1932

Abstract

The porphyrias are a group of rare diseases, each resulting from a defect in a different enzymatic step of the heme biosynthetic pathway. They can be broadly divided into two categories, hepatic and erythropoietic porphyrias, depending on the primary site of accumulation of heme intermediates. These disorders are multisystemic with variable symptoms that can be encountered by physicians in any specialty. Here, we review the porphyrias and describe their clinical presentation, diagnosis, and management. We discuss novel therapies that are approved or in development. Early diagnosis is key for the appropriate management and prevention of long-term complications in these rare disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042921-123602
2024-01-29
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/med/75/1/annurev-med-042921-123602.html?itemId=/content/journals/10.1146/annurev-med-042921-123602&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bissell DM, Anderson KE, Bonkovsky HL. 2017. Porphyria. N. Engl. J. Med. 377:986272
    [Google Scholar]
  2. 2.
    Manceau H, Gouya L, Puy H. 2017. Acute hepatic and erythropoietic porphyrias: from ALA synthases 1 and 2 to new molecular bases and treatments. Curr. Opin. Hematol. 24:3198207
    [Google Scholar]
  3. 3.
    Lefever S, Peersman N, Meersseman W et al. 2022. Development and validation of diagnostic algorithms for the laboratory diagnosis of porphyrias. J. Inherit. Metab. Dis. 45:6115162
    [Google Scholar]
  4. 4.
    Bulaj ZJ, Phillips JD, Ajioka RS et al. 2000. Hemochromatosis genes and other factors contributing to the pathogenesis of porphyria cutanea tarda. Blood 95:5156571
    [Google Scholar]
  5. 5.
    Lala SM, Naik H, Balwani M. 2018. Diagnostic delay in erythropoietic protoporphyria. J. Pediatr. 202:32023.e2
    [Google Scholar]
  6. 6.
    Dickey A, Wheeden K, Lyon D et al. 2022. Quantifying the impact of symptomatic acute hepatic porphyria on well-being via patient-reported outcomes: results from the Porphyria Worldwide Patient Experience Research (POWER) study. JIMD Rep. 64:110413
    [Google Scholar]
  7. 7.
    Bonkovsky HL, Maddukuri VC, Yazici C et al. 2014. Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium. Am. J. Med. 127:12123341
    [Google Scholar]
  8. 8.
    Karim Z, Lyoumi S, Nicolas G et al. 2015. Porphyrias: a 2015 update. Clin. Res. Hepatol. Gastroenterol. 39:441225
    [Google Scholar]
  9. 9.
    Chen B, Solis-Villa C, Hakenberg J et al. 2016. Acute intermittent porphyria: predicted pathogenicity of HMBS variants indicates extremely low penetrance of the autosomal dominant disease. Hum. Mutat. 37:11121522
    [Google Scholar]
  10. 10.
    Elder G, Harper P, Badminton M et al. 2013. The incidence of inherited porphyrias in Europe. J. Inherit. Metab. Dis. 36:584957
    [Google Scholar]
  11. 11.
    Lamon JM, Frykholm BC, Tschudy DP. 1979. Family evaluations in acute intermittent porphyria using red cell uroporphyrinogen I synthetase. J. Med. Genet. 16:213439
    [Google Scholar]
  12. 12.
    von und zu Fraunberg M, Pischik E, Udd L et al. 2005. Clinical and biochemical characteristics and genotype-phenotype correlation in 143 Finnish and Russian patients with acute intermittent porphyria. Medicine 84:13547
    [Google Scholar]
  13. 13.
    Floderus Y, Shoolingin-Jordan PM, Harper P. 2002. Acute intermittent porphyria in Sweden. Molecular, functional and clinical consequences of some new mutations found in the porphobilinogen deaminase gene. Clin. Genet. 62:428897
    [Google Scholar]
  14. 14.
    Hift RJ, Peters TJ, Meissner PN. 2012. A review of the clinical presentation, natural history and inheritance of variegate porphyria: its implausibility as the source of the “Royal Malady. .” J. Clin. Pathol. 65:32005
    [Google Scholar]
  15. 15.
    Lahiji AP, Anderson KE, Chan A et al. 2020. 5-Aminolevulinate dehydratase porphyria: update on hepatic 5-aminolevulinic acid synthase induction and long-term response to hemin. Mol. Genet. Metab. 131:441823
    [Google Scholar]
  16. 16.
    Andersson C, Innala E, Bäckström T. 2003. Acute intermittent porphyria in women: clinical expression, use and experience of exogenous sex hormones. A population-based study in northern Sweden. J. Intern. Med. 254:217683
    [Google Scholar]
  17. 17.
    Jericó D, Córdoba KM, Sampedro A et al. 2022. Recent insights into the pathogenesis of acute porphyria attacks and increasing hepatic PBGD as an etiological treatment. Life 12:111858
    [Google Scholar]
  18. 18.
    Storjord E, Dahl JA, Landsem A et al. 2018. Lifestyle factors including diet and biochemical biomarkers in acute intermittent porphyria: results from a case-control study in northern Norway. Mol. Genet. Metab. 128:325470
    [Google Scholar]
  19. 19.
    Handschin C, Lin J, Rhee J et al. 2005. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. Cell 122:450515
    [Google Scholar]
  20. 20.
    Podvinec M, Handschin C, Looser R et al. 2004. Identification of the xenosensors regulating human 5-aminolevulinate synthase. PNAS 101:24912732
    [Google Scholar]
  21. 21.
    Herrick AL, Moore MR, Mccoll KEL et al. 1989. Controlled trial of haem arginate in acute hepatic porphyria. Lancet 1:8650129597
    [Google Scholar]
  22. 22.
    Balwani M, Wang B, Anderson KE et al. 2017. Acute hepatic porphyrias: recommendations for evaluation and long-term management. Hepatology 66:4131422
    [Google Scholar]
  23. 23.
    Anderson KE, Lobo R, Salazar D et al. 2021. Biochemical diagnosis of acute hepatic porphyria: updated expert recommendations for primary care physicians. Am. J. Med. Sci. 362:211321
    [Google Scholar]
  24. 24.
    Anderson KE, Bloomer JR, Bonkovsky HL et al. 2005. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann. Intern. Med. 142:643950
    [Google Scholar]
  25. 25.
    Simon NG, Herkes GK. 2011. The neurologic manifestations of the acute porphyrias. J. Clin. Neurosci. 18:9114753
    [Google Scholar]
  26. 26.
    Storjord E, Airila-Månsson S, Karlsen K et al. 2022. Dental and periodontal health in acute intermittent porphyria. Life 12:81270
    [Google Scholar]
  27. 27.
    Wang B, Bonkovsky HL, Lim JK et al. 2023. AGA clinical practice update on diagnosis and management of acute hepatic porphyrias: expert review. Gastroenterology 164:348491
    [Google Scholar]
  28. 28.
    Saberi B, Naik H, Overbey JR et al. 2021. Hepatocellular carcinoma in acute hepatic porphyrias: results from the longitudinal study of the U.S. Porphyrias Consortium. Hepatology 73:5173646
    [Google Scholar]
  29. 29.
    Lissing M, Vassiliou D, Floderus Y et al. 2022. Risk of primary liver cancer in acute hepatic porphyria patients: a matched cohort study of 1244 individuals. J. Intern. Med. 291:682436
    [Google Scholar]
  30. 30.
    Ma E, Mar V, Varigos G et al. 2011. Haem arginate as effective maintenance therapy for hereditary coproporphyria. Australas. J. Dermatol. 52:213538
    [Google Scholar]
  31. 31.
    Bonkovsky HL, Healey JF, Lourie AN et al. 1991. Intravenous heme-albumin in acute intermittent porphyria: evidence for repletion of hepatic hemoproteins and regulatory heme pools. Am. J. Gastroenterol. 86:8105056
    [Google Scholar]
  32. 32.
    Marsden JT, Guppy S, Stein P et al. 2015. Audit of the use of regular haem arginate infusions in patients with acute porphyria to prevent recurrent symptoms. JIMD Rep. 22:5765
    [Google Scholar]
  33. 33.
    Schulenburg-Brand D, Gardiner T, Guppy S et al. 2017. An audit of the use of gonadorelin analogues to prevent recurrent acute symptoms in patients with acute porphyria in the United Kingdom. JIMD Rep. 36:99107
    [Google Scholar]
  34. 34.
    Thunell S, Henrichson A, Floderus Y et al. 1992. Liver transplantation in a boy with acute porphyria due to aminolaevulinate dehydratase deficiency. Eur. J. Clin. Chem. Clin. Biochem. 30:10599606
    [Google Scholar]
  35. 35.
    Stojeba N, Meyer C, Jeanpierre C et al. 2004. Recovery from a variegate porphyria by a liver transplantation. Liver Transpl. 10:793538
    [Google Scholar]
  36. 36.
    Lazareth H, Talbi N, Kamar N et al. 2020. Kidney transplantation improves the clinical outcomes of acute intermittent porphyria. Mol. Genet. Metab. 131:1–225966
    [Google Scholar]
  37. 37.
    Balwani M, Sardh E, Ventura P et al. 2020. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382:242289301
    [Google Scholar]
  38. 38.
    Ventura P, Sardh E, Longo N et al. 2022. Hyperhomocysteinemia in acute hepatic porphyria (AHP) and implications for treatment with givosiran. Expert Rev. Gastroenterol. Hepatol. 16:987994
    [Google Scholar]
  39. 39.
    Whatley SD, Mason NG, Holme SA et al. 2010. Molecular epidemiology of erythropoietic protoporphyria in the U.K. Br. J. Dermatol. 162:364246
    [Google Scholar]
  40. 40.
    Balwani M, Doheny D, Bishop DF et al. 2013. Loss-of-function ferrochelatase and gain-of-function erythroid-specific 5-aminolevulinate synthase mutations causing erythropoietic protoporphyria and X-linked protoporphyria in North American patients reveal novel mutations and a high prevalence of X-linked protoporphyria. Mol. Med. 19:12629
    [Google Scholar]
  41. 41.
    Whatley SD, Mason NG, Holme SA et al. 2007. Gene dosage analysis identifies large deletions of the FECH gene in 10% of families with erythropoietic protoporphyria. J. Investig. Dermatol. 127:279094
    [Google Scholar]
  42. 42.
    Dickey AK, Quick C, Ducamp S et al. 2020. Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria. Genet. Med. 23:114048
    [Google Scholar]
  43. 43.
    Whatley SD, Ducamp S, Gouya L et al. 2008. C-terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload. Am. J. Hum. Genet. 83:340814
    [Google Scholar]
  44. 44.
    Ducamp S, Schneider-Yin X, de Rooij F et al. 2013. Molecular and functional analysis of the C-terminal region of human erythroid-specific 5-aminolevulinic synthase associated with X-linked dominant protoporphyria (XLDPP). Hum. Mol. Genet. 22:7128088
    [Google Scholar]
  45. 45.
    Yien YY, Ducamp S, van der Vorm LN et al. 2017. Mutation in human CLPX elevates levels of δ -aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. PNAS 114:38E804552
    [Google Scholar]
  46. 46.
    Gou EW, Balwani M, Bissell DM et al. 2015. Pitfalls in erythrocyte protoporphyrin measurement for diagnosis and monitoring of protoporphyrias. Clin. Chem. 61:12145356
    [Google Scholar]
  47. 47.
    Dickey AK, Naik H, Keel SB et al. 2023. Evidence-based consensus guidelines for the diagnosis and management of erythropoietic protoporphyria and X-linked protoporphyria. J. Am. Acad. Dermatol. 89:6122737
    [Google Scholar]
  48. 48.
    Hindmarsh JT, Oliveras L, Greenway DC. 1999. Biochemical differentiation of the porphyrias. Clin. Biochem. 32:860919
    [Google Scholar]
  49. 49.
    Lim HW. 1989. Mechanisms of phototoxicity in porphyria cutanea tarda and erythropoietic protoporphyria. Immunol. Ser. 46:67185
    [Google Scholar]
  50. 50.
    Timonen K, Kariniemi AL, Niemi KM et al. 2000. Vascular changes in erythropoietic protoporphyria: histopathologic and immunohistochemical study. J. Am. Acad. Dermatol. 43:348997
    [Google Scholar]
  51. 51.
    Raef HS, Rebeiz L, Leaf RK et al. 2023. Light-related cutaneous symptoms of erythropoietic protoporphyria and associations with light sensitivity measurements. JAMA Dermatol. 159:22048
    [Google Scholar]
  52. 52.
    Dickey A, Rebeiz L, Raef H et al. 2022. Prospective observational pilot study of quantitative light dosimetry in erythropoietic protoporphyria. J. Am. Acad. Dermatol. 88:5114851
    [Google Scholar]
  53. 53.
    Naik H, Overbey JR, Desnick RJ et al. 2019. Evaluating quality of life tools in North American patients with erythropoietic protoporphyria and X-linked protoporphyria. JIMD Rep. 50:1919
    [Google Scholar]
  54. 54.
    Dickey A. 2019. Pitfalls and proposed solutions for patient communication about erythropoietic protoporphyria: a survey of parents and adult patients. J. Am. Acad. Dermatol. 81:512047
    [Google Scholar]
  55. 55.
    Langendonk JG, Balwani M, Anderson KE et al. 2015. Afamelanotide for erythropoietic protoporphyria. N. Engl. J. Med. 373:14859
    [Google Scholar]
  56. 56.
    Biolcati G, Marchesini E, Sorge F et al. 2015. Long-term observational study of afamelanotide in 115 patients with erythropoietic protoporphyria. Br. J. Dermatol. 172:6160112
    [Google Scholar]
  57. 57.
    Wensink D, Wagenmakers MAEM, Barman-Aksözen J et al. 2020. Association of afamelanotide with improved outcomes in patients with erythropoietic protoporphyria in clinical practice. JAMA Dermatol. 156:557075
    [Google Scholar]
  58. 58.
    Barman-Aksözen J, Nydegger M, Schneider-Yin X et al. 2020. Increased phototoxic burn tolerance time and quality of life in patients with erythropoietic protoporphyria treated with afamelanotide—a three years observational study. Orphanet J. Rare Dis. 15:2213
    [Google Scholar]
  59. 59.
    Balwani M, Bonkovsky HL, Belongie KJ et al. 2020. Erythropoietic protoporphyria: phase 2 clinical trial results evaluating the safety and effectiveness of dersimelagon (MT-7117), an oral MC1R agonist. Blood 136:Suppl. 151
    [Google Scholar]
  60. 60.
    Halloy F, Iyer PS, Ghidini A et al. 2021. Repurposing of glycine transport inhibitors for the treatment of erythropoietic protoporphyria. Cell Chem. Biol. 28:8122134.e6
    [Google Scholar]
  61. 61.
    Heerfordt IM, Lerche CM, Wulf HC. 2022. Cimetidine for erythropoietic protoporphyria. Photodiagnos. Photodyn. Ther. 38:102793
    [Google Scholar]
  62. 62.
    Barman-Aksözen J, Halloy F, Iyer PS et al. 2019. Delta-aminolevulinic acid synthase 2 expression in combination with iron as modifiers of disease severity in erythropoietic protoporphyria. Mol. Genet. Metab. 128:33048
    [Google Scholar]
  63. 63.
    Holme SA, Worwood M, Anstey AV et al. 2007. Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria. Blood 110:12410810
    [Google Scholar]
  64. 64.
    Bossi K, Lee J, Schmeltzer P et al. 2015. Homeostasis of iron and hepcidin in erythropoietic protoporphyria. Eur. J. Clin. Investig. 45:10103241
    [Google Scholar]
  65. 65.
    Barman-Aksoezen J, Girelli D, Aurizi C et al. 2017. Disturbed iron metabolism in erythropoietic protoporphyria and association of GDF15 and gender with disease severity. J. Inherit. Metab. Dis. 40:343341
    [Google Scholar]
  66. 66.
    Barman-Aksözen J, Minder EI, Schubiger C et al. 2015. In ferrochelatase-deficient protoporphyria patients, ALAS2 expression is enhanced and erythrocytic protoporphyrin concentration correlates with iron availability. Blood Cells Mol. Dis. 54:17177
    [Google Scholar]
  67. 67.
    Schmidt PJ, Hollowell ML, Fitzgerald K et al. 2020. Mild iron deficiency does not ameliorate the phenotype of a murine erythropoietic protoporphyria model. Am. J. Hematol. 95:549296
    [Google Scholar]
  68. 68.
    Balwani M, Naik H, Overbey JR et al. 2022. A pilot study of oral iron therapy in erythropoietic protoporphyria and X-linked protoporphyria. Mol. Genet. Metab. Rep. 33:100939
    [Google Scholar]
  69. 69.
    Delaby C, Lyoumi S, Ducamp S et al. 2009. Excessive erythrocyte PPIX influences the hematologic status and iron metabolism in patients with dominant erythropoietic protoporphyria. Cell Mol. Biol. 55:14552
    [Google Scholar]
  70. 70.
    Buzzetti E, Ventura P, Corradini E. 2022. Iron in porphyrias: friend or foe?. Diagnostics 12:2272
    [Google Scholar]
  71. 71.
    Landefeld C, Kentouche K, Gruhn B et al. 2016. X-linked protoporphyria: iron supplementation improves protoporphyrin overload, liver damage and anaemia. Br. J. Haematol. 173:348284
    [Google Scholar]
  72. 72.
    Balwani M, Naik H, Anderson KE et al. 2017. Clinical, biochemical, and genetic characterization of North American patients with erythropoietic protoporphyria and X-linked protoporphyria. JAMA Dermatol. 153:878996
    [Google Scholar]
  73. 73.
    Anstey AV, Hift RJ. 2007. Liver disease in erythropoietic protoporphyria: insights and implications for management. Gut 56:7100918
    [Google Scholar]
  74. 74.
    Cripps DJ, Goldfarb SS. 1978. Erythropoietic protoporphyria: hepatic cirrhosis. Br. J. Dermatol. 98:334954
    [Google Scholar]
  75. 75.
    Pagano MB, Hobbs W, Linenberger M et al. 2012. Plasma and red cell exchange transfusions for erythropoietic protoporphyria: a case report and review of the literature. J. Clin. Apher. 27:633641
    [Google Scholar]
  76. 76.
    McGuire BM, Bonkovsky HL, Carithers RL Jr. et al. 2005. Liver transplantation for erythropoietic protoporphyria liver disease. Liver Transpl. 11:12159096
    [Google Scholar]
  77. 77.
    Malkiel S, Sayed BA, Ng V et al. 2021. Sequential paternal haploidentical donor liver and HSCT in EPP allow discontinuation of immunosuppression post-organ transplant. Pediatr. Transplant. 25:6e14040
    [Google Scholar]
  78. 78.
    Windon AL, Tondon R, Singh N et al. 2018. Erythropoietic protoporphyria in an adult with sequential liver and hematopoietic stem cell transplantation: a case report. Am. J. Transplant. 18:374549
    [Google Scholar]
  79. 79.
    Bonkovsky HL, Schned AR. 1986. Fatal liver failure in protoporphyria. Synergism between ethanol excess and the genetic defect. Gastroenterology 90:1191201
    [Google Scholar]
  80. 80.
    Elder GH. 1998. Porphyria cutanea tarda. Semin. Liver Dis. 18:16775
    [Google Scholar]
  81. 81.
    Horner ME, Alikhan A, Tintle S et al. 2013. Cutaneous porphyrias part I: epidemiology, pathogenesis, presentation, diagnosis, and histopathology. Int. J. Dermatol. 52:12146480
    [Google Scholar]
  82. 82.
    Jalil S, Grady JJ, Lee C et al. 2010. Associations among behavior-related susceptibility factors in porphyria cutanea tarda. Clin. Gastroenterol. Hepatol. 8:3297302
    [Google Scholar]
  83. 83.
    Phillips JD, Bergonia HA, Reilly CA et al. 2007. A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. PNAS 104:12507984
    [Google Scholar]
  84. 84.
    Berry AA, Desnick RJ, Astrin KH et al. 2005. Two brothers with mild congenital erythropoietic porphyria due to a novel genotype. Arch. Dermatol. 141:12157579
    [Google Scholar]
  85. 85.
    Singal AK, Kormos-Hallberg C, Lee C et al. 2012. Low-dose hydroxychloroquine is as effective as phlebotomy in treatment of patients with porphyria cutanea tarda. Clin. Gastroenterol. Hepatol. 10:1214029
    [Google Scholar]
  86. 86.
    Di Padova C, Marchesi L, Cainelli T et al. 1983. Effects of phlebotomy on urinary porphyrin pattern and liver histology in patients with porphyria cutanea tarda. Am. J. Med. Sci. 285:1212
    [Google Scholar]
  87. 87.
    Bonkovsky HL, Rudnick SP, Ma CD et al. 2023. Ledipasvir/sofosbuvir is effective as sole treatment of porphyria cutanea tarda with chronic hepatitis C. Dig. Dis. Sci. 68:6273846
    [Google Scholar]
  88. 88.
    Katugampola RP, Anstey AV, Finlay AY et al. 2012. A management algorithm for congenital erythropoietic porphyria derived from a study of 29 cases. Br. J. Dermatol. 167:4888900
    [Google Scholar]
  89. 89.
    Phillips JD, Steensma DP, Pulsipher MA et al. 2007. Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood 109:6261821
    [Google Scholar]
  90. 90.
    Mirmiran A, Poli A, Ged C et al. 2021. Phlebotomy as an efficient long-term treatment of congenital erythropoietic porphyria. Haematologica 106:391317
    [Google Scholar]
  91. 91.
    Blouin JM, Ged C, Lalanne M et al. 2020. Iron chelation rescues hemolytic anemia and skin photosensitivity in congenital erythropoietic porphyria. Blood 136:21245768
    [Google Scholar]
  92. 92.
    Urquiza P, Laín A, Sanz-Parra A et al. 2018. Repurposing ciclopirox as a pharmacological chaperone in a model of congenital erythropoietic porphyria. Sci. Transl. Med. 10:459eaat7467
    [Google Scholar]
  93. 93.
    D'Avola D, López-Franco E, Sangro B et al. 2016. Phase I open label liver-directed gene therapy clinical trial for acute intermittent porphyria. J. Hepatol. 65:477683
    [Google Scholar]
  94. 94.
    Jiang L, Berraondo P, Jericó D et al. 2018. Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nat. Med. 24:121899909
    [Google Scholar]
  95. 95.
    Neeleman RA, van Beers EJ, Friesema EC et al. 2019. Clinical remission of delta-aminolevulinic acid dehydratase deficiency through suppression of erythroid heme synthesis. Hepatology 70:143436
    [Google Scholar]
  96. 96.
    Blouin JM, Ged C, Lalanne M et al. 2020. Iron chelation rescues hemolytic anemia and skin photosensitivity in congenital erythropoietic porphyria. Blood 136:21245768
    [Google Scholar]
  97. 97.
    Oustric V, Manceau H, Ducamp S et al. 2014. Antisense oligonucleotide-based therapy in human erythropoietic protoporphyria. Am. J. Hum. Genet. 94:461117
    [Google Scholar]
  98. 98.
    Wang P, Sachar M, Lu J et al. 2019. The essential role of the transporter ABCG2 in the pathophysiology of erythropoietic protoporphyria. Sci. Adv. 5:9eaaw6127
    [Google Scholar]
  99. 99.
    Graff E, Anderson KE, Levy C. 2022. Case report: lack of response to givosiran in a case of ALAD porphyria. Front. Genet. 13:867856
    [Google Scholar]
/content/journals/10.1146/annurev-med-042921-123602
Loading
/content/journals/10.1146/annurev-med-042921-123602
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error