1932

Abstract

Pancreatic neuroendocrine tumors (PNETs) are a heterogeneous and orphan group of neoplasms that vary in their histology, clinical features, prognosis, and management. The treatment of PNETs is highly dependent on the stage at presentation, tumor grade and differentiation, presence of symptoms from hormonal overproduction or from local growth, tumor burden, and rate of progression. The US Food and Drug Administration has recently approved many novel treatments, which have altered decision making and positively impacted the care and prognosis of these patients. In this review, we focus on the significant progress made in the management of PNETs over the past decade, as well as the active areas of research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042320-011248
2022-01-27
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/med/73/1/annurev-med-042320-011248.html?itemId=/content/journals/10.1146/annurev-med-042320-011248&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Vortmeyer AO, Huang S, Lubensky I, Zhuang Z 2004. Non-islet origin of pancreatic islet cell tumors. J. Clin. Endocrinol. Metab. 89:1934–38
    [Google Scholar]
  2. 2. 
    Whipple AO. 1938. The surgical therapy of hyperinsulinism. J. Int. Chir. 3:237–76
    [Google Scholar]
  3. 3. 
    Zollinger RM, Ellison EH. 1955. Primary peptic ulcerations of the jejunum associated with islet cell tumors of the pancreas. Ann. Surg. 142:709–23
    [Google Scholar]
  4. 4. 
    Verner JV, Morrison AB. 1958. Islet cell tumor and a syndrome of refractory watery diarrhea and hypokalemia. Am. J. Med. 25:374–80
    [Google Scholar]
  5. 5. 
    Maxwell JE, O'Dorisio TM, Bellizzi AM, Howe JR 2014. Elevated pancreatic polypeptide levels in pancreatic neuroendocrine tumors and diabetes mellitus: causation or association?. Pancreas 43:651–56
    [Google Scholar]
  6. 6. 
    Halfdanarson TR, Rabe KG, Rubin J, Petersen GM 2008. Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann. Surg. 19:1727–33
    [Google Scholar]
  7. 7. 
    Bilimoria KY, Talamonti MS, Tomlinson JS et al. 2008. Prognostic score predicting survival after resection of pancreatic neuroendocrine tumors: analysis of 3851 patients. Ann. Surg. 247:490–500
    [Google Scholar]
  8. 8. 
    Fox PS, Hofmann JW, Decosse JJ, Wilson SD. 1974. The influence of total gastrectomy on survival in malignant Zollinger-Ellison tumors. Ann. Surg. 180:558–66
    [Google Scholar]
  9. 9. 
    McCarthy DM. 1978. Report on the United States experience with cimetidine in Zollinger-Ellison syndrome and other hypersecretory states. Gastroenterology 74:453–58
    [Google Scholar]
  10. 10. 
    Metz DC, Strader DB, Orbuch M et al. 1993. Use of omeprazole in Zollinger-Ellison syndrome: a prospective nine-year study of efficacy and safety. Aliment. Pharmacol. Ther. 7:597–610
    [Google Scholar]
  11. 11. 
    Moertel CG, Hanley JA, Johnson LA. 1980. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 303:1189–94
    [Google Scholar]
  12. 12. 
    Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ. 1996. Octreotide. N. Engl. J. Med. 334:246–54
    [Google Scholar]
  13. 13. 
    Caplin ME, Pavel M, Ćwikła JB et al. 2014. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 371:224–33
    [Google Scholar]
  14. 14. 
    Rinke A, Müller HH, Schade-Brittinger C et al. 2009. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol. 27:4656–63
    [Google Scholar]
  15. 15. 
    Yao JC, Shah MH, Ito T et al. 2011. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364:514–23
    [Google Scholar]
  16. 16. 
    Raymond E, Dahan L, Raoul JL et al. 2011. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364:501–13
    [Google Scholar]
  17. 17. 
    Kunz PL, Catalano PJ, Nimeiri H et al. 2018. A randomized study of temozolomide or temozolomide and capecitabine in patients with advanced pancreatic neuroendocrine tumors: a trial of the ECOG-ACRIN Cancer Research Group (E2211). J. Clin. Oncol. 36:4004
    [Google Scholar]
  18. 18. 
    Strosberg J, El-Haddad G, Wolin E et al. 2017. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376:125–35
    [Google Scholar]
  19. 19. 
    Dasari A, Shen C, Halperin D et al. 2017. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 3:1335–42
    [Google Scholar]
  20. 20. 
    Kasumova GG, Tabatabaie O, Eskander MF et al. 2017. National rise of primary pancreatic carcinoid tumors: comparison to functional and nonfunctional pancreatic neuroendocrine tumors. J. Am. Coll. Surg. 224:1057–64
    [Google Scholar]
  21. 21. 
    Hallet J, Law CH, Cukier M et al. 2015. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer 121:589–97
    [Google Scholar]
  22. 22. 
    Yao JC, Hassan M, Phan A et al. 2008. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 26:3063–72
    [Google Scholar]
  23. 23. 
    Concors SJ, Sinnamon AJ, Ecker BL et al. 2020. The impact of surgery for metastatic pancreatic neuroendocrine tumor: a contemporary evaluation matching for chromogranin A level. HPB 22:83–90
    [Google Scholar]
  24. 24. 
    Cavalcanti MS, Gönen M, Klimstra DS. 2016. The ENETS/WHO grading system for neuroendocrine neoplasms of the gastroenteropancreatic system: a review of the current state, limitations and proposals for modifications. Int. J. Endocr. Oncol. 3:203–19
    [Google Scholar]
  25. 25. 
    Madeira I, Terris B, Voss M et al. 1998. Prognostic factors in patients with endocrine tumours of the duodenopancreatic area. Gut 43:422–27
    [Google Scholar]
  26. 26. 
    Rindi G, Falconi M, Klersy C et al. 2012. TNM staging of neoplasms of the endocrine pancreas: results from a large international cohort study. J. Natl. Cancer Inst. 104:764–77
    [Google Scholar]
  27. 27. 
    Rindi G, Klimstra DS, Abedi-Ardekani B et al. 2018. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod. Pathol. 31:1770–86
    [Google Scholar]
  28. 28. 
    Choe J, Kim KW, Kim HJ et al. 2019. What is new in the 2017 World Health Organization classification and 8th American joint committee on cancer staging system for pancreatic neuroendocrine neoplasms?. Korean J. Radiol. 20:5–17
    [Google Scholar]
  29. 29. 
    Yang M, Zeng L, Ke N-W et al. 2020. World Health Organization grading classification for pancreatic neuroendocrine neoplasms: a comprehensive analysis from a large Chinese institution. BMC Cancer 20:906
    [Google Scholar]
  30. 30. 
    Halperin DM, Kulke MH, Yao JC. 2015. A tale of two tumors: treating pancreatic and extrapancreatic neuroendocrine tumors. Annu. Rev. Med. 66:1–16
    [Google Scholar]
  31. 31. 
    Maxwell JE, O'Dorisio TM, Howe JR. 2016. Biochemical diagnosis and preoperative imaging of gastroenteropancreatic neuroendocrine tumors. Oncol. Clin. N. Am. 25:171–94
    [Google Scholar]
  32. 32. 
    Sherman SK, Maxwell JE, O'Dorisio MS et al. 2014. Pancreastatin predicts survival in neuroendocrine tumors. Ann. Surg. Oncol. 21:2971–80
    [Google Scholar]
  33. 33. 
    Chiti A, Fanti S, Savelli G et al. 1998. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. Eur. J. Nucl. Med. 25:1396–403
    [Google Scholar]
  34. 34. 
    Maxwell JE, Howe JR. 2015. Imaging in neuroendocrine tumors: an update for the clinician. Int. J. Endocr. Oncol. 2:159–68
    [Google Scholar]
  35. 35. 
    Squires MH, Volkan Adsay N, Schuster DM et al. 2015. Octreoscan versus FDG-PET for neuroendocrine tumor staging: a biological approach. Ann. Surg. Oncol. 22:2295–301
    [Google Scholar]
  36. 36. 
    Reubi JC, Schär JC, Waser B et al. 2000. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nucl. Med. 27:273–82
    [Google Scholar]
  37. 37. 
    Buchmann I, Henze M, Engelbrecht S et al. 2007. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 34:1617–26
    [Google Scholar]
  38. 38. 
    Gabriel M, Decristoforo C, Kendler D et al. 2007. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med. 48:508–18
    [Google Scholar]
  39. 39. 
    Krausz Y, Freedman N, Rubinstein R et al. 2011. 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with ¹¹¹In-DTPA-octreotide (OctreoScan®). Mol. Imaging Biol. 13:583–93
    [Google Scholar]
  40. 40. 
    Desai H, Borges-Neto S, Wong TZ. 2019. Molecular imaging and therapy for neuroendocrine tumors. Curr. Treat. Opt. Oncol. 20:78
    [Google Scholar]
  41. 41. 
    Howe JR, Merchant NB, Conrad C et al. 2020. The North American Neuroendocrine Tumor Society consensus paper on the surgical management of pancreatic neuroendocrine tumors. Pancreas 49:1–33
    [Google Scholar]
  42. 42. 
    Zerbi A, Capitanio V, Boninsegna L et al. 2013. Treatment of malignant pancreatic neuroendocrine neoplasms: middle-term (2-year) outcomes of a prospective observational multicentre study. HPB 15:935–43
    [Google Scholar]
  43. 43. 
    Sadot E, Reidy-Lagunes DL, Tang LH et al. 2016. Observation versus resection for small asymptomatic pancreatic neuroendocrine tumors: a matched case-control study. Ann. Surg. Oncol. 23:1361–70
    [Google Scholar]
  44. 44. 
    Bettini R, Partelli S, Boninsegna L et al. 2011. Tumor size correlates with malignancy in nonfunctioning pancreatic endocrine tumor. Surgery 150:75–82
    [Google Scholar]
  45. 45. 
    Falconi M, Eriksson B, Kaltsas G et al. 2016. ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology 103:153–71
    [Google Scholar]
  46. 46. 
    Sallinen VJ, Le Large TYS, Tieftrunk E et al. 2018. Prognosis of sporadic resected small (≤2 cm) nonfunctional pancreatic neuroendocrine tumors—a multi-institutional study. HPB 20:251–59
    [Google Scholar]
  47. 47. 
    Heidsma CM, Engelsman AF, van Dieren S et al. 2021. Watchful waiting for small non-functional pancreatic neuroendocrine tumours: nationwide prospective cohort study (PANDORA). Br. J. Surg. 108:888–91
    [Google Scholar]
  48. 48. 
    Pommergaard HC, Nielsen K, Sorbye H et al. 2021. Surgery of the primary tumour in 201 patients with high-grade gastroenteropancreatic neuroendocrine and mixed neuroendocrine-non-neuroendocrine neoplasms. J. Neuroendocrinol. 33:e12967
    [Google Scholar]
  49. 49. 
    Strosberg JR, Halfdanarson TR, Bellizzi AM et al. 2017. The North American Neuroendocrine Tumor Society consensus guidelines for surveillance and medical management of midgut neuroendocrine tumors. Pancreas 46:707–14
    [Google Scholar]
  50. 50. 
    Thornblade LW, Warner SG, Melstrom L et al. 2021. Does surgery provide a survival advantage in non-disseminated poorly differentiated gastroenteropancreatic neuroendocrine neoplasms?. Surgery 169:1417–23
    [Google Scholar]
  51. 51. 
    Yoshida T, Hijioka S, Hosoda W et al. 2019. Surgery for pancreatic neuroendocrine tumor G3 and carcinoma G3 should be considered separately. Ann. Surg. Oncol. 26:1385–93
    [Google Scholar]
  52. 52. 
    Crippa S, Partelli S, Bassi C et al. 2016. Long-term outcomes and prognostic factors in neuroendocrine carcinomas of the pancreas: morphology matters. Surgery 159:862–71
    [Google Scholar]
  53. 53. 
    Altimari M, Abad J, Chawla A 2021. The role of oncologic resection and enucleation for small pancreatic neuroendocrine tumors. HPB 23:10153340
    [Google Scholar]
  54. 54. 
    Giuliani T, De Pastena M, Paiella S et al. 2021. Pancreatic enucleation patients share the same quality of life as the general population at long-term follow-up: a propensity-score matched analysis. Ann. Surg In press. https://doi.org/10.1097/SLA.0000000000004911
    [Crossref] [Google Scholar]
  55. 55. 
    Condron ME, Jameson NE, Limbach KE et al. 2019. A prospective study of the pathophysiology of carcinoid crisis. Surgery 165:158–65
    [Google Scholar]
  56. 56. 
    Tran CG, Sherman SK, Chandrasekharan C, Howe JR 2021. Surgical management of neuroendocrine tumor liver metastases. Surg. Oncol. Clin. N. Am. 30:39–55
    [Google Scholar]
  57. 57. 
    Woltering EA, Wright AE, Stevens MA et al. 2016. Development of effective prophylaxis against intraoperative carcinoid crisis. J. Clin. Anesth. 32:189–93
    [Google Scholar]
  58. 58. 
    Keutgen XM, Schadde E, Pommier RF et al. 2018. Metastatic neuroendocrine tumors of the gastrointestinal tract and pancreas: a surgeon's plea to centering attention on the liver. Semin. Oncol. 45:232–35
    [Google Scholar]
  59. 59. 
    Maxwell JE, Sherman SK, O'Dorisio TM et al. 2016. Liver-directed surgery of neuroendocrine metastases: What is the optimal strategy?. Surgery 159:320–33
    [Google Scholar]
  60. 60. 
    Morgan RE, Pommier SJ, Pommier RF. 2018. Expanded criteria for debulking of liver metastasis also apply to pancreatic neuroendocrine tumors. Surgery 163:218–25
    [Google Scholar]
  61. 61. 
    Tierney JF, Chivukula SV, Wang X et al. 2019. Resection of primary tumor may prolong survival in metastatic gastroenteropancreatic neuroendocrine tumors. Surgery 165:644–51
    [Google Scholar]
  62. 62. 
    Woltering EA, Voros BA, Beyer DT et al. 2017. Aggressive surgical approach to the management of neuroendocrine tumors: a report of 1,000 surgical cytoreductions by a single institution. J. Am. Coll. Surg. 224:434–47
    [Google Scholar]
  63. 63. 
    Bertani E, Fazio N, Radice D et al. 2017. Assessing the role of primary tumour resection in patients with synchronous unresectable liver metastases from pancreatic neuroendocrine tumour of the body and tail. A propensity score survival evaluation. Eur. J. Surg. Oncol. 43:372–79
    [Google Scholar]
  64. 64. 
    Franko J, Feng W, Yip L et al. 2010. Non-functional neuroendocrine carcinoma of the pancreas: incidence, tumor biology, and outcomes in 2,158 patients. J. Gastrointest. Surg. 14:541–48
    [Google Scholar]
  65. 65. 
    Kaemmerer D, Twrznik M, Kulkarni HR et al. 2019. Prior resection of the primary tumor prolongs survival after peptide receptor radionuclide therapy of advanced neuroendocrine neoplasms. Ann. Surg. 274:e45–53
    [Google Scholar]
  66. 66. 
    Vogl TJ, Naguib NN, Zangos S et al. 2009. Liver metastases of neuroendocrine carcinomas: interventional treatment via transarterial embolization, chemoembolization and thermal ablation. Eur. J. Radiol. 72:517–28
    [Google Scholar]
  67. 67. 
    Kanabar R, Barriuso J, McNamara MG et al. 2021. Liver embolisation for patients with neuroendocrine neoplasms: systematic review. Neuroendocrinology 111:354–69
    [Google Scholar]
  68. 68. 
    Tai E, Kennedy S, Farrell A et al. 2020. Comparison of transarterial bland and chemoembolization for neuroendocrine tumours: a systematic review and meta-analysis. Curr. Oncol. 27:e537–46
    [Google Scholar]
  69. 69. 
    Soulen MC, White S, Fidelman N et al. 2019. Randomized Embolization Trial for NeuroEndocrine Tumors (RETNET): first safety report. J. Vasc. Int. Radiol. 30:S49–50
    [Google Scholar]
  70. 70. 
    Yang TX, Chua TC, Morris DL. 2012. Radioembolization and chemoembolization for unresectable neuroendocrine liver metastases—a systematic review. Surg. Oncol. 21:299–308
    [Google Scholar]
  71. 71. 
    Braat AJAT, Ahmadzadehfar H, Kappadath SC et al. 2020. Radioembolization with 90Y resin microspheres of neuroendocrine liver metastases after initial peptide receptor radionuclide therapy. Cardiovasc. Int. Radiol. 43:246–53
    [Google Scholar]
  72. 72. 
    Bloom SR, Mortimer CH, Thorner MO et al. 1974. Inhibition of gastrin and gastric-acid secretion by growth-hormone release-inhibiting hormone. Lancet 2:1106–9
    [Google Scholar]
  73. 73. 
    Cakir M, Dworakowska D, Grossman A. 2010. Somatostatin receptor biology in neuroendocrine and pituitary tumours: part 1—molecular pathways. J. Cell Mol. Med. 14:2570–84
    [Google Scholar]
  74. 74. 
    Eigler T, Ben-Shlomo A. 2014. Somatostatin system: molecular mechanisms regulating anterior pituitary hormones. J. Mol. Endocrinol. 53:R1–19
    [Google Scholar]
  75. 75. 
    Mandarino L, Stenner D, Blanchard W et al. 1981. Selective effects of somatostatin-14, -25 and -28 on in vitro insulin and glucagon secretion. Nature 291:76–77
    [Google Scholar]
  76. 76. 
    Ohnishi H, Mine T, Kojima I. 1994. Inhibition by somatostatin of amylase secretion induced by calcium and cyclic AMP in rat pancreatic acini. Biochem. J. 304:Pt. 2531–36
    [Google Scholar]
  77. 77. 
    Mizutani G, Nakanishi Y, Watanabe N et al. 2012. Expression of somatostatin receptor (SSTR) subtypes (SSTR-1, 2A, 3, 4 and 5) in neuroendocrine tumors using real-time RT-PCR method and immunohistochemistry. Acta Histochem. Cytochem. 45:167–76
    [Google Scholar]
  78. 78. 
    Papotti M, Bongiovanni M, Volante M et al. 2002. Expression of somatostatin receptor types 1–5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch 440:461–75
    [Google Scholar]
  79. 79. 
    Wulbrand U, Wied M, Zöfel P et al. 1998. Growth factor receptor expression in human gastroenteropancreatic neuroendocrine tumours. Eur. J. Clin. Investig. 28:1038–49
    [Google Scholar]
  80. 80. 
    Modlin IM, Pavel M, Kidd M, Gustafsson BI 2010. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment. Pharmacol. Ther. 31:169–88
    [Google Scholar]
  81. 81. 
    Rinke A, Wittenberg M, Schade-Brittinger C et al. 2017. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID): results of long-term survival. Neuroendocrinology 104:26–32
    [Google Scholar]
  82. 82. 
    Caplin ME, Pavel M, Ćwikła JB et al. 2016. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr. Relat. Cancer 23:191–99
    [Google Scholar]
  83. 83. 
    Kvols LK, Reubi JC, Horisberger U et al. 1992. The presence of somatostatin receptors in malignant neuroendocrine tumor tissue predicts responsiveness to octreotide. Yale J. Biol. Med. 65:505–18
    [Google Scholar]
  84. 84. 
    Lee H, Eads JR, Pryma DA. 2021. 68Ga-DOTATATE positron emission tomography-computed tomography quantification predicts response to somatostatin analog therapy in gastroenteropancreatic neuroendocrine tumors. Oncologist 26:21–29
    [Google Scholar]
  85. 85. 
    Halfdanarson TR, Strosberg JR, Tang L et al. 2020. The North American Neuroendocrine Tumor Society consensus guidelines for surveillance and medical management of pancreatic neuroendocrine tumors. Pancreas 49:863–81
    [Google Scholar]
  86. 86. 
    von Wichert G, Jehle PM, Hoeflich A et al. 2000. Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. Cancer Res 60:4573–81
    [Google Scholar]
  87. 87. 
    Yao JC. 2007. Neuroendocrine tumors. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract. Res. Clin. Endocrinol. Metab. 21:163–72
    [Google Scholar]
  88. 88. 
    Yao JC, Pavel M, Lombard-Bohas C et al. 2016. Everolimus for the treatment of advanced pancreatic neuroendocrine tumors: overall survival and circulating biomarkers from the randomized, phase III RADIANT-3 study. J. Clin. Oncol. 34:3906–13
    [Google Scholar]
  89. 89. 
    Hansel DE, Rahman A, Hermans J et al. 2003. Liver metastases arising from well-differentiated pancreatic endocrine neoplasms demonstrate increased VEGF-C expression. Mod. Pathol. 16:652–59
    [Google Scholar]
  90. 90. 
    Inoue M, Hager JH, Ferrara N et al. 2002. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1:193–202
    [Google Scholar]
  91. 91. 
    Terris B, Scoazec JY, Rubbia L et al. 1998. Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology 32:133–38
    [Google Scholar]
  92. 92. 
    Zhang J, Jia Z, Li Q et al. 2007. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer 109:1478–86
    [Google Scholar]
  93. 93. 
    Fjällskog ML, Hessman O, Eriksson B, Janson ET. 2007. Upregulated expression of PDGF receptor beta in endocrine pancreatic tumors and metastases compared to normal endocrine pancreas. Acta Oncol 46:741–46
    [Google Scholar]
  94. 94. 
    Fjällskog ML, Lejonklou MH, Oberg KE et al. 2003. Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin. Cancer Res. 9:1469–73
    [Google Scholar]
  95. 95. 
    Mendel DB, Laird AD, Xin X et al. 2003. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9:327–37
    [Google Scholar]
  96. 96. 
    Faivre S, Niccoli P, Castellano D et al. 2017. Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival and final overall survival from a phase III randomized study. Ann. Surg. 28:339–43
    [Google Scholar]
  97. 97. 
    Fine RL, Gulati AP, Krantz BA et al. 2013. Capecitabine and temozolomide (CAPTEM) for metastatic, well-differentiated neuroendocrine cancers: the Pancreas Center at Columbia University experience. Cancer Chemother. Pharmacol. 71:663–70
    [Google Scholar]
  98. 98. 
    Strosberg JR, Fine RL, Choi J et al. 2011. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 117:268–75
    [Google Scholar]
  99. 99. 
    Ramirez RA, Beyer DT, Chauhan A et al. 2016. The role of capecitabine/temozolomide in metastatic neuroendocrine tumors. Oncologist 21:671–75
    [Google Scholar]
  100. 100. 
    Thomas K, Voros BA, Meadows-Taylor M et al. 2020. Outcomes of capecitabine and temozolomide (CAPTEM) in advanced neuroendocrine neoplasms (NENs). Cancers 12:206
    [Google Scholar]
  101. 101. 
    Lu Y, Zhao Z, Wang J et al. 2018. Safety and efficacy of combining capecitabine and temozolomide (CAPTEM) to treat advanced neuroendocrine neoplasms: a meta-analysis. Medicine 97:e12784
    [Google Scholar]
  102. 102. 
    Iwasa S, Morizane C, Okusaka T et al. 2010. Cisplatin and etoposide as first-line chemotherapy for poorly differentiated neuroendocrine carcinoma of the hepatobiliary tract and pancreas. Jpn. J. Clin. Oncol. 40:313–18
    [Google Scholar]
  103. 103. 
    Basturk O, Tang L, Hruban RH et al. 2014. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Am. J. Surg. Pathol. 38:437–47
    [Google Scholar]
  104. 104. 
    Crippa S, Partelli S, Belfiori G et al. 2016. Management of neuroendocrine carcinomas of the pancreas (WHO G3): a tailored approach between proliferation and morphology. World J. Gastroenterol. 22:9944–53
    [Google Scholar]
  105. 105. 
    Garcia-Carbonero R, Sorbye H, Baudin E et al. 2016. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas. Neuroendocrinology 103:186–94
    [Google Scholar]
  106. 106. 
    Sorbye H, Welin S, Langer SW et al. 2013. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann. Surg. 24:152–60
    [Google Scholar]
  107. 107. 
    Sahu A, Jefford M, Lai-Kwon J et al. 2019. CAPTEM in metastatic well-differentiated intermediate to high grade neuroendocrine tumors: a single centre experience. J. Oncol. 2019:9032753
    [Google Scholar]
  108. 108. 
    Thomas K, Voros B, Patel DC et al. 2018. The role of Ki-67 in determining optimal chemotherapy in high grade neuroendocrine tumors. J. Clin. Oncol. 36:4100
    [Google Scholar]
  109. 109. 
    Zhu J, Strosberg JR, Dropkin E, Strickler JH 2015. Treatment of high-grade metastatic pancreatic neuroendocrine carcinoma with FOLFIRINOX. J. Gastrointest. Cancer 46:166–69
    [Google Scholar]
  110. 110. 
    Eads JR, Catalano PJ, Fisher GA et al. 2016. Randomized phase II study of cisplatin and etoposide versus temozolomide and capecitabine in patients (pts) with advanced G3 non-small cell gastroenteropancreatic neuroendocrine carcinomas (GEPNEC): a trial of the ECOG-ACRIN Cancer Research Group (EA2142). J. Clin. Oncol. 34:TPS4149–TPS
    [Google Scholar]
  111. 111. 
    Strosberg J, Mizuno N, Doi T et al. 2020. Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors: results from the phase II KEYNOTE-158 study. Clin. Cancer Res. 26:2124–30
    [Google Scholar]
  112. 112. 
    Klein O, Kee D, Markman B et al. 2020. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209–538 clinical trial for rare cancers. Clin. Cancer Res. 26:4454–59
    [Google Scholar]
  113. 113. 
    Patel SP, Othus M, Chae YK et al. 2020. A phase II basket trial of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART SWOG 1609) in patients with nonpancreatic neuroendocrine tumors. Clin. Cancer Res. 26:2290–96
    [Google Scholar]
  114. 114. 
    Patel SP, Mayerson E, Chae YK et al. 2021. A phase II basket trial of dual anti–CTLA–4 and anti–PD–1 blockade in rare tumors (DART) SWOG S1609: high-grade neuroendocrine neoplasm cohort. Cancer 127:3194–201
    [Google Scholar]
  115. 115. 
    Halperin DM, Liu S, Dasari A et al. 2020. A phase II trial of atezolizumab and bevacizumab in patients with advanced, progressive neuroendocrine tumors (NETs). J. Clin. Oncol. 38:619
    [Google Scholar]
  116. 116. 
    Horn L, Mansfield AS, Szczęsna A et al. 2018. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 379:2220–29
    [Google Scholar]
/content/journals/10.1146/annurev-med-042320-011248
Loading
/content/journals/10.1146/annurev-med-042320-011248
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error