1932

Abstract

We review current data on clinically suspected [European Society of Cardiology (ESC) 2013 criteria] and biopsy-proven [ESC and World Health Organization (WHO) criteria] myocarditis that is temporally associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. ESC/WHO etiological diagnosis of viral myocarditis is based on histological and immunohistological evidence of nonischemic myocyte necrosis and monolymphocytic infiltration, i.e., myocarditis, plus the identification of a specific cardiotropic virus by molecular techniques, in particular polymerase chain reaction (PCR)/in-situ hybridization, on endomyocardial biopsy (EMB)/autopsy tissue. There is not yet definitive EMB/autopsy proof that SARS-CoV-2 causes direct cardiomyocyte damage in association with histological myocarditis. Clinical epidemiology data suggest that myocarditis is uncommon for both SARS-CoV-2-positive and -negative PCR cases. We hypothesize that the rare virus-negative biopsy-proven cases may represent new-onset immune-mediated or latent pre-existing autoimmune forms,triggered or fostered by the hyperinflammatory state of severe COVID-19. We recommend the application of the ESC/WHO definitions and diagnostic criteria in future reports to avoid low-quality scientific information leading to an inaccurate estimate of myocarditis incidence based on misdiagnosis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042220-023859
2022-01-27
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/med/73/1/annurev-med-042220-023859.html?itemId=/content/journals/10.1146/annurev-med-042220-023859&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Deng Q, Hu B, Zhang Y, et al. 2020.. Suspected myocardial injury in patients with COVID-19: evidence from front-line clinical observation in Wuhan, China. . Int. J. Cardiol. S0167–5273:(20):3111513
    [Google Scholar]
  2. 2. 
    Ruan Q, Yang K, Wang W, et al. 2020.. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. . Intensive Care Med. 46::84648
    [Google Scholar]
  3. 3. 
    Shan H, ChL Lei, Hui DSC, et al. 2020.. Clinical characteristics of coronavirus disease 2019 in China. . N. Engl. J. Med. 382:(18):170820
    [Google Scholar]
  4. 4. 
    Driggin E, Madhavan MV, Bikdeli B, et al. 2020.. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. . J. Am. Coll. Cardiol. 75:(18):235371
    [Google Scholar]
  5. 5. 
    Ruetzler K, Szarpak L, Filipiak KJ, et al. 2020.. The COVID-19 pandemic—a view of the current state of the problem. . Disaster Emerg. Med. J. 5:(2):1067
    [Google Scholar]
  6. 6. 
    Ganatra S, Dani SS, Shah S, et al. 2020.. Management of cardiovascular disease during coronavirus disease (COVID-19) pandemic. . Trends Cardiovasc. Med. 30:(6):31525
    [Google Scholar]
  7. 7. 
    Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. 2020.. Potential effects of coronaviruses on the cardiovascular system: a review. . JAMA Cardiol. 5:(7):83140
    [Google Scholar]
  8. 8. 
    Lippi G, Lavie CJ, Sanchis-Gomar F. 2020.. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. . Prog. Cardiovasc. Dis. 63:(3):39091
    [Google Scholar]
  9. 9. 
    Wu Z, McGoogan JM. 2020.. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. . JAMA 323:(13):123942
    [Google Scholar]
  10. 10. 
    Xiong TY, Redwood S, Prendergast B, et al. 2020.. Coronaviruses and the cardiovascular system: acute and long-term implications. . Eur. Heart J. 41:(19):1798800
    [Google Scholar]
  11. 11. 
    Atri D, Siddiqi HK, Lang JP, et al. 2020.. COVID-19 for the cardiologist: basic virology, epidemiology, cardiac manifestations, and potential therapeutic strategies. . JACC Basic Transl. Sci. 5:(5):51836
    [Google Scholar]
  12. 12. 
    Wang D, Hu B, Hu C, et al. 2020.. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. . JAMA 323:(11):106169
    [Google Scholar]
  13. 13. 
    Zhou F, Yu T, Du R, et al. 2020.. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. . Lancet 395::105462
    [Google Scholar]
  14. 14. 
    Figliozzi S, Masci PG, Ahmadi N, et al. 2020.. Predictors of adverse prognosis in COVID-19: a systematic review and meta-analysis. . Eur. J. Clin. Invest. 50:(10):e13362
    [Google Scholar]
  15. 15. 
    Panhwar MS, Kalra A, Gupta T, et al. 2019.. Effect of influenza on outcomes in patients with heart failure. . JACC: Heart Failure 7:(2):11217
    [Google Scholar]
  16. 16. 
    Zhang H, Penninger JM, Li Y, et al. 2020.. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. . Intensive Care Med. 46:(4):58690
    [Google Scholar]
  17. 17. 
    Verdecchia P, Cavalliani C, Spanevello A, et al. 2020.. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. . Eur. J. Intern. Med. 76::1420
    [Google Scholar]
  18. 18. 
    Ozieranski K, Tyminska A, Caforio ALP. 2020.. Clinically suspected myocarditis in the course of coronavirus infection. . Eur. Heart J. 41:(22):211819
    [Google Scholar]
  19. 19. 
    Peretto G, Sala S, Caforio ALP. 2020.. Acute myocardial injury, MINOCA, or myocarditis? Improving characterization of coronavirus-associated myocardial involvement. . Eur. Heart J. 41:(22):212425
    [Google Scholar]
  20. 20. 
    Bonow RO, Fonarow GC, O'Gara PT, et al. 2020.. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. . JAMA Cardiol. 5:(7):75153
    [Google Scholar]
  21. 21. 
    Middeldorp S, Coppens M, van Haaps TF, et al. 2020.. Incidence of venous thromboembolism in hospitalized patients with COVID-19. . J. Thromb. Haemost. 18:(8):19952002
    [Google Scholar]
  22. 22. 
    Varga Z, Flammer AJ, Steiger P, et al. 2020.. Endothelial cell infection and endotheliitis in COVID-19. . Lancet 395:(10234):141718
    [Google Scholar]
  23. 23. 
    Ackermann M, Verleden SE, Kuehnel M, et al. 2020.. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. . N. Engl. J. Med. 383:(2):12028
    [Google Scholar]
  24. 24. 
    Chung MK, Zidar DA, Bristow MR, et al. 2021.. COVID-19 and cardiovascular disease: from bench to bedside. . Circ. Res. 128:(8):121436
    [Google Scholar]
  25. 25. 
    Tavazzi G, Pellegrini C, Maurelli M, et al. 2020.. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. . Eur. J. Heart Fail. 22:(5):91115
    [Google Scholar]
  26. 26. 
    Sala S, Peretto G, Gramegna M, et al. 2020.. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. . Eur. Heart J. 41:(19):186162
    [Google Scholar]
  27. 27. 
    Inciardi RM, Lupi L, Zaccone G, et al. 2020.. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). . JAMA Cardiol. 5:(7):81924
    [Google Scholar]
  28. 28. 
    Seecheran R, Narayansingh R, Giddings S, et al. 2020.. Atrial arrhythmias in a patient presenting with coronavirus disease-2019 (COVID-19) infection. . J. Investig. Med. High Impact Case Rep. 8::2324709620925571 10.1177/2324709620925571
    [Google Scholar]
  29. 29. 
    Irabien-Ortiz A, Carreras-Mora J, Sionis A, et al. 2020.. Fulminant myocarditis due to COVID-19. . Rev. Esp. Cardiol. (Engl. Ed.) 73:(6):5034
    [Google Scholar]
  30. 30. 
    Warchoł I, Dębska-Kozłowska A, Karcz-Socha I, et al. 2020.. Terra incognita: clinically suspected myocarditis in a SARS-CoV-2 positive patient. . Pol. Arch. Intern. Med. 130:(5):44648
    [Google Scholar]
  31. 31. 
    Hongde H, Fenglian M, Xin W, Yuan F. 2020.. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. . Eur. Heart J. 42:(2):206
    [Google Scholar]
  32. 32. 
    Devika K, Chaitra M, Rhea S. 2020.. Heart brake—an unusual cardiac manifestation of COVID-19. . JACC Case Rep. 2:(9):125255
    [Google Scholar]
  33. 33. 
    Coyle J, Igbinomwanghia E, Sanches-Nadalez A, et al. 2020.. A recovered case of COVID-19 myocarditis and ARDS treated with corticosteroids, tocilizumab, and experimental AT-001. . JACC Case Rep. 2:(9):133136
    [Google Scholar]
  34. 34. 
    Kim IC, Kim JY, Kim HA, et al. 2020.. COVID-19-related myocarditis in a 21-year-old female patient. . Eur. Heart J. 41:(19):1859
    [Google Scholar]
  35. 35. 
    Paul JF, Charles P, Richaud C, et al. 2020.. Myocarditis revealing COVID-19 infection in a young patient. . Eur. Heart J. Cardiovasc. Imaging 21:(7):776
    [Google Scholar]
  36. 36. 
    Doyen D, Moceri P, Ducreux D, et al. 2020.. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. . Lancet 395:(10235):1516
    [Google Scholar]
  37. 37. 
    Radbel J, Narayanan N, Bhatt PJ. 2020.. Use of tocilizumab for COVID-19 infection-induced cytokine release syndrome: a cautionary case report. . Chest 158:(1):e1519
    [Google Scholar]
  38. 38. 
    Cizgici AY, Agus HZ, Yldiz M. 2020.. COVID-19 myopericarditis: It should be kept in mind in today's conditions. . Am. J. Emerg. Med. 38:(7):1547.e51547.e6
    [Google Scholar]
  39. 39. 
    Zeng Yh, Liu YX, Yuan J, et al. 2020.. First case of COVID19 complicated with fulminant myocarditis: a case report and insights. . Infection 48:(5):77377
    [Google Scholar]
  40. 40. 
    Caforio ALP, Pankuweit S, Arbustini E, et al. 2013.. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on myocardial and pericardial diseases. . Eur. Heart J. 34:(33):263648
    [Google Scholar]
  41. 41. 
    Tschöpe C, Ammirati E, Bozkurt B, et al. 2021.. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. . Nat. Rev. Cardiol. 18:(3):16993
    [Google Scholar]
  42. 42. 
    Richardson P, McKenna W, Bristow M, et al. 1996.. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. . Circulation 93:(5):84142
    [Google Scholar]
  43. 43. 
    Cooper LT, Baughman KL, Feldman AM, et al. 2007.. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. . J. Am. Coll. Cardiol. 50:(19):191431
    [Google Scholar]
  44. 44. 
    Seferović PM, Tsutsui H, McNamara DM, et al. 2021.. Heart Failure Association of the ESC, Heart Failure Society of America and Japanese Heart Failure Society position statement on endomyocardial biopsy. . Eur. J. Heart Fail. 23:(6):85471
    [Google Scholar]
  45. 45. 
    Kühl U, Pauschinger M, Noutsias M, et al. 2005.. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. . Circulation 111:(7):88793
    [Google Scholar]
  46. 46. 
    Andréoletti L, Lévêque N, Boulagnon C, et al. 2009.. Viral causes of human myocarditis. . Arch. Cardiovasc. Dis. 102:(6–7):55968
    [Google Scholar]
  47. 47. 
    Ozieranski K, Tyminska A, Jonik S, et al. 2021.. Clinically suspected myocarditis in the course of severe acute respiratory syndrome novel coronavirus-2 infection: fact or fiction?. J. Cardiac Fail. 27:(1):9296
    [Google Scholar]
  48. 48. 
    Caforio ALP, Calabrese F, Angelini A, et al. 2007.. A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. . Eur. Heart J. 28::132633
    [Google Scholar]
  49. 49. 
    Frustaci A, Russo MA, Chimenti C. 2009.. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. . Eur. Heart J. 30::19952002
    [Google Scholar]
  50. 50. 
    Aretz HT, Billingham ME, Edwards WD, et al. 1987.. Myocarditis. A histopathologic definition and classification. . Am. J. Cardiovasc. Pathol. 1:(1):314
    [Google Scholar]
  51. 51. 
    Huang L, Zhao P, Tang D, et al. 2020.. Cardiac involvement in recovered COVID-19 patients identified by magnetic resonance imaging. . JACC Cardiovasc. Imaging 13:(11):233039
    [Google Scholar]
  52. 52. 
    Yancy CW, Fonarow GC. 2020.. Coronavirus disease 2019 (COVID-19) and the heart—Is heart failure the next chapter?. JAMA Cardiol. 5:(11):121617
    [Google Scholar]
  53. 53. 
    Puntmann VO, Carerj ML, Wieters I, et al. 2020.. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). . JAMA Cardiol. 5:(11):126573
    [Google Scholar]
  54. 54. 
    Starekova J, Bluemke DA, Bradham WS, et al. 2021.. Evaluation for myocarditis in competitive student athletes recovering from coronavirus disease 2019 with cardiac magnetic resonance imaging. . JAMA Cardiol. 6:(8):94550
    [Google Scholar]
  55. 55. 
    Kotecha T, Knight DS, Razvi Y, et al. 2021.. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. . Eur. Heart J. 42::186678
    [Google Scholar]
  56. 56. 
    Friedrich M, Cooper LT. 2021.. What we (don't) know about myocardial injury after COVID-19. . Eur. Heart J. 42::187982
    [Google Scholar]
  57. 57. 
    Ferreira VM, Schulz-Menger J, Holmvang G, et al. 2018.. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. . J. Am. Coll. Cardiol. 72:(24):315876
    [Google Scholar]
  58. 58. 
    Peretto G, Villatore A, Rizzo S, et al. 2021.. The spectrum of COVID-19-associated myocarditis: a patient-tailored multidisciplinary approach. . J. Clin. Med. 10:(9):jcm10091974
    [Google Scholar]
  59. 59. 
    Kawakami R, Sakamoto A, Kawai K, et al. 2021.. Pathological evidence for SARS-CoV-2 as a cause of myocarditis: JACC review topic of the week. . J. Am. Coll. Cardiol. 77:(3):31425
    [Google Scholar]
  60. 60. 
    Halushka MK, Vander Heide RS. 2021.. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. . Cardiovasc Pathol. 50::107300
    [Google Scholar]
  61. 61. 
    Escher F, Pietsch H, Aleshcheva G, et al. 2020.. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsie. ESC Heart Fail. 7::244047
    [Google Scholar]
  62. 62. 
    Wenzel P, Kopp S, Gobel S, et al. 2020.. Evidence of SARS-CoV-2 mRNA in endomyocardial biopsies of patients with clinically suspected myocarditis tested negative for COVID-19 in nasopharyngeal swab. . Cardiovasc. Res. 116::166163
    [Google Scholar]
  63. 63. 
    Pesaresi M, Pirani F, Tagliabracci A, et al. 2020.. SARS-CoV-2 identification in lungs, heart and kidney specimens by transmission and scanning electron microscopy. . Eur. Rev. Med. Pharmacol. Sci. 24:(9):518688
    [Google Scholar]
  64. 64. 
    Xu Z, Shi L, Wang Y, et al. 2020.. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. . Lancet Respir. Med. 8:(4):42022
    [Google Scholar]
  65. 65. 
    Bradley BT, Maioli H, Johnston R, et al. 2020.. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. . Lancet 396::32032
    [Google Scholar]
  66. 66. 
    Wichmann D, Sperhake JP, Lutgehetmann M, et al. 2020.. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. . Ann. Intern. Med. 173::26877
    [Google Scholar]
  67. 67. 
    Lax SF, Skok K, Zechner P, et al. 2020.. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center clinicopathologic case series. . Ann. Intern. Med. 173::35061
    [Google Scholar]
  68. 68. 
    Tian S, Xiong Y, Liu H, et al. 2020.. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. . Mod. Pathol. 33::100714
    [Google Scholar]
  69. 69. 
    Varga Z, Flammer AJ, Steiger P, et al. 2020.. Endothelial cell infection and endotheliitis in COVID-19. . Lancet 395::141718
    [Google Scholar]
  70. 70. 
    Bryce C, Grimes Z, Pujadas E, et al. 2021.. Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience. . Mod. Pathol. 1::112
    [Google Scholar]
  71. 71. 
    Beigmohammadi MT, Jahanbin B, Safaei M, et al. 2021.. Pathological findings of postmortem biopsies from lung, heart, and liver of 7 deceased COVID-19 patients. . Int. J. Surg. Pathol. 29:(2):13545
    [Google Scholar]
  72. 72. 
    Basso C, Leone O, Rizzo S, et al. 2020.. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. . Eur. Heart J. 41::382735
    [Google Scholar]
  73. 73. 
    Fox SE, Li G, Akmatbekov A, et al. 2020.. Unexpected features of cardiac pathology in COVID-19 infection. . Circulation 142::112325
    [Google Scholar]
  74. 74. 
    Fox SE, Akmatbekov A, Harbert JL, et al. 2020.. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. . Lancet Respir. Med. 8::68186
    [Google Scholar]
  75. 75. 
    Lindner D, Fitzek A, Brauninger H, et al. 2020.. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. . JAMA Cardiol. 5::128185
    [Google Scholar]
  76. 76. 
    Del Nonno F, Frustaci A, Verardo R, et al. 2020.. Virus-negative myopericarditis in human coronavirus infection: report from an autopsy series. . Circ. Heart Fail. 13:(11):e007636
    [Google Scholar]
  77. 77. 
    Rapkiewicz AV, Mai X, Carsons SE, et al. 2020.. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: a case series. . Eclinical Med. 24::100434
    [Google Scholar]
  78. 78. 
    Bailey AL, Dmytrenko O, Greenberg L, et al. 2021.. SARS-CoV-2 infects human engineered heart tissues and models COVID-19 myocarditis. . JACC Basic Transl. Sci. 6:(4):33145
    [Google Scholar]
  79. 79. 
    Weckbach LT, Curta A, Bieber S, et al. 2021.. Myocardial inflammation and dysfunction in COVID-19-associated myocardial injury. . Circ. Cardiovasc. Imaging 14:(1):e012220
    [Google Scholar]
  80. 80. 
    Caraffa R, Marcolongo R, Bottio T, et al. 2021.. Recurrent autoimmune myocarditis in a young woman during the coronavirus disease 2019 pandemic. . ESC Heart Fail. 8:(1):75660
    [Google Scholar]
  81. 81. 
    Xu Z, Shi L, Wang Y, et al. 2020.. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. . Lancet Respir. Med. 8:(4):42022
    [Google Scholar]
  82. 82. 
    Barton LM, Duval EJ, Stroberg E, et al. 2020.. COVID-19 autopsies, Oklahoma, USA. . Am. J. Clin. Pathol. 153:(6):72533
    [Google Scholar]
  83. 83. 
    Schaller T, Hirschbühl K, Burkhardt K, et al. 2020.. Postmortem examination of patients with COVID-19. . JAMA 323:(24):251820
    [Google Scholar]
  84. 84. 
    Bojkova D, Wagner JUG, Shumliakivska M, et al. 2020.. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. . Cardiovasc. Res. 116::220715
    [Google Scholar]
  85. 85. 
    Hanny Al-Samkari H, Berliner N. 2018.. Hemophagocytic lymphohistiocytosis. . Annu. Rev. Pathol. Mech. Dis. 13::2749
    [Google Scholar]
  86. 86. 
    Shoenfeld Y. 2020.. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. . Autoimmun. Rev. 19:(6):102538
    [Google Scholar]
  87. 87. 
    Suntharalingam G, Perry MR, Ward S, et al. 2006.. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. . N. Engl. J. Med. 355:(10):101828
    [Google Scholar]
  88. 88. 
    Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al. 2020.. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: a comprehensive review. . Autoimmun. Rev. 19:(7):102569
    [Google Scholar]
  89. 89. 
    Nicholls JM, Poon LL, Lee KC, et al. 2003.. Lung pathology of fatal severe acute respiratory syndrome. . Lancet 361::177378
    [Google Scholar]
  90. 90. 
    Peiris JS, Lai ST, Poon LL, et al. 2003.. Coronavirus as a possible cause of severe acute respiratory syndrome. . Lancet 361::131925
    [Google Scholar]
  91. 91. 
    Mehta P, McAuley DF, Brown M, et al. 2020.. COVID-19: consider cytokine storm syndromes and immunosuppression. . Lancet 395:(10229):103334
    [Google Scholar]
  92. 92. 
    Ritchie AI, Singanayagam A. 2020.. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword?. Lancet 395:(10230):1111
    [Google Scholar]
  93. 93. 
    Caforio ALP, Goldman JH, Haven AJ, et al. 1997.. Circulating cardiac-specific autoantibodies as markers of autoimmunity in clinical and biopsy-proven myocarditis. The Myocarditis Treatment Trial investigators. . Eur. Heart J. 18::27075
    [Google Scholar]
  94. 94. 
    Cheng CY, Cheng GY, Shan ZG, et al. 2021.. Efficacy of immunosuppressive therapy in myocarditis: a 30-year systematic review and meta analysis. . Autoimmun. Rev. 20::102710
    [Google Scholar]
  95. 95. 
    Caforio AL, Bonifacio E, Stewart JT, et al. 1990.. Novel organ-specific circulating cardiac autoantibodies in dilated cardiomyopathy. . J. Am. Coll. Cardiol. 15::152734
    [Google Scholar]
  96. 96. 
    Caforio ALP, Keeling PJ, Zachara E, et al. 1994.. Evidence from family studies for autoimmunity in dilated cardiomyopathy. . Lancet 344::77377
    [Google Scholar]
  97. 97. 
    Caforio ALP, Mahon NG, Baig MK, et al. 2007.. Prospective familial assessment in dilated cardiomyopathy: cardiac autoantibodies predict disease development in asymptomatic relatives. . Circulation 115::7683
    [Google Scholar]
  98. 98. 
    Caforio ALP, Angelini A, Blank M, et al. 2015.. Passive transfer of affinity-purified anti-heart autoantibodies (AHA) from sera of patients with myocarditis induces experimental myocarditis in mice. . Int. J. Cardiol. 179::16677
    [Google Scholar]
  99. 99. 
    Peretto G, Sala S, De Luca G, et al. 2020.. Immunosuppressive therapy and risk stratification of patients with myocarditis presenting with ventricular arrhythmias. . JACC Clin. Electrophysiol. 6::122134
    [Google Scholar]
  100. 100. 
    Merken J, Hazebroek M, Van Paassen P, et al. 2018.. Immunosuppressive therapy improves both short- and long-term prognosis in patients with virus-negative nonfulminant inflammatory cardiomyopathy. . Circ. Heart Fail. 11::e004228
    [Google Scholar]
  101. 101. 
    Cooper LT Jr., Hare JM, Tazelaar HD, et al. 2008.. Giant Cell Myocarditis Treatment Trial Investigators. Usefulness of immunosuppression for giant cell myocarditis. . Am. J. Cardiol. 102::153539
    [Google Scholar]
  102. 102. 
    Kim HW, Jenista ER, Wendell DC, et al. 2021.. Patients with acute myocarditis following mRNA COVID-19 vaccination. . JAMA Cardiol. Jun . 29::e212828
    [Google Scholar]
  103. 103. 
    Montgomery J, Ryan M, Engler R, et al. 2021.. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. . JAMA Cardiol. 29::e212833
    [Google Scholar]
  104. 104. 
    Diaz GA, Parsons GT, Gering SK, et al. 2021.. Myocarditis and pericarditis after vaccination for COVID-19. . JAMA 326:(12):121012
    [Google Scholar]
/content/journals/10.1146/annurev-med-042220-023859
Loading
/content/journals/10.1146/annurev-med-042220-023859
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error