1932

Abstract

Interventional pulmonary medicine has developed as a subspecialty focused on the management of patients with complex thoracic disease. Leveraging minimally invasive techniques, interventional pulmonologists diagnose and treat pathologies that previously required more invasive options such as surgery. By mitigating procedural risk, interventional pulmonologists have extended the reach of care to a wider pool of vulnerable patients who require therapy. Endoscopic innovations, including endobronchial ultrasound and robotic and electromagnetic bronchoscopy, have enhanced the ability to perform diagnostic procedures on an ambulatory basis. Therapeutic procedures for patients with symptomatic airway disease, pleural disease, and severe emphysema have provided the ability to palliate symptoms. The combination of medical and procedural expertise has made interventional pulmonologists an integral part of comprehensive care teams for patients with oncologic, airway, and pleural needs. This review surveys key areas in which interventional pulmonologists have impacted the care of thoracic disease through bronchoscopic intervention.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-050922-060929
2024-01-29
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/med/75/1/annurev-med-050922-060929.html?itemId=/content/journals/10.1146/annurev-med-050922-060929&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mullon JJ, Burkart KM, Silvestri G et al. 2017. Interventional pulmonology fellowship accreditation standards. Chest 151:5111421
    [Google Scholar]
  2. 2.
    Malcolm KB, Seeley EJ, Gesthalter YB. 2022. Impact of a dedicated pleural clinic on indwelling pleural catheter related outcomes: a retrospective single center experience. J. Bronchol. Interv. Pulmonol. 30:211421
    [Google Scholar]
  3. 3.
    Mummadi SR, Hahn PY. 2018. Outcomes of a clinical pathway for pleural disease management: “pleural pathway. .” Pulm. Med. 2018:2035248
    [Google Scholar]
  4. 4.
    Alwakeel AJ, Shieh B, Gonzalez AV et al. 2022. Impact of a pleural care program on the management of patients with malignant pleural effusions. J. Bronchol. Interv. Pulmonol. 30:212228
    [Google Scholar]
  5. 5.
    Enríquez Rodríguez AI, García Clemente M, Ruiz Álvarez I et al. 2020. Clinical impact of a pleural unit in a tertiary level hospital. Arch. Bronconeumol. 56:314348
    [Google Scholar]
  6. 6.
    Feller-Kopman D, Light R. 2018. Pleural disease. N. Engl. J. Med. 378:874051
    [Google Scholar]
  7. 7.
    Ost DE, Ernst A, Lei X et al. 2016. Diagnostic yield and complications of bronchoscopy for peripheral lung lesions. Results of the AQuIRE registry. Am. J. Respir. Crit. Care Med. 193:16877
    [Google Scholar]
  8. 8.
    Silvestri GA, Bevill BT, Huang J et al. 2020. An evaluation of diagnostic yield from bronchoscopy. Chest 157:6165664
    [Google Scholar]
  9. 9.
    Yasufuku K, Pierre A, Darling G et al. 2011. A prospective controlled trial of endobronchial ultrasound-guided transbronchial needle aspiration compared with mediastinoscopy for mediastinal lymph node staging of lung cancer. J. Thorac. Cardiovasc. Surg. 142:613931400.e1
    [Google Scholar]
  10. 10.
    Herth FJF, Annema JT, Eberhardt R et al. 2008. Endobronchial ultrasound with transbronchial needle aspiration for restaging the mediastinum in lung cancer. J. Clin. Oncol. 26:20334650
    [Google Scholar]
  11. 11.
    Um S-W, Kim HK, Jung S-H et al. 2015. Endobronchial ultrasound versus mediastinoscopy for mediastinal nodal staging of non-small-cell lung cancer. J. Thorac. Oncol. 10:233137
    [Google Scholar]
  12. 12.
    Leong TL, Loveland PM, Gorelik A et al. 2019. Preoperative staging by EBUS in cN0/N1 lung cancer: systematic review and meta-analysis. J. Bronchol. Interv. Pulmonol. 26:315565
    [Google Scholar]
  13. 13.
    Khalid U, Akram MJ, Abu Bakar M et al. 2021. Elucidating the etiologies of 18F-fluorodeoxyglucose-avid mediastinal lymph nodes among cancer patients in a tuberculosis-endemic region using endobronchial ultrasound. Cureus 13:11e19339
    [Google Scholar]
  14. 14.
    Sodhi A, Supakul R, Williams GW et al. 2017. Role of transbronchial needle aspiration (conventional and EBUS guided) in the diagnosis of histoplasmosis in patients presenting with mediastinal lymphadenopathy. South. Med. J. 110:13336
    [Google Scholar]
  15. 15.
    Karadzovska-Kotevska M, Brunnström H, Kosieradzki J et al. 2022. Feasibility of EBUS-TBNA for histopathological and molecular diagnostics of NSCLC—a retrospective single-center experience. PLOS ONE 17:2e0263342
    [Google Scholar]
  16. 16.
    Ko HM, da Cunha Santos G, Darling G et al. 2013. Diagnosis and subclassification of lymphomas and non-neoplastic lesions involving mediastinal lymph nodes using endobronchial ultrasound-guided transbronchial needle aspiration: EBUS-TBNA—lymphoma and non-neoplastic lesions. Diagn. Cytopathol. 41:12102330
    [Google Scholar]
  17. 17.
    Crouser ED, Maier LA, Wilson KC et al. 2020. Diagnosis and detection of sarcoidosis. An official American Thoracic Society clinical practice guideline. Am. J. Respir. Crit. Care Med. 201:8e2651
    [Google Scholar]
  18. 18.
    The National Lung Screening Trial Research Team 2011. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365:5395409
    [Google Scholar]
  19. 19.
    Gould MK, Tang T, Liu I-LA et al. 2015. Recent trends in the identification of incidental pulmonary nodules. Am. J. Respir. Crit. Care Med. 192:10120814
    [Google Scholar]
  20. 20.
    Wiener RS, Schwartz LM, Woloshin S et al. 2011. Population-based risk for complications after transthoracic needle lung biopsy of a pulmonary nodule: an analysis of discharge records. Ann. Intern. Med. 155:3137
    [Google Scholar]
  21. 21.
    Vachani A, Zhou M, Ghosh S et al. 2022. Complications after transthoracic needle biopsy of pulmonary nodules: a population-level retrospective cohort analysis. J. Am. Coll. Radiol. 19:10112129
    [Google Scholar]
  22. 22.
    Hong H, Hahn S, Matsuguma H et al. 2021. Pleural recurrence after transthoracic needle lung biopsy in stage I lung cancer: a systematic review and individual patient-level meta-analysis. Thorax 76:658290
    [Google Scholar]
  23. 23.
    Folch EE, Pritchett MA, Nead MA et al. 2019. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, multicenter NAVIGATE study. J. Thorac. Oncol. 14:344558
    [Google Scholar]
  24. 24.
    Ali MS, Sethi J, Taneja A et al. 2018. Computed tomography bronchus sign and the diagnostic yield of guided bronchoscopy for peripheral pulmonary lesions. A systematic review and meta-analysis. Ann. Am. Thorac. Soc. 15:897887
    [Google Scholar]
  25. 25.
    Levine MZ, Goodman S, Lentz RJ et al. 2021. Advanced bronchoscopic technologies for biopsy of the pulmonary nodule: a 2021 review. Diagnostics 11:122304
    [Google Scholar]
  26. 26.
    Pickering EM, Kalchiem-Dekel O, Sachdeva A. 2018. Electromagnetic navigation bronchoscopy: a comprehensive review. AME Med. J. 3:117
    [Google Scholar]
  27. 27.
    Leong S, Ju H, Marshall H et al. 2012. Electromagnetic navigation bronchoscopy: a descriptive analysis. J. Thorac. Dis. 4:217385
    [Google Scholar]
  28. 28.
    Folch EE, Bowling MR, Pritchett MA et al. 2022. NAVIGATE 24-month results: electromagnetic navigation bronchoscopy for pulmonary lesions at 37 centers in Europe and the United States. J. Thorac. Oncol. 17:451931
    [Google Scholar]
  29. 29.
    Agrawal A, Hogarth DK, Murgu S. 2020. Robotic bronchoscopy for pulmonary lesions: a review of existing technologies and clinical data. J. Thorac. Dis. 12:6327986
    [Google Scholar]
  30. 30.
    Yarmus L, Akulian J, Wahidi M et al. 2020. A prospective randomized comparative study of three guided bronchoscopic approaches for investigating pulmonary nodules. Chest 157:3694701
    [Google Scholar]
  31. 31.
    Cumbo-Nacheli G, Velagapudi RK, Enter M et al. 2022. Robotic-assisted bronchoscopy and cone-beam CT: a retrospective series. J. Bronchol. Interv. Pulmonol. 29:43036
    [Google Scholar]
  32. 32.
    Chaddha U, Kovacs SP, Manley C et al. 2019. Robot-assisted bronchoscopy for pulmonary lesion diagnosis: results from the initial multicenter experience. BMC Pulm. Med. 19:1243
    [Google Scholar]
  33. 33.
    Chen AC, Pastis NJ, Mahajan AK et al. 2021. Robotic bronchoscopy for peripheral pulmonary lesions. Chest 159:284552
    [Google Scholar]
  34. 34.
    Fielding DIK, Bashirzadeh F, Son JH et al. 2019. First human use of a new robotic-assisted fiber optic sensing navigation system for small peripheral pulmonary nodules. Respiration 98:214250
    [Google Scholar]
  35. 35.
    Kalchiem-Dekel O, Connolly JG, Lin I-H et al. 2022. Shape-sensing robotic-assisted bronchoscopy in the diagnosis of pulmonary parenchymal lesions. Chest 161:257282
    [Google Scholar]
  36. 36.
    Gonzalez AV, Ost DE, Shojaee S. 2022. Diagnostic accuracy of bronchoscopy procedures: definitions, pearls, and pitfalls. J. Bronchol. Interv. Pulmonol. 29:429099
    [Google Scholar]
  37. 37.
    Ali MS, Trick W, Mba BI et al. 2017. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: a systematic review and meta-analysis. Respirology 22:344353
    [Google Scholar]
  38. 38.
    Steinfort DP, Khor YH, Manser RL et al. 2011. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: systematic review and meta-analysis. Eur. Respir. J. 37:490210
    [Google Scholar]
  39. 39.
    Cicenia J, Bhadra K, Sethi S et al. 2021. Augmented fluoroscopy: a new and novel navigation platform for peripheral bronchoscopy. J. Bronchol. Interv. Pulmonol. 28:211623
    [Google Scholar]
  40. 40.
    Aboudara M, Roller L, Rickman O et al. 2020. Improved diagnostic yield for lung nodules with digital tomosynthesis-corrected navigational bronchoscopy: initial experience with a novel adjunct. Respirology 25:220613
    [Google Scholar]
  41. 41.
    Kheir F, Thakore SR, Uribe Becerra JP et al. 2021. Cone-beam computed tomography-guided electromagnetic navigation for peripheral lung nodules. Respiration 100:14451
    [Google Scholar]
  42. 42.
    Pritchett MA, Schampaert S, de Groot JAH et al. 2018. Cone-beam CT with augmented fluoroscopy combined with electromagnetic navigation bronchoscopy for biopsy of pulmonary nodules. J. Bronchol. Interv. Pulmonol. 25:427482
    [Google Scholar]
  43. 43.
    Low S-W, Lentz RJ, Chen H et al. 2023. Shape-sensing robotic-assisted bronchoscopy vs digital tomosynthesis-corrected electromagnetic navigation bronchoscopy: a comparative cohort study of diagnostic performance. Chest 163:497784
    [Google Scholar]
  44. 44.
    Koizumi T, Tsushima K, Tanabe T et al. 2015. Bronchoscopy-guided cooled radiofrequency ablation as a novel intervention therapy for peripheral lung cancer. Respiration 90:14755
    [Google Scholar]
  45. 45.
    Xie F, Chen J, Jiang Y et al. 2022. Microwave ablation via a flexible catheter for the treatment of nonsurgical peripheral lung cancer: a pilot study. Thorac. Cancer 13:7101420
    [Google Scholar]
  46. 46.
    Travis WD, Costabel U, Hansell DM et al. 2013. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 188:673348
    [Google Scholar]
  47. 47.
    Raghu G, Remy-Jardin M, Myers JL et al. 2018. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 198:5e4468
    [Google Scholar]
  48. 48.
    Hutchinson J, Hubbard R, Raghu G. 2019. Surgical lung biopsy for interstitial lung disease: When considered necessary, should these be done in larger and experienced centres only?. Eur. Respir. J. 53:21900023
    [Google Scholar]
  49. 49.
    Pajares V, Puzo C, Castillo D et al. 2014. Diagnostic yield of transbronchial cryobiopsy in interstitial lung disease: a randomized trial. Respirology 19:69006
    [Google Scholar]
  50. 50.
    Oberg CL, Lau RP, Folch EE et al. 2022. Novel robotic-assisted cryobiopsy for peripheral pulmonary lesions. Lung 200:673745
    [Google Scholar]
  51. 51.
    Raghu G, Flaherty KR, Lederer DJ et al. 2019. Use of a molecular classifier to identify usual interstitial pneumonia in conventional transbronchial lung biopsy samples: a prospective validation study. Lancet Respir. Med. 7:648796
    [Google Scholar]
  52. 52.
    Daneshvar C, Falconer WE, Ahmed M et al. 2019. Prevalence and outcome of central airway obstruction in patients with lung cancer. BMJ Open Respir. Res. 6:1e000429
    [Google Scholar]
  53. 53.
    Cox JD, Yesner RA. 1981. Causes of treatment failure and death in carcinoma of the lung. Yale J. Biol. Med. 54:32017
    [Google Scholar]
  54. 54.
    Colt HG, Harrell JH. 1997. Therapeutic rigid bronchoscopy allows level of care changes in patients with acute respiratory failure from central airways obstruction. Chest 112:12026
    [Google Scholar]
  55. 55.
    Murgu S, Langer S, Colt H. 2012. Bronchoscopic intervention obviates the need for continued mechanical ventilation in patients with airway obstruction and respiratory failure from inoperable non-small-cell lung cancer. Respiration 84:15561
    [Google Scholar]
  56. 56.
    De Wever W, Stroobants S, Coolen J et al. 2009. Integrated PET/CT in the staging of nonsmall cell lung cancer: technical aspects and clinical integration. Eur. Respir. J. 33:120112
    [Google Scholar]
  57. 57.
    Chhajed PN, Eberhardt R, Dienemann H et al. 2006. Therapeutic bronchoscopy interventions before surgical resection of lung cancer. Ann. Thorac. Surg. 81:5183943
    [Google Scholar]
  58. 58.
    Giovacchini CX, Kessler ER, Merrick CM et al. 2019. Clinical and radiographic predictors of successful therapeutic bronchoscopy for the relief of malignant central airway obstruction. BMC Pulm. Med. 19:1219
    [Google Scholar]
  59. 59.
    Harris K, Alraiyes AH, Attwood K et al. 2016. Reporting of central airway obstruction on radiology reports and impact on bronchoscopic airway interventions and patient outcomes. Ther. Adv. Respir. Dis. 10:210512
    [Google Scholar]
  60. 60.
    Shaller BD, Filsoof D, Pineda JM, Gildea TR. 2022. Malignant central airway obstruction: What's new?. Semin. Respir. Crit. Care Med. 43:451229
    [Google Scholar]
  61. 61.
    Oberg C, Folch E, Santacruz JF. 2018. Management of malignant airway obstruction. AME Med. J. 3:115
    [Google Scholar]
  62. 62.
    Simone CB, Friedberg JS, Glatstein E et al. 2012. Photodynamic therapy for the treatment of non-small cell lung cancer. J. Thorac. Dis. 4:16375
    [Google Scholar]
  63. 63.
    Folch E, Keyes C. 2018. Airway stents. Ann. Cardiothorac. Surg. 7:227383
    [Google Scholar]
  64. 64.
    Kim HS, Khemasuwan D, Diaz-Mendoza J, Mehta AC. 2020. Management of tracheo-oesophageal fistula in adults. Eur. Respir. Rev. 29:200094
    [Google Scholar]
  65. 65.
    de Lima A, Holden V, Gesthalter Y et al. 2018. Treatment of persistent bronchopleural fistula with a manually modified endobronchial stent: a case-report and brief literature review. J. Thorac. Dis. 10:10596063
    [Google Scholar]
  66. 66.
    Bawaadam HS, Russell M, Gesthalter Y. 2022. Acquired benign tracheoesophageal fistula: novel use of a nasal septal occluder. J. Bronchol. Interv. Pulmonol. 29:3e3843
    [Google Scholar]
  67. 67.
    Parikh M, Wilson J, Majid A, Gangadharan S. 2017. Airway stenting in excessive central airway collapse. J. Vis. Surg. 3:172
    [Google Scholar]
  68. 68.
    Murgu S, Colt H. 2013. Tracheobronchomalacia and excessive dynamic airway collapse. Clin. Chest Med. 34:352755
    [Google Scholar]
  69. 69.
    Fishman A, Martinez F, Naunheim K et al. 2003. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N. Engl. J. Med. 348:21205973
    [Google Scholar]
  70. 70.
    Criner GJ, Delage A, Voelker K et al. 2019. Improving lung function in severe heterogenous emphysema with the spiration valve system (EMPROVE). A multicenter, open-label randomized controlled clinical trial. Am. J. Respir. Crit. Care Med. 200:11135462
    [Google Scholar]
  71. 71.
    Criner GJ, Sue R, Wright S et al. 2018. A multicenter randomized controlled trial of zephyr endobronchial valve treatment in heterogeneous emphysema (LIBERATE). Am. J. Respir. Crit. Care Med. 198:9115164
    [Google Scholar]
  72. 72.
    Hartman JE, Klooster K, Koster TD et al. 2022. Long-term follow-up after bronchoscopic lung volume reduction valve treatment for emphysema. ERJ Open Res. 8:400235-2022
    [Google Scholar]
  73. 73.
    Eberhardt R, Slebos D-J, Herth FJF et al. 2021. Endobronchial valve (Zephyr) treatment in homogeneous emphysema: one-year results from the IMPACT randomized clinical trial. Respiration 100:12117485
    [Google Scholar]
  74. 74.
    van der Molen MC, Hartman JE, Vanfleteren LEGW et al. 2022. Reduction of lung hyperinflation improves cardiac preload, contractility, and output in emphysema: a clinical trial in patients who received endobronchial valves. Am. J. Respir. Crit. Care Med. 206:670411
    [Google Scholar]
  75. 75.
    Ding M, Gao Y, Zeng X-T et al. 2017. Endobronchial one-way valves for treatment of persistent air leaks: a systematic review. Respir. Res. 18:186
    [Google Scholar]
/content/journals/10.1146/annurev-med-050922-060929
Loading
/content/journals/10.1146/annurev-med-050922-060929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error