1932

Abstract

Membranous nephropathy (MN), an autoimmune kidney disease and leading cause of nephrotic syndrome, leads to kidney failure in up to one-third of affected individuals. Most MN cases are due to an autoimmune reaction against the phospholipase A2 receptor (PLA2R) located on kidney podocytes. Serum PLA2R antibody quantification is now part of routine clinical practice because antibody titers correlate with disease activity and treatment response. Recent advances in target antigen detection have led to the discovery of more than 20 other podocyte antigens, yet the clinical impact of additional antigen detection remains unknown and is under active investigation. Here we review recent findings and hypothesize how current research will inform future care of patients with MN.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-050522-034537
2024-01-29
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/med/75/1/annurev-med-050522-034537.html?itemId=/content/journals/10.1146/annurev-med-050522-034537&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Beck LH Jr., Bonegio RG, Lambeau G et al. 2009. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361:1121
    [Google Scholar]
  2. 2.
    Sethi S, Madden B. 2023. Mapping antigens of membranous nephropathy: almost there. Kidney Int. 103:46972
    [Google Scholar]
  3. 3.
    Dahan K, Debiec H, Plaisier E et al. 2017. Rituximab for severe membranous nephropathy: a 6-month trial with extended follow-up. J. Am. Soc. Nephrol. 28:34858
    [Google Scholar]
  4. 4.
    Fervenza FC, Appel GB, Barbour SJ et al. 2019. Rituximab or cyclosporine in the treatment of membranous nephropathy. N. Engl. J. Med. 381:3646
    [Google Scholar]
  5. 5.
    Fernandez-Juarez G, Rojas-Rivera J, Logt AV et al. 2021. The STARMEN trial indicates that alternating treatment with corticosteroids and cyclophosphamide is superior to sequential treatment with tacrolimus and rituximab in primary membranous nephropathy. Kidney Int. 99:98698
    [Google Scholar]
  6. 6.
    Scolari F, Delbarba E, Santoro D et al. 2021. Rituximab or cyclophosphamide in the treatment of membranous nephropathy: the RI-CYCLO randomized trial. J. Am. Soc. Nephrol. 32:97282
    [Google Scholar]
  7. 7.
    Ronco P, Beck L, Debiec H et al. 2021. Membranous nephropathy. Nat. Rev. Dis. Primers 7:69
    [Google Scholar]
  8. 8.
    Okpechi IG, Ameh OI, Bello AK et al. 2016. Epidemiology of histologically proven glomerulonephritis in Africa: a systematic review and meta-analysis. PLOS ONE 11:e0152203
    [Google Scholar]
  9. 9.
    Li H, Yu X, Lan P et al. 2022. Spectrum of biopsy-proven kidney diseases in northwest China: a review of 30 years of experiences. Int. Urol. Nephrol. 54:260916
    [Google Scholar]
  10. 10.
    Subramanian P, Kumar H, Tiwari B et al. 2020. Profile of Indian patients with membranous nephropathy. Kidney Int. Rep. 5:155157
    [Google Scholar]
  11. 11.
    Rovin BH, Adler SG, Barratt J et al. 2021. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 100:75379
    [Google Scholar]
  12. 12.
    Wheeler DC, Toto RD, Stefansson BV et al. 2021. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 100:21524
    [Google Scholar]
  13. 13.
    Bobart SA, Han H, Tehranian S et al. 2021. Noninvasive diagnosis of PLA2R-associated membranous nephropathy: a validation study. Clin. J. Am. Soc. Nephrol. 16:183339
    [Google Scholar]
  14. 14.
    Debiec H, Guigonis V, Mougenot B et al. 2002. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N. Engl. J. Med. 346:205360
    [Google Scholar]
  15. 15.
    Truong LD, Seshan SV. 2015. Enigma (partially) resolved: phospholipase A2 receptor is the cause of “idiopathic” membranous glomerulonephritis. Am. J. Physiol. Ren. Physiol. 309:F10002
    [Google Scholar]
  16. 16.
    Kiryluk K, Novak J. 2014. The genetics and immunobiology of IgA nephropathy. J. Clin. Investig. 124:232532
    [Google Scholar]
  17. 17.
    Xie J, Liu L, Mladkova N et al. 2020. The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis. Nat. Commun. 11:1600
    [Google Scholar]
  18. 18.
    Zhang XD, Lin CX, Cui Z et al. 2023. Mapping the T cell epitopes of the M-type transmembrane phospholipase A2 receptor in primary membranous nephropathy. Kidney Int. 103:58092
    [Google Scholar]
  19. 19.
    Seitz-Polski B, Dolla G, Payre C et al. 2016. Epitope spreading of autoantibody response to PLA2R associates with poor prognosis in membranous nephropathy. J. Am. Soc. Nephrol. 27:151733
    [Google Scholar]
  20. 20.
    Lerner GB, Virmani S, Henderson JM et al. 2021. A conceptual framework linking immunology, pathology, and clinical features in primary membranous nephropathy. Kidney Int. 100:289300
    [Google Scholar]
  21. 21.
    Sethi S, Madden BJ, Debiec H et al. 2019. Exostosin 1/exostosin 2-associated membranous nephropathy. J. Am. Soc. Nephrol. 30:112336
    [Google Scholar]
  22. 22.
    Beck LH Jr., Fervenza FC, Beck DM et al. 2011. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J. Am. Soc. Nephrol. 22:154350
    [Google Scholar]
  23. 23.
    De Vriese AS, Glassock RJ, Nath KA et al. 2017. A proposal for a serology-based approach to membranous nephropathy. J. Am. Soc. Nephrol. 28:42130
    [Google Scholar]
  24. 24.
    Ruggenenti P, Debiec H, Ruggiero B et al. 2015. Anti-phospholipase A2 receptor antibody titer predicts post-rituximab outcome of membranous nephropathy. J. Am. Soc. Nephrol. 26:254558
    [Google Scholar]
  25. 25.
    Sethi S, Madden B, Debiec H et al. 2021. Protocadherin 7-associated membranous nephropathy. J. Am. Soc. Nephrol. 32:124961
    [Google Scholar]
  26. 26.
    Sethi S, Debiec H, Madden B et al. 2020. Semaphorin 3B-associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney Int. 98:125364
    [Google Scholar]
  27. 27.
    Sethi S, Debiec H, Madden B et al. 2020. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int. 97:16374
    [Google Scholar]
  28. 28.
    Al-Rabadi LF, Beck LH Jr. 2023. Neuronal proteins as antigenic targets in membranous nephropathy. Nephron 147:45157
    [Google Scholar]
  29. 29.
    Tomas NM, Beck LH Jr., Meyer-Schwesinger C et al. 2014. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 371:227787
    [Google Scholar]
  30. 30.
    Hoxha E, Reinhard L, Stahl RAK. 2022. Membranous nephropathy: new pathogenic mechanisms and their clinical implications. Nat. Rev. Nephrol. 18:46678
    [Google Scholar]
  31. 31.
    Tomas NM, Hoxha E, Reinicke AT et al. 2016. Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy. J. Clin. Investig. 126:251932
    [Google Scholar]
  32. 32.
    Weinmann-Menke J, Holtz S, Sollinger D et al. 2019. Treatment of membranous nephropathy in patients with THSD7A antibodies using immunoadsorption. Am. J. Kidney Dis. 74:84952
    [Google Scholar]
  33. 33.
    Caza TN, Hassen SI, Dvanajscak Z et al. 2021. NELL1 is a target antigen in malignancy-associated membranous nephropathy. Kidney Int. 99:96776
    [Google Scholar]
  34. 34.
    Hoxha E, Beck LH Jr., Wiech T et al. 2017. An indirect immunofluorescence method facilitates detection of thrombospondin type 1 domain-containing 7A-specific antibodies in membranous nephropathy. J. Am. Soc. Nephrol. 28:52031
    [Google Scholar]
  35. 35.
    Matsumoto A, Matsui I, Mano K et al. 2021. Recurrent membranous nephropathy with a possible alteration in the etiology: a case report. BMC Nephrol. 22:253
    [Google Scholar]
  36. 36.
    Hoxha E, Wiech T, Stahl PR et al. 2016. A mechanism for cancer-associated membranous nephropathy. N. Engl. J. Med. 374:199596
    [Google Scholar]
  37. 37.
    Zhang Z, Gong T, Rennke HG, Hayashi R. 2019. Duodenal schwannoma as a rare association with membranous nephropathy: a case report. Am. J. Kidney Dis. 73:27880
    [Google Scholar]
  38. 38.
    Caza TN, Hassen SI, Kenan DJ et al. 2021. Transforming growth factor beta receptor 3 (TGFBR3)-associated membranous nephropathy. Kidney360 2:127586
    [Google Scholar]
  39. 39.
    Wang G, Sun L, Dong H et al. 2021. Neural epidermal growth factor-like 1 protein-positive membranous nephropathy in Chinese patients. Clin. J. Am. Soc. Nephrol. 16:72735
    [Google Scholar]
  40. 40.
    Spain RI, Andeen NK, Gibson PC et al. 2021. Lipoic acid supplementation associated with neural epidermal growth factor-like 1 (NELL1)-associated membranous nephropathy. Kidney Int. 100:120813
    [Google Scholar]
  41. 41.
    Caza TN, Larsen CP. 2022. Lipoic acid in neural epidermal growth factor-like 1-associated membranous nephropathy: more than a coincidence?. Kidney Int. 101:41819
    [Google Scholar]
  42. 42.
    Kurien AA, Prema KSJ, Walker PD, Caza TN. 2022. Traditional indigenous medicines are an etiologic consideration for NELL1-positive membranous nephropathy. Kidney Int. 102:142426
    [Google Scholar]
  43. 43.
    Kudose S, Sekulic M, Mehring CJ et al. 2021. NELL1-associated membranous glomerulopathy after hematopoietic stem cell transplantation. Kidney Int. Rep. 6:199295
    [Google Scholar]
  44. 44.
    Dalia Zubidat BM, Satoru K, Samih HN et al. 2023. Heterogeneity of target antigens in sarcoidosis-associated membranous nephropathy. Kidney Int. Rep. 8:121319
    [Google Scholar]
  45. 45.
    Al-Rabadi LF, Caza T, Trivin-Avillach C et al. 2021. Serine protease HTRA1 as a novel target antigen in primary membranous nephropathy. J. Am. Soc. Nephrol. 32:166681
    [Google Scholar]
  46. 46.
    Ravindran A, Casal Moura M, Fervenza FC et al. 2021. In patients with membranous lupus nephritis, exostosin-positivity and exostosin-negativity represent two different phenotypes. J. Am. Soc. Nephrol. 32:695706
    [Google Scholar]
  47. 47.
    Caza TN, Hassen SI, Kuperman M et al. 2021. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. Kidney Int. 100:17181
    [Google Scholar]
  48. 48.
    Caza T, Larsen C. 2022. Childhood membranous nephropathy: a histopathologic analysis of 118 cases Abstract TH-PO451 presented at American Society of Nephrology Kidney Week https://www.asn-online.org/education/kidneyweek/2022/program-abstract.aspx?controlId=3768365
  49. 49.
    Fila M, Debiec H, Perrochia H et al. 2022. Recurrence of anti-semaphorin 3B-mediated membranous nephropathy after kidney transplantation. J. Am. Soc. Nephrol. 33:5039
    [Google Scholar]
  50. 50.
    Reinhard L, Machalitza M, Wiech T et al. 2022. Netrin G1 is a novel target antigen in primary membranous nephropathy. J. Am. Soc. Nephrol. 33:182331
    [Google Scholar]
  51. 51.
    Sethi S, Madden B, Casal Moura M et al. 2022. Hematopoietic stem cell transplant–membranous nephropathy is associated with protocadherin FAT1. J. Am. Soc. Nephrol. 33:103344
    [Google Scholar]
  52. 52.
    Le Quintrec M, Teisseyre M, Bec N et al. 2021. Contactin-1 is a novel target antigen in membranous nephropathy associated with chronic inflammatory demyelinating polyneuropathy. Kidney Int. 100:124049
    [Google Scholar]
  53. 53.
    Santoro D, Debiec H, Longhitano E et al. 2022. Contactin 1, a potential new antigen target in membranous nephropathy: a case report. Am. J. Kidney Dis. 80:28994
    [Google Scholar]
  54. 54.
    Sethi S, Madden B, Casal Moura M et al. 2023. Membranous nephropathy in syphilis is associated with neuron-derived neurotrophic factor. J. Am. Soc. Nephrol. 34:37484
    [Google Scholar]
  55. 55.
    Sethi S, Moura MC, Madden Bet al 2023. Proprotein convertase subtilisin/kexin type 6 (PCSK6) is a likely antigenic target in membranous nephropathy and nonsteroidal anti-inflammatory drug use. Clin. Investig 10434352
    [Google Scholar]
  56. 56.
    Caza TN, Storey AJ, Hassen SI et al. 2023. Discovery of seven novel putative antigens in membranous nephropathy and membranous lupus nephritis identified by mass spectrometry. Kidney Int. 103:593606
    [Google Scholar]
/content/journals/10.1146/annurev-med-050522-034537
Loading
/content/journals/10.1146/annurev-med-050522-034537
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error