi NA, Francis JM et al. 2010. Feasibility and safety of high-dose adenosine perfusion cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 12:66
    [Google Scholar]
  58. 58. 
    Kiaos A, Tziatzios I, Hadjimiltiades S et al. 2018. Diagnostic performance of stress perfusion cardiac magnetic resonance for the detection of coronary artery disease: a systematic review and meta-analysis. Int. J. Cardiol. 252:229–33
    [Google Scholar]
  59. 59. 
    Nandalur KR, Dwamena BA, Choudhri AF et al. 2007. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J. Am. Coll. Cardiol. 50:1343–53
    [Google Scholar]
  60. 60. 
    Gargiulo P, Dellegrottaglie S, Bruzzese D et al. 2013. The prognostic value of normal stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a meta-analysis. Circ. Cardiovasc. Imaging 6:574–82
    [Google Scholar]
  61. 61. 
    Heitner JF, Kim RJ, Kim HW et al. 2019. Prognostic value of vasodilator stress cardiac magnetic resonance imaging: a multicenter study with 48 000 patient-years of follow-up. JAMA Cardiol 4:256–64
    [Google Scholar]
  62. 62. 
    Miller CD, Case LD, Little WC et al. 2013. Stress CMR reduces revascularization, hospital readmission, and recurrent cardiac testing in intermediate-risk patients with acute chest pain. JACC Cardiovasc. Imaging 6:785–94
    [Google Scholar]
  63. 63. 
    Jekic M, Foster EL, Ballinger MR et al. 2008. Cardiac function and myocardial perfusion immediately following maximal treadmill exercise inside the MRI room. J. Cardiovasc. Magn. Reson. 10:3
    [Google Scholar]
  64. 64. 
    Raman SV, Dickerson JA, Jekic M et al. 2010. Real-time cine and myocardial perfusion with treadmill exercise stress cardiovascular magnetic resonance in patients referred for stress SPECT. J. Cardiovasc. Magn. Reson. 12:41
    [Google Scholar]
  65. 65. 
    Sukpraphrute B, Drafts BC, Rerkpattanapipat P et al. 2015. Prognostic utility of cardiovascular magnetic resonance upright maximal treadmill exercise testing. J. Cardiovasc. Magn. Reson. 17:103
    [Google Scholar]
  66. 66. 
    Romero J, Xue X, Gonzalez W, Garcia MJ 2012. CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials. JACC Cardiovasc. Imaging 5:494–508
    [Google Scholar]
  67. 67. 
    Selvanayagam JB, Kardos A, Francis JM et al. 2004. Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation 110:1535–41
    [Google Scholar]
  68. 68. 
    Gutberlet M, Frohlich M, Mehl S et al. 2005. Myocardial viability assessment in patients with highly impaired left ventricular function: comparison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thickness, and TI201-SPECT with functional recovery after revascularization. Eur. Radiol. 15:872–80
    [Google Scholar]
  69. 69. 
    Gerber BL, Rousseau MF, Ahn SA et al. 2012. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J. Am. Coll. Cardiol. 59:825–35
    [Google Scholar]
  70. 70. 
    Liu D, Borlotti A, Viliani D et al. 2017. CMR native T1 mapping allows differentiation of reversible versus irreversible myocardial damage in ST-segment-elevation myocardial infarction: an OxAMI study (Oxford Acute Myocardial Infarction). Circ. Cardiovasc. Imaging 10:e005986
    [Google Scholar]
  71. 71. 
    Kato S, Kitagawa K, Ishida N et al. 2010. Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J. Am. Coll. Cardiol. 56:983–91
    [Google Scholar]
  72. 72. 
    Wilensky RL, Song HK, Ferrari VA 2006. Role of magnetic resonance and intravascular magnetic resonance in the detection of vulnerable plaques. J. Am. Coll. Cardiol. 47:C48–56
    [Google Scholar]
  73. 73. 
    Rashid I, Maghzal GJ, Chen YC et al. 2018. Myeloperoxidase is a potential molecular imaging and therapeutic target for the identification and stabilization of high-risk atherosclerotic plaque. Eur. Heart J. 39:3301–10
    [Google Scholar]
  74. 74. 
    Agewall S, Beltrame JF, Reynolds HR et al. 2017. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur. Heart J. 38:143–53
    [Google Scholar]
  75. 75. 
    Assomull RG, Lyne JC, Keenan N et al. 2007. The role of cardiovascular magnetic resonance in patients presenting with chest pain, raised troponin, and unobstructed coronary arteries. Eur. Heart J. 28:1242–49
    [Google Scholar]
  76. 76. 
    Pathik B, Raman B, Mohd Amin NH et al. 2016. Troponin-positive chest pain with unobstructed coronary arteries: incremental diagnostic value of cardiovascular magnetic resonance imaging. Eur. Heart J. Cardiovasc. Imaging 17:1146–52
    [Google Scholar]
  77. 77. 
    Rodrigues P, Joshi A, Williams H et al. 2017. Diagnosis and prognosis in sudden cardiac arrest survivors without coronary artery disease: utility of a clinical approach using cardiac magnetic resonance imaging. Circ. Cardiovasc. Imaging 10:e006709
    [Google Scholar]
  78. 78. 
    Habibi M, Samiei S, Ambale Venkatesh B et al. 2016. Cardiac magnetic resonance-measured left atrial volume and function and incident atrial fibrillation: results from MESA (Multi-Ethnic Study of Atherosclerosis). Circ. Cardiovasc. Imaging 9:8e004299
    [Google Scholar]
  79. 79. 
    Marrouche NF, Wilber D, Hindricks G et al. 2014. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA 311:498–506
    [Google Scholar]
  80. 80. 
    Bisbal F, Guiu E, Cabanas-Grandio P et al. 2014. CMR-guided approach to localize and ablate gaps in repeat AF ablation procedure. JACC Cardiovasc. Imaging 7:653–63
    [Google Scholar]
  81. 81. 
    Dukkipati SR, Sanz J. 2014. Contrast-enhanced CMR imaging of ventricular tachycardia isthmus sites to guide ablation: an approach in evolution. JACC Cardiovasc. Imaging 7:785–87
    [Google Scholar]
  82. 82. 
    Andreu D, Ortiz-Perez JT, Boussy T et al. 2014. Usefulness of contrast-enhanced cardiac magnetic resonance in identifying the ventricular arrhythmia substrate and the approach needed for ablation. Eur. Heart J. 35:1316–26
    [Google Scholar]
  83. 83. 
    Paetsch I, Sommer P, Jahnke C et al. 2019. Clinical workflow and applicability of electrophysiological cardiovascular magnetic resonance-guided radiofrequency ablation of isthmus-dependent atrial flutter. Eur. Heart J. Cardiovasc. Imaging 20:147–56
    [Google Scholar]
  84. 84. 
    Altmayer SP, Patel AR, Addetia K et al. 2016. Cardiac MRI right ventricle/left ventricle (RV/LV) volume ratio improves detection of RV enlargement. J. Magn. Reson. Imaging 43:1379–85
    [Google Scholar]
  85. 85. 
    Sanz J, Kuschnir P, Rius T et al. 2007. Pulmonary arterial hypertension: noninvasive detection with phase-contrast MR imaging. Radiology 243:70–79
    [Google Scholar]
  86. 86. 
    Freed BH, Gomberg-Maitland M, Chandra S et al. 2012. Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J. Cardiovasc. Magn. Reson. 14:11
    [Google Scholar]
  87. 87. 
    Chen YY, Yun H, Jin H et al. 2017. Association of native T1 times with biventricular function and hemodynamics in precapillary pulmonary hypertension. Int. J. Cardiovasc. Imaging 33:1179–89
    [Google Scholar]
  88. 88. 
    Sanz J, Kariisa M, Dellegrottaglie S et al. 2009. Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc. Imaging 2:286–95
    [Google Scholar]
  89. 89. 
    Rodes-Cabau J, Domingo E, Roman A et al. 2003. Intravascular ultrasound of the elastic pulmonary arteries: a new approach for the evaluation of primary pulmonary hypertension. Heart 89:311–15
    [Google Scholar]
  90. 90. 
    Reiter G, Reiter U, Kovacs G et al. 2015. Blood flow vortices along the main pulmonary artery measured with MR imaging for diagnosis of pulmonary hypertension. Radiology 275:71–79
    [Google Scholar]
  91. 91. 
    Myerson SG. 2012. Heart valve disease: investigation by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 14:7
    [Google Scholar]
  92. 92. 
    Dweck MR, Joshi S, Murigu T et al. 2011. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J. Am. Coll. Cardiol. 58:1271–79
    [Google Scholar]
  93. 93. 
    Chin CWL, Everett RJ, Kwiecinski J et al. 2017. Myocardial fibrosis and cardiac decompensation in aortic stenosis. JACC Cardiovasc. Imaging 10:1320–33
    [Google Scholar]
  94. 94. 
    Wang J, Jagasia DH, Kondapally YR et al. 2017. Comparison of non-contrast cardiovascular magnetic resonance imaging to computed tomography angiography for aortic annular sizing before transcatheter aortic valve replacement. J. Invasive Cardiol. 29:239–45
    [Google Scholar]
  95. 95. 
    Lerakis S, Hayek S, Arepalli CD et al. 2014. Cardiac magnetic resonance for paravalvular leaks in post-transcatheter aortic valve replacement. Circulation 129:e430–31
    [Google Scholar]
  96. 96. 
    Zoghbi WA, Adams D, Bonow RO et al. 2017. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 30:303–71
    [Google Scholar]
  97. 97. 
    Cawley PJ, Hamilton-Craig C, Owens DS et al. 2013. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ. Cardiovasc. Imaging 6:48–57
    [Google Scholar]
  98. 98. 
    Penicka M, Vecera J, Mirica DC et al. 2018. Prognostic implications of magnetic resonance-derived quantification in asymptomatic patients with organic mitral regurgitation: comparison with Doppler echocardiography-derived integrative approach. Circulation 137:1349–60
    [Google Scholar]
  99. 99. 
    Han Y, Peters DC, Salton CJ et al. 2008. Cardiovascular magnetic resonance characterization of mitral valve prolapse. JACC Cardiovasc. Imaging 1:294–303
    [Google Scholar]
  100. 100. 
    Oosterhof T, van Straten A, Vliegen HW et al. 2007. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation 116:545–51
    [Google Scholar]
/content/journals/10.1146/annurev-med-041818-015923
Loading
/content/journals/10.1146/annurev-med-041818-015923
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error