1932

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global pandemic. Beyond the well-described respiratory manifestations, SARS-CoV-2 may cause a variety of neurologic complications, including headaches, alteration in taste and smell, encephalopathy, cerebrovascular disease, myopathy, psychiatric diseases, and ocular disorders. Herein we describe SARS-CoV-2’s mechanism of neuroinvasion and the epidemiology, outcomes, and treatments for neurologic manifestations of COVID-19.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042320-010427
2022-01-27
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/med/73/1/annurev-med-042320-010427.html?itemId=/content/journals/10.1146/annurev-med-042320-010427&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    CDC (Cent. Dis. Control Prev.). 2020.. COVID data tracker. . Centers for Disease Control and Prevention. https://covid.cdc.gov/covid-data-tracker/#datatracker-home
    [Google Scholar]
  2. 2. 
    Bhatraju PK, Ghassemieh BJ, Nichols M, et al. 2020.. Covid-19 in critically ill patients in the Seattle region—case series. . N. Engl. J. Med. 382::201222
    [Google Scholar]
  3. 3. 
    Cummings MJ, Baldwin MR, Abrams D, et al. 2020.. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. . Lancet 395:(10239):176370
    [Google Scholar]
  4. 4. 
    McMichael TM, Currie DW, Clark S, et al. 2020.. Epidemiology of Covid-19 in a long-term care facility in King County, Washington. . N. Engl. J. Med. 382:(21):200511
    [Google Scholar]
  5. 5. 
    Wiersinga WJ, Rhodes A, Cheng AC, et al. 2020.. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. . JAMA 324:(8):78293
    [Google Scholar]
  6. 6. 
    Ziehr DR, Alladina J, Petri CR, et al. 2020.. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. . Am. J. Respir. Crit. Care Med. 201:(12):156064
    [Google Scholar]
  7. 7. 
    Ellul MA, Benjamin L, Singh B, et al. 2020.. Neurological associations of COVID-19. . Lancet Neurol. 19:(9):76783
    [Google Scholar]
  8. 8. 
    Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, et al. 2020.. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. . Neurology 95:(8):e106070
    [Google Scholar]
  9. 9. 
    Helms J, Kremer S, Merdji H, et al. 2020.. Neurologic features in severe SARS-CoV-2 infection. . N. Engl. J. Med. 382:(23):226870
    [Google Scholar]
  10. 10. 
    Mao L, Jin H, Wang M, et al. 2020.. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. . JAMA Neurol. 77:(6):68390
    [Google Scholar]
  11. 11. 
    Zubair AS, McAlpine LS, Gardin T, et al. 2020.. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. . JAMA Neurol. 77:(8):101827
    [Google Scholar]
  12. 12. 
    Prather KA, Wang CC, Schooley RT. 2020.. Reducing transmission of SARS-CoV-2. . Science 368:(6498):142224
    [Google Scholar]
  13. 13. 
    Dubé M, Le Coupanec A, Wong AHM, et al. 2018.. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. . J. Virol. 92:(17):e00404-18
    [Google Scholar]
  14. 14. 
    Yang L, Han Y, Nilsson-Payant BE, et al. 2020.. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. . Cell Stem Cell 27:(1):12536.e7
    [Google Scholar]
  15. 15. 
    Li Y-C, Bai W-Z, Hashikawa T. 2020.. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. . J. Med. Virol. 92:(6):55255
    [Google Scholar]
  16. 16. 
    Rhea EM, Logsdon AF, Hansen KM, et al. 2020.. The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. . Nat. Neurosci. 24::36878
    [Google Scholar]
  17. 17. 
    Paniz-Mondolfi A, Bryce C, Grimes Z, et al. 2020.. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). . J. Med. Virol. 92:(7):699702
    [Google Scholar]
  18. 18. 
    Kantonen J, Mahzabin S, Mäyränpää MI, et al. 2020.. Neuropathologic features of four autopsied COVID-19 patients. . Brain Pathol. 30:(6):101216
    [Google Scholar]
  19. 19. 
    Solomon IH, Normandin E, Bhattacharyya S, et al. 2020.. Neuropathological features of Covid-19. . N. Engl. J. Med. 383:(10):98992
    [Google Scholar]
  20. 20. 
    Brann DH, Tsukahara T, Weinreb C, et al. 2020.. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. . Sci. Adv. 6:(31):eabc5801
    [Google Scholar]
  21. 21. 
    Gu J, Gong E, Zhang B, et al. 2005.. Multiple organ infection and the pathogenesis of SARS. . J. Exp. Med. 202:(3):41524
    [Google Scholar]
  22. 22. 
    Howard J, Guy J. 2020.. Doctors say loss of sense of smell might be Covid-19 symptom. . CNN Health, Mar. 23. https://www.cnn.com/2020/03/23/health/coronavirus-symptoms-smell-intl/index.html
    [Google Scholar]
  23. 23. 
    Spinato G, Fabbris C, Polesel J, et al. 2020.. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. . JAMA 323:(20):208990
    [Google Scholar]
  24. 24. 
    Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. 2020.. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. . Eur. Arch. Otorhinolaryngol. 277:(8):225161
    [Google Scholar]
  25. 25. 
    Giacomelli A, Pezzati L, Conti F, et al. 2020.. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study. . Clin. Infect. Dis. 71:(15):88990
    [Google Scholar]
  26. 26. 
    Ibekwe TS, Fasunla AJ, Orimadegun AE. 2020.. Systematic review and meta-analysis of smell and taste disorders in COVID-19. . OTO Open 4:(3):2473974X20957975
    [Google Scholar]
  27. 27. 
    Speth MM, Singer-Cornelius T, Oberle M, et al. 2020.. Olfactory dysfunction and sinonasal symptomatology in COVID-19: prevalence, severity, timing, and associated characteristics. . Otolaryngol. Head Neck Surg. 163:(1):11420
    [Google Scholar]
  28. 28. 
    Politi LS, Salsano E, Grimaldi M. 2020.. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. . JAMA Neurol. 77:(8):102829
    [Google Scholar]
  29. 29. 
    Whitcroft KL, Hummel T. 2020.. Olfactory dysfunction in COVID-19: diagnosis and management. . JAMA 323:(24):2512
    [Google Scholar]
  30. 30. 
    Huang C, Wang Y, Li X, et al. 2020.. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. . Lancet 395:(10223):497506
    [Google Scholar]
  31. 31. 
    Bolay H, Gül A, Baykan B. 2020.. COVID-19 is a real headache!. Headache 60:(7):141521
    [Google Scholar]
  32. 32. 
    Guan W, Ni Z, Hu Y, et al. 2020.. Clinical characteristics of coronavirus disease 2019 in China. . N. Engl. J. Med. 382:(18):170820
    [Google Scholar]
  33. 33. 
    Zhu J, Ji P, Pang J, et al. 2020.. Clinical characteristics of 3062 COVID-19 patients: a meta-analysis. . J. Med. Virol. 92:(10):190214
    [Google Scholar]
  34. 34. 
    Borges do Nascimento IJ, Cacic N, Abdulazeem HM, et al. 2020.. Novel coronavirus infection (COVID-19) in humans: a scoping review and meta-analysis. . J. Clin. Med. 9:(4):941
    [Google Scholar]
  35. 35. 
    Pun BT, Badenes R, Heras La Calle G, et al. 2021.. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. . Lancet Respir. Med. 9:(3):23950
    [Google Scholar]
  36. 36. 
    Ely EW, Shintani A, Truman B, et al. 2004.. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. . JAMA 291:(14):175362
    [Google Scholar]
  37. 37. 
    Girard TD, Jackson JC, Pandharipande PP, et al. 2010.. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. . Crit. Care Med. 38:(7):151320
    [Google Scholar]
  38. 38. 
    Botta M, Tsonas AM, Pillay J, et al. 2021.. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study. . Lancet Respir. Med. 9:(2):13948
    [Google Scholar]
  39. 39. 
    Hanidziar D, Bittner EA. 2020.. Sedation of mechanically ventilated COVID-19 patients: challenges and special considerations. . Anesth. Analg. 131:(1):e4041
    [Google Scholar]
  40. 40. 
    Iwashyna TJ, Ely EW, Smith DM, et al. 2010.. Long-term cognitive impairment and functional disability among survivors of severe sepsis. . JAMA 304:(16):178794
    [Google Scholar]
  41. 41. 
    Ye M, Ren Y, Lv T. 2020.. Encephalitis as a clinical manifestation of COVID-19. . Brain Behav. Immun. 88::94546
    [Google Scholar]
  42. 42. 
    Pilotto A, Odolini S, Masciocchi S, et al. 2020.. Steroid-responsive encephalitis in coronavirus disease 2019. . Ann. Neurol. 88:(2):42327
    [Google Scholar]
  43. 43. 
    Bernard-Valnet R, Pizzarotti B, Anichini A, et al. 2020.. Two patients with acute meningoencephalitis concomitant with SARS-CoV-2 infection. . Eur. J. Neurol. 27:(9):e4344
    [Google Scholar]
  44. 44. 
    Moriguchi T, Harii N, Goto J, et al. 2020.. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. . Int. J. Infect. Dis. 94::5558
    [Google Scholar]
  45. 45. 
    Parsons T, Banks S, Bae C, et al. 2020.. COVID-19-associated acute disseminated encephalomyelitis (ADEM). . J. Neurol. 267:(10):2799802
    [Google Scholar]
  46. 46. 
    Huang YH, Jiang D, Huang JT. 2020.. SARS-CoV-2 detected in cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. . Brain Behav. Immun. 87::149
    [Google Scholar]
  47. 47. 
    Paterson RW, Brown RL, Benjamin L, et al. 2020.. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. . Brain 143:(10):310420
    [Google Scholar]
  48. 48. 
    Poyiadji N, Shahin G, Noujaim D, et al. 2020.. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. . Radiology 296:(2):E11920
    [Google Scholar]
  49. 49. 
    Reichard RR, Kashani KB, Boire NA, et al. 2020.. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. . Acta Neuropathol. 140:(1):16
    [Google Scholar]
  50. 50. 
    Princiotta Cariddi L, Tabaee Damavandi P, Carimati F, et al. 2020.. Reversible encephalopathy syndrome (PRES) in a COVID-19 patient. . J. Neurol. 267:(11):315760
    [Google Scholar]
  51. 51. 
    Franceschi AM, Arora R, Wilson R, et al. 2020.. Neurovascular complications in COVID-19 infection: case series. . Am. J. Neuroradiol. 41:(9):163240
    [Google Scholar]
  52. 52. 
    Mirza J, Ganguly A, Ostrovskaya A, et al. 2020.. Command suicidal hallucination as initial presentation of coronavirus disease 2019 (COVID-19): a case report. . Psychosomatics 61:(5):56164
    [Google Scholar]
  53. 53. 
    Smith CM, Komisar JR, Mourad A, et al. 2020.. COVID-19-associated brief psychotic disorder. . BMJ Case Rep. 13:(8):e236940
    [Google Scholar]
  54. 54. 
    Ferrando SJ, Klepacz L, Lynch S, et al. 2020.. COVID-19 psychosis: a potential new neuropsychiatric condition triggered by novel coronavirus infection and the inflammatory response?. Psychosomatics 61:(5):55155
    [Google Scholar]
  55. 55. 
    Taquet M, Luciano S, Geddes JR, et al. 2020.. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. . Lancet Psychiatry 8:(2):13040
    [Google Scholar]
  56. 56. 
    Romo V. 2020.. NYC emergency room physician who treated coronavirus patients dies by suicide. . NPR, Apr. 28. https://www.npr.org/sections/coronavirus-live-updates/2020/04/28/847305408/nyc-emergency-room-physician-who-treated-coronavirus-patients-dies-by-suicide
    [Google Scholar]
  57. 57. 
    Bao Y, Sun Y, Meng S, et al. 2020.. 2019-nCoV epidemic: address mental health care to empower society. . Lancet 395:(10224):e3738
    [Google Scholar]
  58. 58. 
    Reger MA, Stanley IH, Joiner TE. 2020.. Suicide mortality and coronavirus disease 2019—a perfect storm?. JAMA Psychiatry 77:(11):1019394
    [Google Scholar]
  59. 59. 
    Yaghi S, Ishida K, Torres J, et al. 2020.. SARS-CoV-2 and stroke in a New York healthcare system. . Stroke 51:(7):200211
    [Google Scholar]
  60. 60. 
    Merkler AE, Parikh NS, Mir S, et al. 2020.. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) versus patients with influenza. . JAMA Neurol. 77:(11):136672
    [Google Scholar]
  61. 61. 
    Dhamoon MS, Thaler A, Gururangan K, et al. 2021.. Acute cerebrovascular events with COVID-19 infection. . Stroke 52:(1):4856
    [Google Scholar]
  62. 62. 
    Spence JD, de Freitas GR, Pettigrew LC, et al. 2020.. Mechanisms of stroke in COVID-19. . Cerebrovasc. Dis. 49:(4):45158
    [Google Scholar]
  63. 63. 
    Harzallah I, Debliquis A, Drénou B. 2020.. Lupus anticoagulant is frequent in patients with Covid-19. . J. Thromb. Haemost. 18:(8):206465
    [Google Scholar]
  64. 64. 
    Tang N, Bai H, Chen X, et al. 2020.. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. . J. Thromb. Haemost. 18:(5):109499
    [Google Scholar]
  65. 65. 
    Fifi JT, Mocco J. 2020.. COVID-19 related stroke in young individuals. . Lancet Neurol. 19:(9):71315
    [Google Scholar]
  66. 66. 
    Dakay K, Cooper J, Bloomfield J, et al. 2021.. Cerebral venous sinus thrombosis in COVID-19 infection: a case series and review of the literature. . J. Stroke Cerebrovasc. Dis. 30:(1):105434
    [Google Scholar]
  67. 67. 
    Garaci F, Di Giuliano F, Picchi E, et al. 2020.. Venous cerebral thrombosis in COVID-19 patient. . J. Neurol. Sci. 414::116871
    [Google Scholar]
  68. 68. 
    Abdalkader M, Shaikh SP, Siegler JE, et al. 2021.. Cerebral venous sinus thrombosis in COVID-19 patients: a multicenter study and review of literature. . J. Stroke Cerebrovasc. Dis. 30:(6):105733
    [Google Scholar]
  69. 69. 
    Lee SG, Fralick M, Sholzberg M. 2020.. Coagulopathy associated with COVID-19. . CMAJ 192:(21):E583
    [Google Scholar]
  70. 70. 
    Panigada M, Bottino N, Tagliabue P, et al. 2020.. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. . J. Thromb. Haemost. 18:(7):173842
    [Google Scholar]
  71. 71. 
    Abou-Ismail MY, Diamond A, Kapoor S, et al. 2020.. The hypercoagulable state in COVID-19: incidence, pathophysiology, and management. . Thromb. Res. 194::10115
    [Google Scholar]
  72. 72. 
    NIH (Natl. Inst. Health). 2021.. Full-dose blood thinners decreased need for life support and improved outcome in hospitalized COVID-19 patients. News release, Jan. 22 , NIH, Bethesda, MD:. https://www.nih.gov/news-events/news-releases/full-dose-blood-thinners-decreased-need-life-support-improved-outcome-hospitalized-covid-19-patients
    [Google Scholar]
  73. 73. 
    NIH (Natl. Inst. Health). 2020.. NIH ACTIV Trial of blood thinners pauses enrollment of critically ill COVID-19 patients. News release, Dec. 22 , NIH, Bethesda, MD:. https://www.nih.gov/news-events/news-releases/nih-activ-trial-blood-thinners-pauses-enrollment-critically-ill-covid-19-patients
    [Google Scholar]
  74. 74. 
    Lu L, Xiong W, Liu D, et al. 2020.. New onset acute symptomatic seizure and risk factors in coronavirus disease 2019: a retrospective multicenter study. . Epilepsia 61:(6):e4953
    [Google Scholar]
  75. 75. 
    Emami A, Fadakar N, Akbari A, et al. 2020.. Seizure in patients with COVID-19. . Neurol. Sci. 41:(11):305761
    [Google Scholar]
  76. 76. 
    Anand P, Al-Faraj A, Sader E, et al. 2020.. Seizure as the presenting symptom of COVID-19: a retrospective case series. . Epilepsy Behav. 112::107335
    [Google Scholar]
  77. 77. 
    Zhang Q, Schultz JL, Aldridge GM, et al. 2020.. Coronavirus disease 2019 case fatality and Parkinson's disease. . Mov. Disord. 35:(11):191415
    [Google Scholar]
  78. 78. 
    Vignatelli L, Zenesini C, Belotti LMB, et al. 2021.. Risk of hospitalization and death for COVID-19 in people with Parkinson's disease or parkinsonism. . Mov. Disord. 36:(1):110
    [Google Scholar]
  79. 79. 
    Toscano G, Palmerini F, Ravaglia S, et al. 2020.. Guillain-Barré syndrome associated with SARS-CoV-2. . N. Engl. J. Med. 382:(26):257476
    [Google Scholar]
  80. 80. 
    Hadden RD, Cornblath DR, Hughes RA, et al. 1998.. Electrophysiological classification of Guillain-Barré syndrome: clinical associations and outcome. . Ann. Neurol. 44:(5):78088
    [Google Scholar]
  81. 81. 
    Abrams RMC, Kim BD, Markantone DM, et al. 2020.. Severe rapidly progressive Guillain-Barré syndrome in the setting of acute COVID-19 disease. . J. Neurovirol. 26:(5):79799
    [Google Scholar]
  82. 82. 
    Arnaud S, Budowski C, Ng Wing Tin S, et al. 2020.. Post SARS-CoV-2 Guillain-Barré syndrome. . Clin. Neurophysiol. 131:(7):165254
    [Google Scholar]
  83. 83. 
    Samies NL, Pinninti S, James SH. 2020.. Rhabdomyolysis and acute renal failure in an adolescent with coronavirus disease 2019. . J. Pediatr. Infect. Dis. Soc. 9:(4):5079
    [Google Scholar]
  84. 84. 
    Meegada S, Muppidi V, Wilkinson DC, et al. 2020.. Coronavirus disease 2019-induced rhabdomyolysis. . Cureus 12:(8):e10123
    [Google Scholar]
  85. 85. 
    Jin M, Tong Q. 2020.. Rhabdomyolysis as potential late complication associated with COVID-19. . Emerg. Infect. Dis. 26:(7):161820
    [Google Scholar]
  86. 86. 
    Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. 2020.. Multiorgan and renal tropism of SARS-CoV-2. . N. Engl. J. Med. 383::59092
    [Google Scholar]
  87. 87. 
    Sánchez-Soblechero A, García CA, Ansotegui AS, et al. 2020.. Upper trunk brachial plexopathy as a consequence of prone positioning due to SARS-CoV-2 acute respiratory distress syndrome. . Muscle Nerve 62:(5):E7678
    [Google Scholar]
  88. 88. 
    Han CY, Tarr AM, Gewirtz AN, et al. 2021.. Brachial plexopathy as a complication of COVID-19. . BMJ Case Rep. 14:(3):e237459
    [Google Scholar]
  89. 89. 
    Chow CCN, Magnussen J, Ip J, et al. 2020.. Acute transverse myelitis in COVID-19 infection. . BMJ Case Rep. 13:(8):e236720
    [Google Scholar]
  90. 90. 
    Munz M, Wessendorf S, Koretsis G, et al. 2020.. Acute transverse myelitis after COVID-19 pneumonia. . J. Neurol. 267:(8):219697
    [Google Scholar]
  91. 91. 
    Komaroff AL, Bateman L. 2021.. Will COVID-19 lead to myalgic encephalomyelitis/chronic fatigue syndrome?. Front. Med. 7::1132
    [Google Scholar]
  92. 92. 
    Chopra V, Flanders SA, O'Malley M, et al. 2020.. Sixty-day outcomes among patients hospitalized with COVID-19. . Ann. Intern. Med. 174:(4):57678
    [Google Scholar]
  93. 93. 
    Perego E, Callard F, Stras L, et al. 2020.. Why we need to keep using the patient made term “Long Covid. BMJ Opin. Blog, Oct. 1. https://blogs.bmj.com/bmj/2020/10/01/why-we-need-to-keep-using-the-patient-made-term-long-covid
    [Google Scholar]
  94. 94. 
    Dani M, Dirksen A, Taraborrelli P, et al. 2021.. Autonomic dysfunction in “long COVID”: rationale, physiology and management strategies. . Clin. Med. 21:(1):e6367
    [Google Scholar]
  95. 95. 
    Del Rio R, Marcus NJ, Inestrosa NC. 2020.. Potential role of autonomic dysfunction in Covid-19 morbidity and mortality. . Front. Physiol. 11::561749
    [Google Scholar]
  96. 96. 
    Blitshteyn S, Whitelaw S. 2021.. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. . Immunol. Res. 69:(2):20511
    [Google Scholar]
  97. 97. 
    Bertoli F, Veritti D, Danese C, et al. 2020.. Ocular findings in COVID-19 patients: a review of direct manifestations and indirect effects on the eye. . J. Ophthalmol. 2020::4827304
    [Google Scholar]
  98. 98. 
    Wu P, Duan F, Luo C, et al. 2020.. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. . JAMA Ophthalmol. 138:(5):575
    [Google Scholar]
  99. 99. 
    Peng M, Dai J, Sugali CK, et al. 2020.. The role of the ocular tissue in SARS-CoV-2 transmission. . Clin. Ophthalmol. 14::301724
    [Google Scholar]
  100. 100. 
    Román GC, Reis J, Spencer PS, et al. 2020.. COVID-19 international neurological registries. . Lancet Neurol. 19:(6):48485
    [Google Scholar]
  101. 101. 
    Polack FP, Thomas SJ, Kitchin N, et al. 2020.. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. . N. Engl. J. Med. 383::260315
    [Google Scholar]
/content/journals/10.1146/annurev-med-042320-010427
Loading
/content/journals/10.1146/annurev-med-042320-010427
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error