1932

Abstract

This review discusses recent advancements in the field of valvular heart disease. Topics covered include recognition of the impact of atrial fibrillation on development and assessment of valvular disease, strategies for global prevention of rheumatic heart disease, understanding and management of secondary mitral regurgitation, the updated classification of bicuspid aortic valve disease, recognition of heightened cardiovascular risk associated with moderate aortic stenosis, and a growing armamentarium of transcatheter therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042921-122533
2023-01-27
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/med/74/1/annurev-med-042921-122533.html?itemId=/content/journals/10.1146/annurev-med-042921-122533&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    d'Arcy JL, Coffey S, Loudon MA et al. 2016. Large-scale community echocardiographic screening reveals a major burden of undiagnosed valvular heart disease in older people: the OxVALVE Population Cohort Study. Eur. Heart J. 37:3515–22
    [Google Scholar]
  2. 2.
    Reddy YNV, Obokata M, Verbrugge FH et al. 2020. Atrial dysfunction in patients with heart failure with preserved ejection fraction and atrial fibrillation. J. Am. Coll. Cardiol. 76:1051–64
    [Google Scholar]
  3. 3.
    Soulat-Dufour L, Lang S, Addetia K et al. 2022. Restoring sinus rhythm reverses cardiac remodeling and reduces valvular regurgitation in patients with atrial fibrillation. J. Am. Coll. Cardiol. 79:951–61
    [Google Scholar]
  4. 4.
    Banerjee A, Allan V, Denaxas S et al. 2019. Subtypes of atrial fibrillation with concomitant valvular heart disease derived from electronic health records: phenotypes, population prevalence, trends and prognosis. Europace 21:1776–84
    [Google Scholar]
  5. 5.
    Tsao CW, Aday AW, Almarzooq ZI et al. 2022. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. . Circulation 145:e153–639
    [Google Scholar]
  6. 6.
    Kumar RK, Antunes MJ, Beaton A et al. 2020. Contemporary diagnosis and management of rheumatic heart disease: implications for closing the gap: a scientific statement from the American Heart Association. Circulation 142:e337–57
    [Google Scholar]
  7. 7.
    Alsidawi S, Khan S, Pislaru SV et al. 2021. High prevalence of severe aortic stenosis in low-flow state associated with atrial fibrillation. Circ. Cardiovasc. Imaging 14:e012453
    [Google Scholar]
  8. 8.
    Ammar A, Elbatran AI, Wijesuriya N et al. 2021. Management of atrial fibrillation after transcatheter aortic valve replacement: challenges and therapeutic considerations. Trends Cardiovasc. Med. 31:361–67
    [Google Scholar]
  9. 9.
    Otto CM, Nishimura RA, Bonow RO et al. 2021. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 143:e72–227
    [Google Scholar]
  10. 10.
    Vahanian A, Beyersdorf F, Praz F et al. 2021. ESC/EACTS guidelines for the management of valvular heart disease. Eur. Heart J. 43:561–632
    [Google Scholar]
  11. 11.
    Watkins DA, Johnson CO, Colquhoun SM et al. 2017. Global, regional, and national burden of rheumatic heart disease, 1990–2015. N. Engl. J. Med. 377:713–22
    [Google Scholar]
  12. 12.
    Zuhlke L, Engel ME, Karthikeyan G et al. 2015. Characteristics, complications, and gaps in evidence-based interventions in rheumatic heart disease: the Global Rheumatic Heart Disease Registry (the REMEDY study). Eur. Heart J. 36:1115–22
    [Google Scholar]
  13. 13.
    Robertson KA, Volmink JA, Mayosi BM. 2005. Antibiotics for the primary prevention of acute rheumatic fever: a meta-analysis. BMC Cardiovasc. Disord. 5:11
    [Google Scholar]
  14. 14.
    White A. 2018. WHO resolution on rheumatic heart disease. Eur. Heart J. 39:4233
    [Google Scholar]
  15. 15.
    Vekemans J, Gouvea-Reis F, Kim JH et al. 2019. The path to group A streptococcus vaccines: World Health Organization research and development technology roadmap and preferred product characteristics. Clin. Infect. Dis. 69:877–83
    [Google Scholar]
  16. 16.
    Oldgren J, Healey JS, Ezekowitz M et al. 2014. Variations in cause and management of atrial fibrillation in a prospective registry of 15,400 emergency department patients in 46 countries: the RE-LY Atrial Fibrillation Registry. Circulation 129:1568–76
    [Google Scholar]
  17. 17.
    Karthikeyan G, Connolly SJ, Ntsekhe M et al. 2020. The INVICTUS rheumatic heart disease research program: rationale, design and baseline characteristics of a randomized trial of rivaroxaban compared to vitamin K antagonists in rheumatic valvular disease and atrial fibrillation. Am. Heart J. 225:69–77
    [Google Scholar]
  18. 18.
    Kim JY, Kim SH, Myong JP et al. 2019. Outcomes of direct oral anticoagulants in patients with mitral stenosis. J. Am. Coll. Cardiol. 73:1123–31
    [Google Scholar]
  19. 19.
    Beaton A, Kamalembo FB, Dale J et al. 2020. The American Heart Association's call to action for reducing the global burden of rheumatic heart disease: a policy statement from the American Heart Association. Circulation 142:e358–68
    [Google Scholar]
  20. 20.
    Dziadzko V, Dziadzko M, Medina-Inojosa JR et al. 2019. Causes and mechanisms of isolated mitral regurgitation in the community: clinical context and outcome. Eur. Heart J. 40:2194–202
    [Google Scholar]
  21. 21.
    Bartko PE, Heitzinger G, Spinka G et al. 2021. Principal morphomic and functional components of secondary mitral regurgitation. JACC Cardiovasc. Imaging 14:2288–300
    [Google Scholar]
  22. 22.
    Carabello BA. 2019. MitraClip and tertiary mitral regurgitation—mitral regurgitation gets curiouser and curiouser. JAMA Cardiol. 4:307–8
    [Google Scholar]
  23. 23.
    Lamas GA, Mitchell GF, Flaker GC et al. 1997. Clinical significance of mitral regurgitation after acute myocardial infarction. Circulation 96:827–33
    [Google Scholar]
  24. 24.
    Grigioni F, Enriquez-Sarano M, Zehr KJ et al. 2001. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–64
    [Google Scholar]
  25. 25.
    Sannino A, Sudhakaran S, Milligan G et al. 2020. Effectiveness of medical therapy for functional mitral regurgitation in heart failure with reduced ejection fraction. J. Am. Coll. Cardiol. 76:883–84
    [Google Scholar]
  26. 26.
    Michler RE, Smith PK, Parides MK et al. 2016. Two-year outcomes of surgical treatment of moderate ischemic mitral regurgitation. N. Engl. J. Med. 374:1932–41
    [Google Scholar]
  27. 27.
    Goldstein D, Moskowitz AJ, Gelijns AC et al. 2016. Two-year outcomes of surgical treatment of severe ischemic mitral regurgitation. N. Engl. J. Med. 374:344–53
    [Google Scholar]
  28. 28.
    Stone GW, Lindenfeld J, Abraham WT et al. 2018. Transcatheter mitral-valve repair in patients with heart failure. N. Engl. J. Med. 379:2307–18
    [Google Scholar]
  29. 29.
    Obadia JF, Messika-Zeitoun D, Leurent G et al. 2018. Percutaneous repair or medical treatment for secondary mitral regurgitation. N. Engl. J. Med. 379:2297–306
    [Google Scholar]
  30. 30.
    Grayburn PA, Sannino A, Packer M. 2019. Proportionate and disproportionate functional mitral regurgitation: a new conceptual framework that reconciles the results of the MITRA-FR and COAPT trials. JACC Cardiovasc. Imaging 12:353–62
    [Google Scholar]
  31. 31.
    Marwick TH, Brugger N. 2022. Effects of atrial fibrillation and sinus rhythm on cardiac remodeling and valvular regurgitation. J. Am. Coll. Cardiol. 79:962–64
    [Google Scholar]
  32. 32.
    Gertz ZM, Raina A, Saghy L et al. 2011. Evidence of atrial functional mitral regurgitation due to atrial fibrillation: reversal with arrhythmia control. J. Am. Coll. Cardiol. 58:1474–81
    [Google Scholar]
  33. 33.
    Gertz ZM, Herrmann HC, Lim DS et al. 2021. Implications of atrial fibrillation on the mechanisms of mitral regurgitation and response to MitraClip in the COAPT trial. Circ. Cardiovasc. Interv. 14:e010300
    [Google Scholar]
  34. 34.
    Feldman T, Kar S, Elmariah S et al. 2015. Randomized comparison of percutaneous repair and surgery for mitral regurgitation: 5-year results of EVEREST II. J. Am. Coll. Cardiol. 66:2844–54
    [Google Scholar]
  35. 35.
    Sorajja P, Vemulapalli S, Feldman T et al. 2017. Outcomes with transcatheter mitral valve repair in the United States: an STS/ACC TVT registry report. J. Am. Coll. Cardiol. 70:2315–27
    [Google Scholar]
  36. 36.
    Lim DS, Kar S, Spargias K et al. 2019. Transcatheter valve repair for patients with mitral regurgitation: 30-day results of the CLASP study. JACC Cardiovasc. Interv. 12:1369–78
    [Google Scholar]
  37. 37.
    Gammie JS, Bartus K, Gackowski A et al. 2018. Beating-heart mitral valve repair using a novel ePTFE cordal implantation device: a prospective trial. J. Am. Coll. Cardiol. 71:25–36
    [Google Scholar]
  38. 38.
    Rogers JH, Ebner AA, Boyd WD et al. 2020. First-in-human transfemoral transseptal mitral valve chordal repair. JACC Cardiovasc. Interv. 13:1383–85
    [Google Scholar]
  39. 39.
    Eleid MF, Cabalka AK, Williams MR et al. 2016. Percutaneous transvenous transseptal transcatheter valve implantation in failed bioprosthetic mitral valves, ring annuloplasty, and severe mitral annular calcification. JACC Cardiovasc. Interv. 9:1161–74
    [Google Scholar]
  40. 40.
    Eleid MF, Whisenant BK, Cabalka AK et al. 2017. Early outcomes of percutaneous transvenous transseptal transcatheter valve implantation in failed bioprosthetic mitral valves, ring annuloplasty, and severe mitral annular calcification. JACC Cardiovasc. Interv. 10:1932–42
    [Google Scholar]
  41. 41.
    Guerrero M, Wang DD, Eleid MF et al. 2021. Prospective study of TMVR using balloon-expandable aortic transcatheter valves in MAC: MITRAL trial 1-year outcomes. JACC Cardiovasc. Interv. 14:830–45
    [Google Scholar]
  42. 42.
    Guerrero M, Wang DD, Pursnani A et al. 2021. Prospective evaluation of TMVR for failed surgical annuloplasty rings: MITRAL trial valve-in-ring arm 1-year outcomes. JACC Cardiovasc. Interv. 14:846–58
    [Google Scholar]
  43. 43.
    Khan JM, Babaliaros VC, Greenbaum AB et al. 2019. Anterior leaflet laceration to prevent ventricular outflow tract obstruction during transcatheter mitral valve replacement. J. Am. Coll. Cardiol. 73:2521–34
    [Google Scholar]
  44. 44.
    Wang DD, Guerrero M, Eng MH et al. 2019. Alcohol septal ablation to prevent left ventricular outflow tract obstruction during transcatheter mitral valve replacement: first-in-man study. JACC Cardiovasc. Interv. 12:1268–79
    [Google Scholar]
  45. 45.
    Muller DWM, Sorajja P, Duncan A et al. 2021. 2-Year outcomes of transcatheter mitral valve replacement in patients with severe symptomatic mitral regurgitation. J. Am. Coll. Cardiol. 78:1847–59
    [Google Scholar]
  46. 46.
    Sorajja P, Moat N, Badhwar V et al. 2019. Initial feasibility study of a new transcatheter mitral prosthesis: the first 100 patients. J. Am. Coll. Cardiol. 73:1250–60
    [Google Scholar]
  47. 47.
    Webb JG, Murdoch DJ, Boone RH et al. 2019. Percutaneous transcatheter mitral valve replacement: first-in-human experience with a new transseptal system. J. Am. Coll. Cardiol. 73:1239–46
    [Google Scholar]
  48. 48.
    Cribier A, Eltchaninoff H, Bash A et al. 2002. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106:3006–8
    [Google Scholar]
  49. 49.
    Leon MB, Smith CR, Mack M et al. 2010. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363:1597–607
    [Google Scholar]
  50. 50.
    Mack MJ, Leon MB, Thourani VH et al. 2019. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N. Engl. J. Med. 380:1695–705
    [Google Scholar]
  51. 51.
    Popma JJ, Deeb GM, Yakubov SJ et al. 2019. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N. Engl. J. Med. 380:1706–15
    [Google Scholar]
  52. 52.
    Landes U, Webb JG, De Backer O et al. 2020. Repeat transcatheter aortic valve replacement for transcatheter prosthesis dysfunction. J. Am. Coll. Cardiol. 75:1882–93
    [Google Scholar]
  53. 53.
    Delesalle G, Bohbot Y, Rusinaru D et al. 2019. Characteristics and prognosis of patients with moderate aortic stenosis and preserved left ventricular ejection fraction. J. Am. Heart Assoc. 8:e011036
    [Google Scholar]
  54. 54.
    Strange G, Stewart S, Celermajer D et al. 2019. Poor long-term survival in patients with moderate aortic stenosis. J. Am. Coll. Cardiol. 74:1851–63
    [Google Scholar]
  55. 55.
    Ito S, Miranda WR, Nkomo VT et al. 2018. Reduced left ventricular ejection fraction in patients with aortic stenosis. J. Am. Coll. Cardiol. 71:1313–21
    [Google Scholar]
  56. 56.
    Ito S, Miranda WR, Nkomo VT et al. 2021. Prognostic risk stratification of patients with moderate aortic stenosis. J. Am. Soc. Echocardiogr. 34:248–56
    [Google Scholar]
  57. 57.
    Zhu D, Ito S, Miranda WR et al. 2020. Left ventricular global longitudinal strain is associated with long-term outcomes in moderate aortic stenosis. Circ. Cardiovasc. Imaging 13:e009958
    [Google Scholar]
  58. 58.
    Baumgartner H, Hung J, Bermejo J et al. 2017. Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 30:372–92
    [Google Scholar]
  59. 59.
    Eleid MF, Nishimura RA, Sorajja P, Borlaug BA. 2013. Systemic hypertension in low-gradient severe aortic stenosis with preserved ejection fraction. Circulation 128:1349–53
    [Google Scholar]
  60. 60.
    Eleid MF, Sorajja P, Michelena HI et al. 2015. Survival by stroke volume index in patients with low-gradient normal EF severe aortic stenosis. Heart 101:23–29
    [Google Scholar]
  61. 61.
    Namasivayam M, He W, Churchill TW et al. 2020. Transvalvular flow rate determines prognostic value of aortic valve area in aortic stenosis. J. Am. Coll. Cardiol. 75:1758–69
    [Google Scholar]
  62. 62.
    Eleid MF, Sorajja P, Michelena HI et al. 2013. Flow-gradient patterns in severe aortic stenosis with preserved ejection fraction: clinical characteristics and predictors of survival. Circulation 128:1781–89
    [Google Scholar]
  63. 63.
    Alkurashi AK, Pislaru SV, Thaden JJ et al. 2022. Doppler mean gradient is discordant to aortic valve calcium scores in patients with atrial fibrillation undergoing transcatheter aortic valve replacement. J. Am. Soc. Echocardiogr. 35:116–23
    [Google Scholar]
  64. 64.
    Bravo-Jaimes K, Prakash SK. 2020. Genetics in bicuspid aortic valve disease: Where are we?. Prog. Cardiovasc. Dis. 63:398–406
    [Google Scholar]
  65. 65.
    Verma S, Siu SC. 2014. Aortic dilatation in patients with bicuspid aortic valve. N. Engl. J. Med. 370:1920–29
    [Google Scholar]
  66. 66.
    Grattan M, Prince A, Rumman RK et al. 2020. Predictors of bicuspid aortic valve-associated aortopathy in childhood: a report from the MIBAVA Consortium. Circ. Cardiovasc. Imaging 13:e009717
    [Google Scholar]
  67. 67.
    Blais S, Meloche-Dumas L, Fournier A et al. 2020. Long-term risk factors for dilatation of the proximal aorta in a large cohort of children with bicuspid aortic valve. Circ. Cardiovasc. Imaging 13:e009675
    [Google Scholar]
  68. 68.
    Michelena HI, Della Corte A, Evangelista A et al. 2021. International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. J. Thorac. Cardiovasc. Surg. 162:e383–414
    [Google Scholar]
  69. 69.
    de Kerchove L, Mastrobuoni S, Froede L et al. 2019. Variability of repairable bicuspid aortic valve phenotypes: towards an anatomical and repair-oriented classification. Eur. J. Cardiothorac. Surg. 26:351–59
    [Google Scholar]
  70. 70.
    Michelena HI, Prakash SK, Della Corte A et al. 2014. Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the International Bicuspid Aortic Valve Consortium (BAVCon). Circulation 129:2691–704
    [Google Scholar]
  71. 71.
    Borger MA, Fedak PWM, Stephens EH et al. 2018. The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve-related aortopathy: executive summary. J. Thorac. Cardiovasc. Surg. 156:473–80
    [Google Scholar]
  72. 72.
    Mahajan N, Khetarpal V, Afonso L. 2009. Stroke secondary to calcific bicuspid aortic valve: case report and literature review. J. Cardiol. 54:158–61
    [Google Scholar]
  73. 73.
    Alqahtani F, Berzingi CO, Aljohani S et al. 2017. Contemporary trends in the use and outcomes of surgical treatment of tricuspid regurgitation. J. Am. Heart Assoc. 6:e007597
    [Google Scholar]
  74. 74.
    Zack CJ, Fender EA, Chandrashekar P et al. 2017. National trends and outcomes in isolated tricuspid valve surgery. J. Am. Coll. Cardiol. 70:2953–60
    [Google Scholar]
  75. 75.
    Hamandi M, Smith RL, Ryan WH et al. 2019. Outcomes of isolated tricuspid valve surgery have improved in the modern era. Ann. Thorac. Surg. 108:11–15
    [Google Scholar]
  76. 76.
    Kilic A, Saha-Chaudhuri P, Rankin JS, Conte JV. 2013. Trends and outcomes of tricuspid valve surgery in North America: an analysis of more than 50,000 patients from the Society of Thoracic Surgeons database. Ann. Thorac. Surg. 96:1546–52
    [Google Scholar]
  77. 77.
    Axtell AL, Bhambhani V, Moonsamy P et al. 2019. Surgery does not improve survival in patients with isolated severe tricuspid regurgitation. J. Am. Coll. Cardiol. 74:715–25
    [Google Scholar]
  78. 78.
    Ingraham BS, Pislaru SV, Nkomo VT et al. 2019. Characteristics and treatment strategies for severe tricuspid regurgitation. Heart 105:1244–50
    [Google Scholar]
  79. 79.
    McElhinney DB, Cabalka AK, Aboulhosn JA et al. 2016. Transcatheter tricuspid valve-in-valve implantation for the treatment of dysfunctional surgical bioprosthetic valves: an international, multicenter registry study. Circulation 133:1582–93
    [Google Scholar]
  80. 80.
    Kodali S, Hahn RT, Eleid MF et al. 2021. Feasibility study of the transcatheter valve repair system for severe tricuspid regurgitation. J. Am. Coll. Cardiol. 77:345–56
    [Google Scholar]
  81. 81.
    Lurz P, Stephan von Bardeleben R, Weber M et al. 2021. Transcatheter edge-to-edge repair for treatment of tricuspid regurgitation. J. Am. Coll. Cardiol. 77:229–39
    [Google Scholar]
  82. 82.
    Fam NP, von Bardeleben RS, Hensey M et al. 2021. Transfemoral transcatheter tricuspid valve replacement with the EVOQUE system: a multicenter, observational, first-in-human experience. JACC Cardiovasc. Interv. 14:501–11
    [Google Scholar]
  83. 83.
    Davidson CJ, Lim DS, Smith RL et al. 2021. Early feasibility study of cardioband tricuspid system for functional tricuspid regurgitation: 30-day outcomes. JACC Cardiovasc. Interv. 14:41–50
    [Google Scholar]
  84. 84.
    Hahn RT, Kodali S, Fam N et al. 2020. Early multinational experience of transcatheter tricuspid valve replacement for treating severe tricuspid regurgitation. JACC Cardiovasc. Interv. 13:2482–93
    [Google Scholar]
  85. 85.
    Hammermeister K, Sethi GK, Henderson WG et al. 2000. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J. Am. Coll. Cardiol. 36:1152–58
    [Google Scholar]
  86. 86.
    Welle GA, El-Sabawi B, Thaden JJ et al. 2021. Effect of a fourth-generation transcatheter valve enhanced skirt on paravalvular leak. Catheter. Cardiovasc. Interv. 97:895–902
    [Google Scholar]
  87. 87.
    Eleid MF, Cabalka AK, Malouf JF et al. 2015. Techniques and outcomes for the treatment of paravalvular leak. Circ. Cardiovasc. Interv. 8:e001945
    [Google Scholar]
  88. 88.
    Waterbury TM, Reeder GS, Pislaru SV et al. 2017. Techniques and outcomes of paravalvular leak repair after transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 90:870–77
    [Google Scholar]
  89. 89.
    Alkhouli M, Zack CJ, Sarraf M et al. 2017. Successful percutaneous mitral paravalvular leak closure is associated with improved midterm survival. Circ. Cardiovasc. Interv. 10:e005730
    [Google Scholar]
  90. 90.
    Alkhouli M, Rihal CS, Zack CJ et al. 2017. Transcatheter and surgical management of mitral paravalvular leak: long-term outcomes. JACC Cardiovasc. Interv. 10:1946–56
    [Google Scholar]
/content/journals/10.1146/annurev-med-042921-122533
Loading
/content/journals/10.1146/annurev-med-042921-122533
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error