The best known of the naturally occurring antimalarial compounds are quinine, extracted from cinchona bark, and artemisinin (qinghao), extracted from in China. These and other derivatives are now chemically synthesized and remain the mainstay of therapy to treat malaria. The beneficial effects of several of the antimalarial drugs (AMDs) on clinical features of autoimmune disorders were discovered by chance during World War II. In this review, we discuss the chemistry of AMDs and their mechanisms of action, emphasizing how they may impact multiple pathways of innate immunity. These pathways include Toll-like receptors and the recently described cGAS-STING pathway. Finally, we discuss the current and future impact of AMDs on systemic lupus erythematosus, rheumatoid arthritis, and devastating monogenic disorders (interferonopathies) characterized by expression of type I interferon in the brain.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Meshnick SR, Dobson MJ. 1.  2001. The history of antimalarial drugs. Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery P Rosenthal. Totowa, NJ: Humana [Google Scholar]
  2. Flannery EL, Chatterjee AK, Winzeler EA. 2.  2013. Antimalarial drug discovery—approaches and progress towards new medicines. Nat. Rev. Microbiol. 11:849–62 [Google Scholar]
  3. Hsu E. 3.  2006. The history of qing hao in the Chinese materia medica. Trans. R. Soc. Trop. Med. Hyg 100505–8 [Google Scholar]
  4. Ehsanian R, Van Waes C, Feller SM. 4.  2011. Beyond DNA binding—a review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers. Cell. Commun. Signaling 9:13 [Google Scholar]
  5. Gurova K. 5.  2009. New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol 5:1685–704 [Google Scholar]
  6. Kar SS, Pradhan HS, Mohanta GP. 6.  2010. Concept of essential medicines and rational use in public health. Indian J. Community Med. 35:10–13 [Google Scholar]
  7. Ridley RG. 7.  2002. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415:686–93 [Google Scholar]
  8. Minie M, Chopra G, Sethi G. 8.  et al. 2014. CANDO and the infinite drug discovery frontier. Drug Discov. Today 19:1353–63 [Google Scholar]
  9. An J, Woodward JJ, Sasaki T. 9.  et al. 2015. Cutting edge: antimalarial drugs inhibit IFN-beta production through blockade of cyclic GMP-AMP synthase-DNA interaction. J. Immunol. 194:4089–93 [Google Scholar]
  10. Paddon CJ, Westfall PJ, Pitera DJ. 10.  et al. 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–32 [Google Scholar]
  11. Hale V, Keasling JD, Renninger N. 11.  et al. 2007. Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. Am. J. Trop. Med. Hyg 77198–202 [Google Scholar]
  12. Mitchell W. 12.  2011. Natural products from synthetic biology. Curr. Opin. Chem. Biol. 15:505–15 [Google Scholar]
  13. Conway DJ. 13.  2015. Paths to a malaria vaccine illuminated by parasite genomics. Trends Genet.: TIG 31:97–107 [Google Scholar]
  14. Karunamoorthi K. 14.  2014. Malaria vaccine: a future hope to curtail the global malaria burden. Int. J. Prev. Med. 5:529–38 [Google Scholar]
  15. de Beer TA, Wells GA, Burger PB. 15.  et al. 2009. Antimalarial drug discovery: in silico structural biology and rational drug design. Infect. Disord. Drug Targets 9:304–18 [Google Scholar]
  16. Vedadi M, Lew J, Artz J. 16.  et al. 2007. Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms. Mol. Biochem. Parasitol. 151:100–10 [Google Scholar]
  17. Buckee CO, Wesolowski A, Eagle NN. 17.  et al. 2013. Mobile phones and malaria: modeling human and parasite travel. Travel Med. Infect. Dis 1115–22 [Google Scholar]
  18. Hay SI, George DB, Moyes CL. 18.  et al. 2013. Big data opportunities for global infectious disease surveillance. PLOS Med 10:e1001413 [Google Scholar]
  19. Dlugonska H. 19.  2015. The Nobel Prize 2015 in physiology or medicine for highly effective antiparasitic drugs. Ann. Parasitol. 61:299–301 [Google Scholar]
  20. Wolf R, Wolf D, Ruocco V. 20.  2000. Antimalarials: unapproved uses or indications. Clin. Dermatol. 18:17–35 [Google Scholar]
  21. Baechler EC, Batliwalla FM, Karypis G. 21.  et al. 2003. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. PNAS 100:2610–15 [Google Scholar]
  22. Bennett L, Palucka AK, Arce E. 22.  et al. 2003. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197:711–23 [Google Scholar]
  23. Crow YJ. 23.  2015. Type I interferonopathies: Mendelian type I interferon up-regulation. Curr. Opin. Immunol. 32:7–12 [Google Scholar]
  24. Santer DM, Yoshio T, Minota S. 24.  et al. 2009. Potent induction of IFN-alpha and chemokines by auto-antibodies in the cerebrospinal fluid of patients with neuropsychiatric lupus. J. Immunol. 182:1192–201 [Google Scholar]
  25. Lovgren T, Eloranta ML, Kastner B. 25.  et al. 2006. Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen—and Sjogren's syndrome autoantigen-associated RNA. Arthritis Rheum 54:1917–27 [Google Scholar]
  26. Martin DA, Elkon KB. 26.  2005. Autoantibodies make a U-turn: the toll hypothesis for autoantibody specificity. J. Exp. Med. 202:1465–69 [Google Scholar]
  27. Barrat FJ, Elkon KB, Fitzgerald KA. 27.  2016. Importance of nucleic acid recognition in inflammation and autoimmunity. Annu. Rev. Med. 67:323–36 [Google Scholar]
  28. Niewold TB, Hua J, Lehman TJ. 28.  et al. 2007. High serum IFN-alpha activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun 8:492–502 [Google Scholar]
  29. Chiche L, Jourde-Chiche N, Whalen E. 29.  et al. 2014. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol 66:1583–95 [Google Scholar]
  30. Crow YJ, Leitch A, Hayward BE. 30.  et al. 2006. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38:910–16 [Google Scholar]
  31. Gray EE, Treuting PM, Woodward JJ. 31.  et al. 2015. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi-Goutieres syndrome. J. Immunol. 195:1939–43 [Google Scholar]
  32. Gao D, Li T, Li XD. 32.  et al. 2015. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. PNAS 112:E5699–705 [Google Scholar]
  33. Lee-Kirsch MA, Gong M, Chowdhury D. 33.  et al. 2007. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39:1065–67 [Google Scholar]
  34. Namjou B, Kothari PH, Kelly JA. 34.  et al. 2011. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun 12:270–79 [Google Scholar]
  35. Klareskog L, Padyukov L, Ronnelid J. 35.  et al. 2006. Genes, environment and immunity in the development of rheumatoid arthritis. Curr. Opin. Immunol. 18:650–55 [Google Scholar]
  36. Wallace DJ, Gudsoorkar VS, Weisman MH. 36.  et al. 2012. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat. Rev. Rheumatol. 8:522–33 [Google Scholar]
  37. Shi C, Li H, Yang Y. 37.  et al. 2015. Anti-inflammatory and immunoregulatory functions of artemisinin and its derivatives. Mediat. Inflamm 2015:435713 [Google Scholar]
  38. Hou LF, He SJ, Li X. 38.  et al. 2012. SM934 treated lupus-prone NZB×NZW F1 mice by enhancing macrophage interleukin-10 production and suppressing pathogenic T cell development. PLOS ONE 7:e32424 [Google Scholar]
  39. Hou LF, He SJ, Li X. 39.  et al. 2011. Oral administration of artemisinin analog SM934 ameliorates lupus syndromes in MRL/lpr mice by inhibiting Th1 and Th17 cell responses. Arthritis Rheum 63:2445–55 [Google Scholar]
  40. Gilad Y, Senderowitz H. 40.  2014. Docking studies on DNA intercalators. J. Chem. Inf. Model. 54:96–107 [Google Scholar]
  41. Baldini G, Doglia S, Dolci S. 41.  et al. 1981. Fluorescence-determined preferential binding of quinacrine to DNA. Biophys. J. 36:465–77 [Google Scholar]
  42. Busto N, Garcia B, Leal JM. 42.  et al. 2011. ACMA (9-amino-6-chloro-2-methoxy acridine) forms three complexes in the presence of DNA. Phys. Chem. Chem. Phys. 13:19534–45 [Google Scholar]
  43. Chaires JB. 43.  1997. Energetics of drug-DNA interactions. Biopolymers 44:201–15 [Google Scholar]
  44. Das S, Kundu S, Suresh Kumar G. 44.  2011. Quinacrine and 9-amino acridine inhibit B-Z and B-Hl form DNA conformational transitions. DNA Cell Biol 30:525–35 [Google Scholar]
  45. van Dam L, Korolev N, Nordenskiold L. 45.  2002. Polyamine-nucleic acid interactions and the effects on structure in oriented DNA fibers. Nucleic Acids Res 30:419–28 [Google Scholar]
  46. Zhang X, Wu J, Du F. 46.  et al. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6:421–30 [Google Scholar]
  47. Deretic V. 47.  2011. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol. Rev. 240:92–104 [Google Scholar]
  48. Fox R. 48.  1996. Anti-malarial drugs: possible mechanisms of action in autoimmune disease and prospects for drug development. Lupus 5:Suppl. 1S4–10 [Google Scholar]
  49. Schultz KR, Bader S, Paquet J. 49.  et al. 1995. Chloroquine treatment affects T-cell priming to minor histocompatibility antigens and graft-versus-host disease. Blood 86:4344–52 [Google Scholar]
  50. Randow F, Munz C. 50.  2012. Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol 33:475–87 [Google Scholar]
  51. Ratikan JA, Sayre JW, Schaue D. 51.  2013. Chloroquine engages the immune system to eradicate irradiated breast tumors in mice. Int. J. Radiat. Oncol. Biol. Phys. 87:761–68 [Google Scholar]
  52. van Loosdregt J, Spreafico R, Rossetti M. 52.  et al. 2013. Hydroxychloroquine preferentially induces apoptosis of CD45RO+ effector T cells by inhibiting autophagy: a possible mechanism for therapeutic modulation of T cells. J. Allergy Clin. Immunol. 131:1443–46 [Google Scholar]
  53. Lau CM, Broughton C, Tabor AS. 53.  et al. 2005. RNA-associated autoantigens activate B cells by combined B cell receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202:1171–77 [Google Scholar]
  54. Vollmer J, Tluk S, Schmitz C. 54.  et al. 2005. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med. 202:1575–85 [Google Scholar]
  55. Kuznik A, Bencina M, Svajger U. 55.  et al. 2011. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 186:4794–804 [Google Scholar]
  56. Hacker H, Mischak H, Miethke T. 56.  et al. 1998. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 17:6230–40 [Google Scholar]
  57. Lamphier M, Zheng W, Latz E. 57.  et al. 2014. Novel small molecule inhibitors of TLR7 and TLR9: mechanism of action and efficacy in vivo. Mol. Pharmacol. 85:429–40 [Google Scholar]
  58. Sun L, Wu J, Du F. 58.  et al. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91 [Google Scholar]
  59. Zhang X, Shi H, Wu J. 59.  et al. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51:226–35 [Google Scholar]
  60. Shu C, Li X, Li P. 60.  2014. The mechanism of double-stranded DNA sensing through the cGAS-STING pathway. Cytokine Growth Factor Rev 25:641–48 [Google Scholar]
  61. Wallace DJ. 61.  1989. The use of quinacrine (Atabrine) in rheumatic diseases: a reexamination. Semin. Arthritis Rheum. 18:282–96 [Google Scholar]
  62. Rosman Z, Shoenfeld Y, Zandman-Goddard G. 62.  2013. Biologic therapy for autoimmune diseases: an update. BMC Med 11:88–100 [Google Scholar]
  63. Crow YJ, Vanderver A, Orcesi S. 63.  et al. 2014. Therapies in Aicardi-Goutieres syndrome. Clin. Exp. Immunol. 175:1–8 [Google Scholar]
  64. Wampler Muskardin T, Vashisht P, Dorschner JM. 64.  et al. 2015. Increased pretreatment serum IFN-beta/alpha ratio predicts non-response to tumour necrosis factor alpha inhibition in rheumatoid arthritis. Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2015-208001
  65. Meunier B, Robert A. 65.  2010. Heme as trigger and target for trioxane-containing antimalarial drugs. Acc. Chem. Res. 43:1444–51 [Google Scholar]
  66. Robert A, Dechy-Cabaret O, Cazelles J. 66.  et al. 2002. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. Acc. Chem. Res. 35:167–74 [Google Scholar]
  67. Robert A, Meunier B. 67.  1998. Is alkylation the main mechanism of action of the antimalarial drug artemisinin?. Chem. Soc. Rev. 27:273–74 [Google Scholar]
  68. Asawamahasakda W, Ittarat I, Pu YM. 68.  et al. 1994. Reaction of antimalarial endoperoxides with specific parasite proteins. Antimicrob. Agents Chemother. 38:1854–58 [Google Scholar]
  69. Meshnick SR. 69.  2003. Artemisinin and heme. Antimicrob. Agents Chemother. 47:2712 [Google Scholar]
  70. Wang J, Zhang CJ, Chia WN. 70.  et al. 2015. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. . Nat. Commun. 6:10111 [Google Scholar]
  71. Uhlemann AC, Cameron A, Eckstein-Ludwig U. 71.  et al. 2005. A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat. Struct. Mol. Biol. 12:628–29 [Google Scholar]
  72. Sugioka Y, Suzuki M, Sugioka K. Nakano M.72.  1987. A ferriprotoporphyrin IX-chloroquine complex promotes membrane phospholipid peroxidation. A possible mechanism for antimalarial action. FEBS Lett 223:251–54 [Google Scholar]
  73. Slater AF. 73.  1993. Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol. Ther. 57:203–35 [Google Scholar]
  74. Meshnick SR. 74.  1990. Chloroquine as intercalator: a hypothesis revived. Parasitol. Today 6:77–79 [Google Scholar]
  75. Triglia T, Cowman AF. 75.  1994. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. PNAS 91:7149–53 [Google Scholar]
  76. Yuthavong Y, Panijpan B, Ruenwongsa P. 76.  et al. 1985. Biochemical aspects of drug action and resistance in malaria parasites. Southeast Asian J. Trop. Med. Public Health 16459–72 [Google Scholar]
  77. de Villiers KA, Marques HM, Egan TJ. 77.  2008. The crystal structure of halofantrine-ferriprotoporphyrin IX and the mechanism of action of arylmethanol antimalarials. J. Inorg. Biochem. 102:1660–67 [Google Scholar]
  78. Friedman R, Caflisch A. 78.  2009. Discovery of plasmepsin inhibitors by fragment-based docking and consensus scoring. ChemMedChem 4:1317–26 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error