1932

Abstract

Hundreds of different genetic causes of chronic kidney disease are now recognized, and while individually rare, taken together they are significant contributors to both adult and pediatric diseases. Traditional genetics approaches relied heavily on the identification of large families with multiple affected members and have been fundamental to the identification of genetic kidney diseases. With the increased utilization of massively parallel sequencing and improvements to genotype imputation, we can analyze rare variants in large cohorts of unrelated individuals, leading to personalized care for patients and significant research advancements. This review evaluates the contribution of rare disorders to patient care and the study of genetic kidney diseases and highlights key advancements that utilize new techniques to improve our ability to identify new gene–disease associations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042921-101813
2023-01-27
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/med/74/1/annurev-med-042921-101813.html?itemId=/content/journals/10.1146/annurev-med-042921-101813&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Levin A, Stevens PE, Bilous RW et al. 2013. Kidney Disease: Improving Global Outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3:11–150
    [Google Scholar]
  2. 2.
    Bikbov B, Purcell CA, Levey AS et al. 2020. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395:10225709–33
    [Google Scholar]
  3. 3.
    Arpegård J, Viktorin A, Chang Z et al. 2015. Comparison of heritability of cystatin C- and creatinine-based estimates of kidney function and their relation to heritability of cardiovascular disease. J. Am. Heart Assoc. 4:1e001467
    [Google Scholar]
  4. 4.
    Wuttke M, Li Y, Li M et al. 2019. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51:6957–72
    [Google Scholar]
  5. 5.
    Zhang J, Thio CHL, Gansevoort RT et al. 2021. Familial aggregation of CKD and heritability of kidney biomarkers in the general population: the Lifelines Cohort Study. Am. J. Kidney Dis. 77:6869–78
    [Google Scholar]
  6. 6.
    Karczewski KJ, Francioli LC, Tiao G et al. 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:7809434–43
    [Google Scholar]
  7. 7.
    Lek M, Karczewski KJ, Minikel EV et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:7616285–91
    [Google Scholar]
  8. 8.
    The 1000 Genomes Proj. Consort 2015. A global reference for human genetic variation. Nature 526:757168–74
    [Google Scholar]
  9. 9.
    Ars E, Ballarin J, Ruiz P et al. 2011. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 6:51139–48
    [Google Scholar]
  10. 10.
    Wühl E, van Stralen KJ, Wanner C et al. 2014. Renal replacement therapy for rare diseases affecting the kidney: an analysis of the ERA-EDTA Registry. Nephrol. Dialysis Transplantation. 29:Suppl. 4iv1–8
    [Google Scholar]
  11. 11.
    Cocchi E, Nestor JG, Gharavi AG. 2020. Clinical genetic screening in adult patients with kidney disease. Clin. J. Am. Soc. Nephrol. 15:101497–510
    [Google Scholar]
  12. 12.
    Génin E. 2020. Missing heritability of complex diseases: case solved?. Hum Genet 139:1103–13
    [Google Scholar]
  13. 13.
    Wainschtein P, Jain D, Zheng Z et al. 2022. Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data. Nat. Genet. 54:3263–73
    [Google Scholar]
  14. 14.
    Verbitsky M, Westland R, Perez A et al. 2019. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat. Genet. 51:1117–27
    [Google Scholar]
  15. 15.
    Groopman EE, Marasa M, Cameron-Christie S et al. 2018. Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380:2142–51
    [Google Scholar]
  16. 16.
    Tan AY, Zhang T, Michaeel A et al. 2018. Somatic mutations in renal cyst epithelium in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 29:82139–56
    [Google Scholar]
  17. 17.
    Vlasschaert C, McNaughton AJM, Chong M et al. 2022. Association of clonal hematopoiesis of indeterminate potential with worse kidney function and anemia in two cohorts of patients with advanced chronic kidney disease. J. Am. Soc. Nephrol. 33:5985–95
    [Google Scholar]
  18. 18.
    Fu XJ, Nozu K, Kaito H et al. 2016. Somatic mosaicism and variant frequency detected by next-generation sequencing in X-linked Alport syndrome. Eur. J. Hum. Genet. 24:3387–91
    [Google Scholar]
  19. 19.
    Rasouly HM, Groopman EE, Heyman-Kantor R et al. 2019. The burden of candidate pathogenic variants for kidney and genitourinary disorders emerging from exome sequencing. Ann. Intern. Med. 170:111–21
    [Google Scholar]
  20. 20.
    Devuyst O, Knoers NVAM, Remuzzi G et al. 2014. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet 383:99311844–59
    [Google Scholar]
  21. 21.
    Ingelfinger JR, Kalantar-Zadeh K, Schaefer F et al. 2016. Averting the legacy of kidney disease—focus on childhood. Kidney Dis 2:146–52
    [Google Scholar]
  22. 22.
    Bierzynska A, McCarthy HJ, Soderquest K et al. 2017. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int. 91:4937–47
    [Google Scholar]
  23. 23.
    Mikó Á, Menyhárd DK, Kaposi A et al. 2018. The mutation-dependent pathogenicity of NPHS2 p.R229Q: a guide for clinical assessment. Hum. Mutat. 39:121854–60
    [Google Scholar]
  24. 24.
    van der Ven AT, Connaughton DM, Ityel H et al. 2018. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29:92348–61
    [Google Scholar]
  25. 25.
    Jayasinghe K, Stark Z, Kerr PG et al. 2021. Clinical impact of genomic testing in patients with suspected monogenic kidney disease. Genet. Med. 23:183–91
    [Google Scholar]
  26. 26.
    Cornec-Le Gall E, Audrézet M-P, Rousseau A et al. 2016. The PROPKD score: a new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 27:3942–51
    [Google Scholar]
  27. 27.
    Hwang Y-H, Conklin J, Chan W et al. 2016. Refining genotype-phenotype correlation in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 27:61861–68
    [Google Scholar]
  28. 28.
    Gibson JT, Huang M, Shenelli Croos Dabrera M et al. 2022. Genotype-phenotype correlations for COL4A3–COL4A5 variants resulting in Gly substitutions in Alport syndrome. Sci. Rep. 12:2722
    [Google Scholar]
  29. 29.
    Yamamura T, Horinouchi T, Nagano C et al. 2020. Genotype-phenotype correlations influence the response to angiotensin-targeting drugs in Japanese patients with male X-linked Alport syndrome. Kidney Int. 98:61605–14
    [Google Scholar]
  30. 30.
    Bekheirnia MR, Reed B, Gregory MC et al. 2010. Genotype-phenotype correlation in X-linked Alport syndrome. J. Am. Soc. Nephrol. 21:5876–83
    [Google Scholar]
  31. 31.
    Fahed AC, Wang M, Homburger JR et al. 2020. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat. Commun. 11:13635
    [Google Scholar]
  32. 32.
    Wang N, Zheng Y, Zhang L et al. 2022. A family segregating lethal primary coenzyme Q10 deficiency due to two novel COQ6 variants. Front. Genet. 12:811833
    [Google Scholar]
  33. 33.
    Bollée G, Harambat J, Bensman A et al. 2012. Adenine phosphoribosyltransferase deficiency. Clin. J. Am. Soc. Nephrol. 7:91521–27
    [Google Scholar]
  34. 34.
    Kemper MJ, Lemke A. 2018. Treatment of genetic forms of nephrotic syndrome. Front. Pediatr. 6:72
    [Google Scholar]
  35. 35.
    Khan A, Barber DL, Huang J et al. 2021. Lentivirus-mediated gene therapy for Fabry disease. Nat. Commun. 12:11178
    [Google Scholar]
  36. 36.
    McCafferty EH, Scott LJ. 2019. Migalastat: a review in Fabry disease. Drugs 79:5543–54
    [Google Scholar]
  37. 37.
    Hughes DA, Nicholls K, Shankar SP et al. 2017. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J. Med. Genet. 54:4288–96
    [Google Scholar]
  38. 38.
    Germain DP, Hughes DA, Nicholls K et al. 2016. Treatment of Fabry's disease with the pharmacologic chaperone migalastat. N. Engl. J. Med. 375:6545–55
    [Google Scholar]
  39. 39.
    Germain DP, Arad M, Burlina A et al. 2019. The effect of enzyme replacement therapy on clinical outcomes in female patients with Fabry disease—a systematic literature review by a European panel of experts. Mol. Genet. Metab. 126:3224–35
    [Google Scholar]
  40. 40.
    Adams D, Gonzalez-Duarte A, O'Riordan WD et al. 2018. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379:111–21
    [Google Scholar]
  41. 41.
    Garrelfs SF, Frishberg Y, Hulton SA et al. 2021. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384:131216–26
    [Google Scholar]
  42. 42.
    Gillmore JD, Gane E, Taubel J et al. 2021. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385:6493–502
    [Google Scholar]
  43. 43.
    Yamamura T, Horinouchi T, Adachi T et al. 2020. Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nat. Commun. 11:12777
    [Google Scholar]
  44. 44.
    Daneshpajouhnejad P, Kopp JB, Winkler CA et al. 2022. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat. Rev. Nephrol. 18:5307–20
    [Google Scholar]
  45. 45.
    Lander ES, Botstein D. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:1185–99
    [Google Scholar]
  46. 46.
    Claussnitzer M, Cho JH, Collins R et al. 2020. A brief history of human disease genetics. Nature 577:7789179–89
    [Google Scholar]
  47. 47.
    Barker DF, Hostikka SL, Zhou J et al. 1990. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248:49601224–27
    [Google Scholar]
  48. 48.
    Mochizuki T, Lemmink HH, Mariyama M et al. 1994. Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nat. Genet. 8:177–81
    [Google Scholar]
  49. 49.
    Eur. Polycystic Kidney Dis. Consort 1994. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77:6881–94
    [Google Scholar]
  50. 50.
    Mochizuki T, Wu G, Hayashi T et al. 1996. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:52661339–42
    [Google Scholar]
  51. 51.
    Cornec-Le Gall E, Alam A, Perrone RD 2019. Autosomal dominant polycystic kidney disease. Lancet 393:10174919–35
    [Google Scholar]
  52. 52.
    Winn MP, Conlon PJ, Lynn KL et al. 2005. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:57291801–4
    [Google Scholar]
  53. 53.
    Li AS, Ingham JF, Lennon R. 2020. Genetic disorders of the glomerular filtration barrier. Clin. J. Am. Soc. Nephrol. 15:121818–28
    [Google Scholar]
  54. 54.
    Braun DA, Hildebrandt F. 2017. Ciliopathies.. Cold Spring Harb. Perspect. Biol. 9:3a028191
    [Google Scholar]
  55. 55.
    Hildebrandt F, Benzing T, Katsanis N. 2011. Ciliopathies. N. Engl. J. Med. 364:161533–43
    [Google Scholar]
  56. 56.
    Roach JC, Glusman G, Smit AFA et al. 2010. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328:5978636–39
    [Google Scholar]
  57. 57.
    Sebat J, Lakshmi B, Malhotra D et al. 2007. Strong association of de novo copy number mutations with autism. Science 316:5823445–49
    [Google Scholar]
  58. 58.
    Iossifov I, O'Roak BJ, Sanders SJ et al. 2014. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:7526216–21
    [Google Scholar]
  59. 59.
    Xu B, Roos JL, Dexheimer P et al. 2011. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat. Genet. 43:9864–68
    [Google Scholar]
  60. 60.
    Vissers LELM, de Ligt J, Gilissen C et al. 2010. A de novo paradigm for mental retardation. Nat. Genet. 42:121109–12
    [Google Scholar]
  61. 61.
    Zaidi S, Choi M, Wakimoto H et al. 2013. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:7453220–23
    [Google Scholar]
  62. 62.
    Azzariti DR, Hamosh A. 2020. Genomic data sharing for novel Mendelian disease gene discovery: the matchmaker exchange. Annu. Rev. Genom. Hum. Genet. 21:305–26
    [Google Scholar]
  63. 63.
    Martin EMMA, Enriquez A, Sparrow DB et al. 2020. Heterozygous loss of WBP11 function causes multiple congenital defects in humans and mice. Hum. Mol. Genet. 29:223662–78
    [Google Scholar]
  64. 64.
    Connaughton DM, Dai R, Owen DJ et al. 2020. Mutations of the transcriptional corepressor ZMYM2 cause syndromic urinary tract malformations. Am. J. Hum. Genet. 107:4727–42
    [Google Scholar]
  65. 65.
    Povysil G, Petrovski S, Hostyk J et al. 2019. Rare-variant collapsing analyses for complex traits: guidelines and applications. Nat. Rev. Genet. 20:12747–59
    [Google Scholar]
  66. 66.
    Sanna-Cherchi S, Khan K, Westland R et al. 2017. Exome-wide association study identifies GREB1L mutations in congenital kidney malformations. Am. J. Hum. Genet. 101:5789–802
    [Google Scholar]
  67. 67.
    Cameron-Christie S, Wolock CJ, Groopman E et al. 2019. Exome-based rare-variant analyses in CKD. J. Am. Soc. Nephrol. 30:61109–22
    [Google Scholar]
  68. 68.
    Wang M, Chun J, Genovese G et al. 2019. Contributions of rare gene variants to familial and sporadic FSGS. J. Am. Soc. Nephrol. 30:91625–40
    [Google Scholar]
  69. 69.
    Wang Q, Dhindsa RS, Carss K et al. 2021. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature 597:7877527–32
    [Google Scholar]
  70. 70.
    Saleheen D, Natarajan P, Armean IM et al. 2017. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 544:7649235–39
    [Google Scholar]
  71. 71.
    Verweij N, Haas ME, Nielsen JB et al. 2022. Germline mutations in CIDEB and protection against liver disease. N. Engl. J. Med. 387:4332–44
    [Google Scholar]
  72. 72.
    Abul-Husn NS, Cheng X, Li AH et al. 2018. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N. Engl. J. Med. 378:121096–106
    [Google Scholar]
  73. 73.
    Cohen JC, Boerwinkle E, Mosley TH et al. 2006. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354:121264–72
    [Google Scholar]
  74. 74.
    Bycroft C, Freeman C, Petkova D et al. 2018. The UK Biobank resource with deep phenotyping and genomic data. Nature 562:7726203–9
    [Google Scholar]
  75. 75.
    Das S, Forer L, Schönherr S et al. 2016. Next-generation genotype imputation service and methods. Nat. Genet. 48:101284–87
    [Google Scholar]
  76. 76.
    Taliun SAG, Sulem P, Sveinbjornsson G et al. 2022. GWAS of hematuria.. Clin. J. Am. Soc. Nephrol. 17:5672–83
    [Google Scholar]
  77. 77.
    Pais LS, Snow H, Weisburd B et al. 2022. seqr: A web-based analysis and collaboration tool for rare disease genomics. Hum. Mutat. 43:6698–707
    [Google Scholar]
  78. 78.
    Thong KM, Xu Y, Cook J et al. 2013. Cosegregation of focal segmental glomerulosclerosis in a family with familial partial lipodystrophy due to a mutation in LMNA. Nephron Clin. Pract. 124:1–231–37
    [Google Scholar]
  79. 79.
    Fountas A, Giotaki Z, Dounousi E et al. 2017. Familial partial lipodystrophy and proteinuric renal disease due to a missense c.1045C>T LMNA mutation. Endocrinol. Diabetes Metab. Case Rep. 2017:17–0049
    [Google Scholar]
  80. 80.
    Hussain I, Jin RR, Baum HBA et al. 2020. Multisystem progeroid syndrome with lipodystrophy, cardiomyopathy, and nephropathy due to an LMNA p.R349W variant. J. Endocr. Soc. 4:10bvaa104
    [Google Scholar]
  81. 81.
    Shang N, Khan A, Polubriaginof F et al. 2021. Medical records-based chronic kidney disease phenotype for clinical care and “big data” observational and genetic studies. NPJ Digit. Med. 4:170
    [Google Scholar]
  82. 82.
    Khan A, Turchin MC, Patki A et al. 2022. Genome-wide polygenic score to predict chronic kidney disease across ancestries. Nat. Med. 28:71412–20
    [Google Scholar]
  83. 83.
    Garcelon N, Burgun A, Salomon R et al. 2020. Electronic health records for the diagnosis of rare diseases. Kidney Int 97:4676–86
    [Google Scholar]
  84. 84.
    Bastarache L, Hughey JJ, Hebbring S et al. 2018. Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science 359:63811233–39
    [Google Scholar]
  85. 85.
    Son JH, Xie G, Yuan C et al. 2018. Deep phenotyping on electronic health records facilitates genetic diagnosis by clinical exomes. Am. J. Hum. Genet. 103:158–73
    [Google Scholar]
  86. 86.
    de Boer IH, Alpers CE, Azeloglu EU et al. 2021. Rationale and design of the Kidney Precision Medicine Project. Kidney Int 99:3498–510
    [Google Scholar]
/content/journals/10.1146/annurev-med-042921-101813
Loading
/content/journals/10.1146/annurev-med-042921-101813
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error