1932

Abstract

The COVID-19 pandemic has been accompanied by SARS-CoV-2 evolution and emergence of viral variants that have far exceeded initial expectations. Five major variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) have emerged, each having both unique and overlapping amino acid substitutions that have affected transmissibility, disease severity, and susceptibility to natural or vaccine-induced immune responses and monoclonal antibodies. Several of the more recent variants appear to have evolved properties of immune evasion, particularly in cases of prolonged infection. Tracking of existing variants and surveillance for new variants are critical for an effective pandemic response.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042921-020956
2023-01-27
2024-09-12
Loading full text...

Full text loading...

/deliver/fulltext/med/74/1/annurev-med-042921-020956.html?itemId=/content/journals/10.1146/annurev-med-042921-020956&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Duffy S, Shackelton LA, Holmes EC. 2008. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9:267–76
    [Google Scholar]
  2. 2.
    Dolan PT, Whitfield ZJ, Andino R. 2018. Mechanisms and concepts in RNA virus population dynamics and evolution. Annu. Rev. Virol. 5:69–92
    [Google Scholar]
  3. 3.
    Smith EC, Denison MR. 2013. Coronaviruses as DNA wannabes: a new model for the regulation of RNA virus replication fidelity. PLOS Pathog. 9:e1003760
    [Google Scholar]
  4. 4.
    Denison MR, Graham RL, Donaldson EF et al. 2011. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol 8:270–79
    [Google Scholar]
  5. 5.
    Holmes EC, Goldstein SA, Rasmussen AL et al. 2021. The origins of SARS-CoV-2: a critical review. Cell 184:4848–56
    [Google Scholar]
  6. 6.
    Simon-Loriere E, Holmes EC. 2011. Why do RNA viruses recombine?. Nat. Rev. Microbiol. 9:617–26
    [Google Scholar]
  7. 7.
    Su S, Wong G, Shi W et al. 2016. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24:490–502
    [Google Scholar]
  8. 8.
    Kozlakidis Z. 2022. Evidence for recombination as an evolutionary mechanism in coronaviruses: Is SARS-CoV-2 an exception?. Front. Public Health 10:859900
    [Google Scholar]
  9. 9.
    Li X, Giorgi EE, Marichannegowda MH et al. 2020. Emergence of SARS-CoV-2 through recombination and strong purifying selection. Sci. Adv. 6:eabb9153
    [Google Scholar]
  10. 10.
    Jackson B, Boni MF, Bull MJ et al. 2021. Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic. Cell 184:5179–88.e8
    [Google Scholar]
  11. 11.
    Ignatieva A, Hein J, Jenkins PA. 2022. Ongoing recombination in SARS-CoV-2 revealed through genealogical reconstruction. Mol. Biol. Evol. 39:msac028
    [Google Scholar]
  12. 12.
    Korber B, Fischer WM, Gnanakaran S et al. 2020. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182:812–27.e19
    [Google Scholar]
  13. 13.
    Plante JA, Liu Y, Liu J et al. 2021. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592:116–21
    [Google Scholar]
  14. 14.
    Yurkovetskiy L, Wang X, Pascal KE et al. 2020. Structural and functional analysis of the D614G SARS-CoV-2 Spike protein variant. Cell 183:739–51.e8
    [Google Scholar]
  15. 15.
    Hou YJ, Chiba S, Halfmann P et al. 2020. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370:1464–68
    [Google Scholar]
  16. 16.
    Zhou B, Thao TTN, Hoffmann D et al. 2021. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 592:122–27
    [Google Scholar]
  17. 17.
    Premkumar L, Segovia-Chumbez B, Jadi R et al. 2020. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol. 5: https://doi.org/10.1126/sciimmunol.abc8413
    [Crossref] [Google Scholar]
  18. 18.
    CDC 2022. Variants and genomic surveillance for SARS-CoV-2. COVID-19 https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-surveillance.html . Accessed May 17 2022.
    [Google Scholar]
  19. 19.
    Leung NHL. 2021. Transmissibility and transmission of respiratory viruses. Nat. Rev. Microbiol. 19:528–45
    [Google Scholar]
  20. 20.
    Hodcroft E. 2022. Overview of variants/mutations. CoVariants https://covariants.org/variants. Accessed May 17 2022.
    [Google Scholar]
  21. 21.
    WHO 2022. Tracking SARS-CoV-2 Variants https://www.who.int/en/activities/tracking-SARS-CoV-2-variants. Accessed May 17 2022.
    [Google Scholar]
  22. 22.
    Chand M, Hopkins S, Dabrera G et al. 2020. Investigation of novel SARS-CoV-2 variant: variant of concern 202012/01 Tech. Brief. 2, Public Health England London, UK:
    [Google Scholar]
  23. 23.
    Rambaut A, Loman N, Pybus O et al. 2020. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. Virological discussion forum Dec. 18. https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
    [Google Scholar]
  24. 24.
    Washington NL, Gangavarapu K, Zeller M et al. 2021. Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. Cell 184:2587–94.e7
    [Google Scholar]
  25. 25.
    Patone M, Thomas K, Hatch R et al. 2021. Mortality and critical care unit admission associated with the SARS-CoV-2 lineage B.1.1.7 in England: an observational cohort study. Lancet Infect. Dis. 21:1518–28
    [Google Scholar]
  26. 26.
    Meng B, Kemp SA, Papa G et al. 2021. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep 35:109292
    [Google Scholar]
  27. 27.
    Abu-Raddad LJ, Chemaitelly H, Butt AA. 2021. Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N. Engl. J. Med. 385:187–89
    [Google Scholar]
  28. 28.
    McCarthy KR, Rennick LJ, Nambulli S et al. 2021. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science 371:1139–42
    [Google Scholar]
  29. 29.
    Liu Y, Liu J, Plante KS et al. 2022. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 602:294–99
    [Google Scholar]
  30. 30.
    Starr TN, Greaney AJ, Hilton SK et al. 2020. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182:1295–310.e20
    [Google Scholar]
  31. 31.
    Tegally H, Wilkinson E, Giovanetti M et al. 2020. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv 2020.12.21.20248640
  32. 32.
    Madhi SA, Baillie V, Cutland CL et al. 2021. Safety and efficacy of the ChAdOx1 nCoV-19 (AZD1222) Covid-19 vaccine against the B.1.351 variant in South Africa. medRxiv 2021.02.10.21251247
  33. 33.
    Lin L, Liu Y, Tang X, He D. 2021. The disease severity and clinical outcomes of the SARS-CoV-2 variants of concern. Front. Public Health 9:775224
    [Google Scholar]
  34. 34.
    Abu-Raddad LJ, Chemaitelly H, Ayoub HH et al. 2022. Severity, criticality, and fatality of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant. Clin. Infect. Dis 75:e1188–91
    [Google Scholar]
  35. 35.
    Weisblum Y, Schmidt F, Zhang F et al. 2020. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife 9:e61312
    [Google Scholar]
  36. 36.
    Wibmer CK, Ayres F, Hermanus T et al. 2021. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27:622–25
    [Google Scholar]
  37. 37.
    Greaney AJ, Loes AN, Crawford KHD et al. 2021. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29:463–76.e6
    [Google Scholar]
  38. 38.
    Faria NR, Mellan TA, Whittaker C et al. 2021. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372:815–21
    [Google Scholar]
  39. 39.
    Sabino EC, Buss LF, Carvalho MPS et al. 2021. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 397:452–55
    [Google Scholar]
  40. 40.
    Nuno R, Faria IMC, Candido D et al. 2021. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological discussion forum, Jan. 12. https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586
  41. 41.
    Martin DP, Weaver S, Tegally H et al. 2021. The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell 184:5189–200.e7
    [Google Scholar]
  42. 42.
    Cooper V. 2021. The coronavirus variants don't seem to be highly variable so far. Sci. Am. Mar. 24. https://www.scientificamerican.com/article/the-coronavirus-variants-dont-seem-to-be-highly-variable-so-far/
    [Google Scholar]
  43. 43.
    Fisman DN, Tuite AR. 2021. Evaluation of the relative virulence of novel SARS-CoV-2 variants: a retrospective cohort study in Ontario, Canada. Can. Med. Assoc. J 193:E1619–E25
    [Google Scholar]
  44. 44.
    Twohig KA, Nyberg T, Zaidi A et al. 2022. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect. Dis. 22:35–42
    [Google Scholar]
  45. 45.
    Taylor CA, Patel K, Pham H et al. 2021. Severity of disease among adults hospitalized with laboratory-confirmed COVID-19 before and during the period of SARS-CoV-2 B.1.617.2 (Delta) predominance—COVID-NET, 14 states, January–August 2021. Morb. Mortal. Wkly. Rep. 70:1513–19
    [Google Scholar]
  46. 46.
    Lechien JR, Saussez S. 2022. Importance of epidemiological factors in the evaluation of transmissibility and clinical severity of SARS-CoV-2 variants. Lancet Infect. Dis. 22:2–3
    [Google Scholar]
  47. 47.
    Hester AM, Vusirikala A, Flannagan J et al. 2021. Household transmission of COVID-19 cases associated with SARS-CoV-2 Delta variant (B.1.617.2): a national case-control study. Lancet Reg. Health Eur. 12:100252
    [Google Scholar]
  48. 48.
    Li B, Deng A, Li K et al. 2022. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. Nat. Commun. 13:460
    [Google Scholar]
  49. 49.
    Yang W, Shaman J. 2021. COVID-19 pandemic dynamics in India, the SARS-CoV-2 Delta variant, and implications for vaccination. medRxiv 2021.06.21.21259268
  50. 50.
    Liu Y, Rocklov J. 2021. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J. Travel Med. 28:taab124
    [Google Scholar]
  51. 51.
    Mlcochova P, Kemp SA, Dhar MS et al. 2021. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599:114–19
    [Google Scholar]
  52. 52.
    McCallum M, Walls AC, Sprouse KR et al. 2021. Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science 374:1621–26
    [Google Scholar]
  53. 53.
    Kissler SM, Fauver JR, Mack C et al. 2021. Viral dynamics of SARS-CoV-2 variants in vaccinated and unvaccinated persons. N. Engl. J. Med. 385:2489–91
    [Google Scholar]
  54. 54.
    Singanayagam A, Hakki S, Dunning J et al. 2022. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study. Lancet Infect. Dis. 22:183–95
    [Google Scholar]
  55. 55.
    Edara VV, Pinsky BA, Suthar MS et al. 2021. Infection and vaccine-induced neutralizing-antibody responses to the SARS-CoV-2 B.1.617 variants. N. Engl. J. Med. 385:664–66
    [Google Scholar]
  56. 56.
    Ferreira I, Kemp SA, Datir R et al. 2021. SARS-CoV-2 B.1.617 mutations L452R and E484Q are not synergistic for antibody evasion. J. Infect. Dis. 224:989–94
    [Google Scholar]
  57. 57.
    Martin DP, Lytras S, Lucaci AG et al. 2022. Selection analysis identifies clusters of unusual mutational changes in Omicron lineage BA.1 that likely impact Spike function. Mol. Biol. Evol. 39:msaco61
    [Google Scholar]
  58. 58.
    Abu-Raddad LJ, Chemaitelly H, Ayoub HH et al. 2022. Effect of mRNA vaccine boosters against SARS-CoV-2 omicron infection in Qatar. N. Engl. J. Med. 386:1804–16
    [Google Scholar]
  59. 59.
    Andrews N, Stowe J, Kirsebom F et al. 2022. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. N. Engl. J. Med. 386:1532–46
    [Google Scholar]
  60. 60.
    Danza P, Koo TH, Haddix M et al. 2022. SARS-CoV-2 infection and hospitalization among adults aged ≥18 years, by vaccination status, before and during SARS-CoV-2 B.1.1.529 (Omicron) variant predominance—Los Angeles County, California, November 7, 2021–January 8, 2022. Morb. Mortal. Wkly. Rep. 71:177–81
    [Google Scholar]
  61. 61.
    Johnson AG, Amin AB, Ali AR et al. 2022. COVID-19 incidence and death rates among unvaccinated and fully vaccinated adults with and without booster doses during periods of Delta and Omicron variant emergence—25 U.S. jurisdictions, April 4–December 25, 2021. Morb. Mortal. Wkly. Rep. 71:132–38
    [Google Scholar]
  62. 62.
    Nemet I, Kliker L, Lustig Y et al. 2022. Third BNT162b2 vaccination neutralization of SARS-CoV-2 omicron infection. N. Engl. J. Med. 386:492–94
    [Google Scholar]
  63. 63.
    Pajon R, Doria-Rose NA, Shen X et al. 2022. SARS-CoV-2 omicron variant neutralization after mRNA-1273 booster vaccination. N. Engl. J. Med. 386:1088–91
    [Google Scholar]
  64. 64.
    Thompson MG, Natarajan K, Irving SA et al. 2022. Effectiveness of a third dose of mRNA vaccines against COVID-19-associated emergency department and urgent care encounters and hospitalizations among adults during periods of Delta and Omicron variant predominance—VISION Network, 10 states, August 2021–January 2022. Morb. Mortal. Wkly. Rep. 71:139–45
    [Google Scholar]
  65. 65.
    Tseng HF, Ackerson BK, Luo Y et al. 2022. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat. Med. https://doi.org/10.1038/s41591-022-01753-y
    [Crossref] [Google Scholar]
  66. 66.
    Cao Y, Wang J, Jian F et al. 2022. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602:657–63
    [Google Scholar]
  67. 67.
    Iketani S, Liu L, Guo Y et al. 2022. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604:553–56
    [Google Scholar]
  68. 68.
    Hui KPY, Ho JCW, Cheung MC et al. 2022. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature 603:715–20
    [Google Scholar]
  69. 69.
    Dejnirattisai W, Huo J, Zhou D et al. 2021. Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. bioRxiv 2021.12.03.471045
  70. 70.
    Diamond M, Halfmann P, Maemura T et al. 2021. The SARS-CoV-2 B.1.1.529 Omicron virus causes attenuated infection and disease in mice and hamsters. Res. Square rs3.rs–1211792/v1
    [Google Scholar]
  71. 71.
    McMahan K, Giffin V, Tostanoski LH et al. 2022. Reduced pathogenicity of the SARS-CoV-2 Omicron variant in hamsters. bioRxiv 2022.01.02.474743
  72. 72.
    Bentley EG, Kirby A, Sharma P et al. 2021. SARS-CoV-2 Omicron-B.1.1.529 variant leads to less severe disease than Pango B and Delta variants strains in a mouse model of severe COVID-19. bioRxiv 2021.12.26.474085
  73. 73.
    Wolter N, Jassat W, Walaza S et al. 2022. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet 399:437–46
    [Google Scholar]
  74. 74.
    UK Health Sec. Agency 2021. SARS-CoV-2 variants of concern and variants under investigation in England. Technical briefing: update on hospitalisation and vaccine effectiveness for Omicron VOC-21NOV-01 (B.1.1.529) UK Health Security Agency London, UK:
    [Google Scholar]
  75. 75.
    Iuliano AD, Brunkard JM, Boehmer TK et al. 2022. Trends in disease severity and health care utilization during the early Omicron variant period compared with previous SARS-CoV-2 high transmission periods—United States, December 2020–January 2022. Morb. Mortal. Wkly. Rep. 71:146–52
    [Google Scholar]
  76. 76.
    Yamasoba D, Kimura I, Nasser H et al. 2022. Virological characteristics of SARS-CoV-2 BA.2 variant. bioRxiv 2022.02.14.480335
  77. 77.
    Yu J, Collier A-rY, Rowe M et al. 2022. Comparable neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 variants. medRxiv 2022.02.06.22270533
  78. 78.
    Cao Y, Yisimayi A, Jian F et al. 2022. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. bioRxiv 2022.04.30.489997
  79. 79.
    Haidar G, Mellors JW. 2021. Improving the outcomes of immunocompromised patients with coronavirus disease 2019. Clin. Infect. Dis. 73:e1397–e401
    [Google Scholar]
  80. 80.
    Hensley MK, Bain WG, Jacobs J et al. 2021. Intractable coronavirus disease 2019 (COVID-19) and prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in a chimeric antigen receptor-modified T-cell therapy recipient: a case study. Clin. Infect. Dis. 73:e815–e21
    [Google Scholar]
  81. 81.
    Cele S, Karim F, Lustig G et al. 2022. SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape. Cell Host Microbe 30:154–62.e5
    [Google Scholar]
  82. 82.
    Polack FP, Thomas SJ, Kitchin N et al. 2020. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383:2603–15
    [Google Scholar]
  83. 83.
    Sadoff J, Gray G, Vandebosch A et al. 2021. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N. Engl. J. Med. 384:2187–201
    [Google Scholar]
  84. 84.
    Falsey AR, Frenck RW Jr., Walsh EE et al. 2021. SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3. N. Engl. J. Med. 385:1627–29
    [Google Scholar]
  85. 85.
    Lopez Bernal J, Andrews N, Gower C et al. 2021. Effectiveness of Covid-19 vaccines against the B.1.617.2 (delta) variant. N. Engl. J. Med. 385:585–94
    [Google Scholar]
  86. 86.
    Tenforde MW, Patel MM, Gaglani M et al. 2022. Effectiveness of a third dose of Pfizer-BioNTech and Moderna vaccines in preventing COVID-19 hospitalization among immunocompetent and immunocompromised adults—United States, August–December 2021. Morb. Mortal. Wkly. Rep. 71:118–24
    [Google Scholar]
  87. 87.
    Accorsi EK, Britton A, Fleming-Dutra KE et al. 2022. Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and Delta variants. JAMA 327:639–51
    [Google Scholar]
  88. 88.
    Takashita E, Kinoshita N, Yamayoshi S et al. 2022. Efficacy of antibodies and antiviral drugs against Covid-19 omicron variant. N. Engl. J. Med. 386:995–98
    [Google Scholar]
  89. 89.
    Regeneron 2022. U.S. Food and Drug Administration revises emergency use authorization for REGENCOV® (casirivimab and imdevimab) antibody cocktail due to Omicron variant News Release, Jan. 24, Regeneron, Tarrytown, NY. https://investor.regeneron.com/static-files/cf13b06f-b874-4910-b583-c3c93c67a8f8
    [Google Scholar]
  90. 90.
    FDA 2022. FDA updates Sotrovimab emergency use authorization. Update, Apr. 5, US Food Drug Adm Silver Spring, MD: https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-sotrovimab-emergency-use-authorization
    [Google Scholar]
  91. 91.
    Reuters 2022. FDA pulls authorization for GSK-Vir's COVID therapy as BA.2 cases rise.. Reuters Apr. 5. https://www.reuters.com/business/healthcare-pharmaceuticals/fda-says-gsk-virs-sotrovimab-no-longer-authorized-treat-covid-us-2022-04-05/
    [Google Scholar]
  92. 92.
    FDA 2022. Fact sheet for healthcare providers: emergency use authorization for bebtelovimab Fact sheet, US Food Drug Adm Silver Spring, MD:
    [Google Scholar]
  93. 93.
    FDA 2022. Fact sheet for healthcare providers: emergency use authorization for evusheld™ (tixagevimab co-packaged with cilgavimab) US Food Drug Adm Silver Spring, MD:
    [Google Scholar]
  94. 94.
    Eguia RT, Crawford KHD, Stevens-Ayers T et al. 2021. A human coronavirus evolves antigenically to escape antibody immunity. PLOS Pathog. 17:e1009453
    [Google Scholar]
  95. 95.
    Volz EM, Koelle K, Bedford T. 2013. Viral phylodynamics. PLOS Comput. Biol. 9:e1002947
    [Google Scholar]
  96. 96.
    Maher MC, Bartha I, Weaver S et al. 2022. Predicting the mutational drivers of future SARS-CoV-2 variants of concern. Sci. Transl. Med. 14:eabk3445
    [Google Scholar]
  97. 97.
    Starr TN, Greaney AJ, Addetia A et al. 2021. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371:850–54
    [Google Scholar]
  98. 98.
    Baang JH, Smith C, Mirabelli C et al. 2021. Prolonged severe acute respiratory syndrome coronavirus 2 replication in an immunocompromised patient. J. Infect. Dis. 223:23–27
    [Google Scholar]
  99. 99.
    Avanzato VA, Matson MJ, Seifert SN et al. 2020. Case study: prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer. Cell 183:1901–12.e9
    [Google Scholar]
  100. 100.
    Choi B, Choudhary MC, Regan J et al. 2020. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 383:2291–93
    [Google Scholar]
  101. 101.
    Aydillo T, Gonzalez-Reiche AS, Aslam S et al. 2020. Shedding of viable SARS-CoV-2 after immunosuppressive therapy for cancer. N. Engl. J. Med. 383:2586–88
    [Google Scholar]
  102. 102.
    Kemp SA, Collier DA, Datir RP et al. 2021. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592:277–82
    [Google Scholar]
  103. 103.
    Tarhini H, Recoing A, Bridier-Nahmias A et al. 2021. Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectiousness among three immunocompromised patients: from prolonged viral shedding to SARS-CoV-2 superinfection. J. Infect. Dis. 223:1522–27
    [Google Scholar]
  104. 104.
    Sepulcri C, Dentone C, Mikulska M et al. 2021. The longest persistence of viable SARS-CoV-2 with recurrence of viremia and relapsing symptomatic COVID-19 in an immunocompromised patient—a case study. Open Forum Infect. Dis. 8:ofab217
    [Google Scholar]
  105. 105.
    Sung A, Bailey AL, Stewart HB et al. 2022. Isolation of SARS-CoV-2 in viral cell culture in immunocompromised patients with persistently positive RT-PCR results. Front. Cell Infect. Microbiol. 12:804175
    [Google Scholar]
  106. 106.
    Morishita M, Suzuki M, Matsunaga A et al. 2022. Prolonged SARS-CoV-2 infection associated with long-term corticosteroid use in a patient with impaired B-cell immunity. J. Infect. Chemother. 28:971–74
    [Google Scholar]
  107. 107.
    Morel A, Imbeaud S, Scemla A et al. 2022. Severe relapse of SARS-CoV-2 infection in a kidney transplant recipient with negative nasopharyngeal SARS-CoV-2 RT-PCR after rituximab. Am. J. Transplant 22:2099–103
    [Google Scholar]
  108. 108.
    Thornton CS, Huntley K, Berenger BM et al. 2022. Prolonged SARS-CoV-2 infection following rituximab treatment: clinical course and response to therapeutic interventions correlated with quantitative viral cultures and cycle threshold values. Antimicrob. Resist. Infect. Control 11:28
    [Google Scholar]
  109. 109.
    Nussenblatt V, Roder AE, Das S et al. 2022. Yearlong COVID-19 infection reveals within-host evolution of SARS-CoV-2 in a patient with B-cell depletion. J. Infect. Dis. 225:1118–23
    [Google Scholar]
  110. 110.
    Spinicci M, Mazzoni A, Borchi B et al. 2022. AIDS patient with severe T cell depletion achieved control but not clearance of SARS-CoV-2 infection. Eur. J. Immunol. 52:352–55
    [Google Scholar]
  111. 111.
    Pallett SJC, Wake R, Youngs J et al. 2022. Adjunctive viral cell culture supports treatment decision-making in patients with secondary humoral immunodeficiency and persistent SARS-CoV-2 infection. Br. J. Haematol. 196:1170–74
    [Google Scholar]
  112. 112.
    Leung WF, Chorlton S, Tyson J et al. 2022. COVID-19 in an immunocompromised host: persistent shedding of viable SARS-CoV-2 and emergence of multiple mutations: a case report. Int. J. Infect. Dis. 114:178–82
    [Google Scholar]
  113. 113.
    Bronstein Y, Adler A, Katash H et al. 2021. Evolution of spike mutations following antibody treatment in two immunocompromised patients with persistent COVID-19 infection. J. Med. Virol. 94:1241–45
    [Google Scholar]
  114. 114.
    Weigang S, Fuchs J, Zimmer G et al. 2021. Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants. Nat. Commun. 12:6405
    [Google Scholar]
  115. 115.
    Rockett R, Basile K, Maddocks S et al. 2022. Resistance mutations in SARS-CoV-2 delta variant after sotrovimab use. N. Engl. J. Med. 386:1477–79
    [Google Scholar]
  116. 116.
    Bailly B, Pere H, Veyer D et al. 2021. Persistent COVID-19 in an immunocompromised host treated by SARS-CoV-2-specific monoclonal antibodies. Clin. Infect. Dis. 74:1706–7
    [Google Scholar]
  117. 117.
    Gordon CL, Smibert OC, Holmes NE et al. 2021. Defective severe acute respiratory syndrome coronavirus 2 immune responses in an immunocompromised individual with prolonged viral replication. Open Forum Infect. Dis. 8:ofab359
    [Google Scholar]
  118. 118.
    Chen L, Zody MC, Di Germanio C et al. 2021. Emergence of multiple SARS-CoV-2 antibody escape variants in an immunocompromised host undergoing convalescent plasma treatment. mSphere 6:e0048021
    [Google Scholar]
  119. 119.
    Perez-Lago L, Aldamiz-Echevarria T, Garcia-Martinez R et al. 2021. Different within-host viral evolution dynamics in severely immunosuppressed cases with persistent SARS-CoV-2. Biomedicines 9:808
    [Google Scholar]
  120. 120.
    Truffot A, Andreani J, Le Marechal M et al. 2021. SARS-CoV-2 variants in immunocompromised patient given antibody monotherapy. Emerg. Infect. Dis. 27:2725–28
    [Google Scholar]
  121. 121.
    Destras G, Assaad S, Bal A et al. 2021. Bamlanivimab as monotherapy in two immunocompromised patients with COVID-19. Lancet Microbe 2:e424
    [Google Scholar]
  122. 122.
    Lynch M, Macori G, Fanning S et al. 2021. Genomic evolution of SARS-CoV-2 virus in immunocompromised patient, Ireland. Emerg. Infect. Dis. 27:2499–501
    [Google Scholar]
  123. 123.
    Borges V, Isidro J, Cunha M et al. 2021. Long-term evolution of SARS-CoV-2 in an immunocompromised patient with non-Hodgkin lymphoma. mSphere 6:e0024421
    [Google Scholar]
  124. 124.
    Monrad I, Sahlertz SR, Nielsen SSF et al. 2021. Persistent severe acute respiratory syndrome coronavirus 2 infection in immunocompromised host displaying treatment induced viral evolution. Open Forum Infect. Dis. 8:ofab295
    [Google Scholar]
  125. 125.
    Reuken PA, Stallmach A, Pletz MW et al. 2021. Severe clinical relapse in an immunocompromised host with persistent SARS-CoV-2 infection. Leukemia 35:920–23
    [Google Scholar]
  126. 126.
    Truong TT, Ryutov A, Pandey U et al. 2021. Increased viral variants in children and young adults with impaired humoral immunity and persistent SARS-CoV-2 infection: a consecutive case series. EBioMedicine 67:103355
    [Google Scholar]
/content/journals/10.1146/annurev-med-042921-020956
Loading
/content/journals/10.1146/annurev-med-042921-020956
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error