The Rho kinases, or ROCKs, are a family of serine-threonine kinases that serve as key downstream effectors for Rho GTPases. The ROCKs are increasingly recognized as critical coordinators of a tissue response to injury due to their ability to modulate a wide range of biological processes. Dysregulated ROCK activity has been implicated in several human pathophysiological conditions ranging from cardiovascular and renal disorders to fibrotic diseases. In recent years, an important role for the ROCKs in the regulation of immune responses is also being uncovered. We provide an overview of the role of the ROCKs in immune cells and discuss studies that highlight the emerging involvement of this family of kinases in the pathogenesis of autoimmune diseases. Given the potential promise of the ROCKs as therapeutic targets, we also outline the approaches that could be employed to inhibit the ROCKs in autoimmune disorders.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Amano M, Nakayama M, Kaibuchi K. 1.  2010. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton 67:545–54 [Google Scholar]
  2. Schofield AV, Bernard O. 2.  2013. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit. Rev. Biochem. Mol. Biol. 48:301–16 [Google Scholar]
  3. Julian L, Olson MF. 3.  2014. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases 5:e29846 [Google Scholar]
  4. Thumkeo D, Watanabe S, Narumiya S. 4.  2013. Physiological roles of Rho and Rho effectors in mammals. Eur. J. Cell Biol. 92:303–15 [Google Scholar]
  5. Jaffe AB, Hall A. 5.  2005. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21:247–69 [Google Scholar]
  6. Zhou Q, Gensch C, Liao JK. 6.  2011. Rho-associated coiled-coil-forming kinases (ROCKs): potential targets for the treatment of atherosclerosis and vascular disease. Trends Pharmacol. Sci. 32:167–73 [Google Scholar]
  7. Knipe RS, Tager AM, Liao JK. 7.  2015. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol. Rev. 67:103–17 [Google Scholar]
  8. Mueller BK, Mack H, Teusch N. 8.  2005. Rho kinase, a promising drug target for neurological disorders. Nat. Rev. Drug Discov. 4:387–98 [Google Scholar]
  9. Komers R. 9.  2013. Rho kinase inhibition in diabetic kidney disease. Br. J. Clin. Pharmacol. 76:551–59 [Google Scholar]
  10. Pan P, Shen M, Yu H. 10.  et al. 2013. Advances in the development of Rho-associated protein kinase (ROCK) inhibitors. Drug Discov. Today 18:1323–33 [Google Scholar]
  11. Feng Y, LoGrasso PV. 11.  2014. Rho kinase inhibitors: a patent review (2012–2013). Expert Opin. Ther. Pat. 24:295–307 [Google Scholar]
  12. Heasman SJ, Ridley AJ. 12.  2010. Multiple roles for RhoA during T cell transendothelial migration. Small GTPases 1:174–79 [Google Scholar]
  13. Sadok A, Marshall CJ. 13.  2014. Rho GTPases: masters of cell migration. Small GTPases 5:e29710 [Google Scholar]
  14. Tanaka T, Nishimura D, Wu RC. 14.  et al. 2006. Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J. Biol. Chem. 281:15320–29 [Google Scholar]
  15. Chen J, Guerriero E, Lathrop K, SundarRaj N. 15.  2008. Rho/ROCK signaling in regulation of corneal epithelial cell cycle progression. Investig. Ophthalmol. Vis. Sci. 49:175–83 [Google Scholar]
  16. Gurkar AU, Chu K, Raj L. 16.  et al. 2013. Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress. Nat. Commun. 4:2189 [Google Scholar]
  17. Koch JC, Tonges L, Barski E. 17.  et al. 2014. ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS. Cell Death Dis. 5e1225 [Google Scholar]
  18. Mleczak A, Millar S, Tooze SA. 18.  et al. 2013. Regulation of autophagosome formation by Rho kinase. Cell Signal. 25:1–11 [Google Scholar]
  19. Tharaux PL, Bukoski RC, Rocha PN. 19.  et al. 2003. Rho kinase promotes alloimmune responses by regulating the proliferation and structure of T cells. J. Immunol. 171:96–105 [Google Scholar]
  20. Vicente-Manzanares M, Cabrero JR, Rey M. 20.  et al. 2002. A role for the Rho-p160 Rho coiled-coil kinase axis in the chemokine stromal cell-derived factor-1α-induced lymphocyte actomyosin and microtubular organization and chemotaxis. J. Immunol. 168:400–10 [Google Scholar]
  21. Soriano SF, Hons M, Schumann K. 21.  et al. 2011. In vivo analysis of uropod function during physiological T cell trafficking. J. Immunol. 187:2356–64 [Google Scholar]
  22. Aihara M, Dobashi K, Iizuka K. 22.  et al. 2003. Comparison of effects of Y-27632 and Isoproterenol on release of cytokines from human peripheral T cells. Int. Immunopharmacol. 3:1619–25 [Google Scholar]
  23. Biswas PS, Gupta S, Chang E. 23.  et al. 2010. Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice. J. Clin. Investig. 120:3280–95 [Google Scholar]
  24. Chen Q, Yang W, Gupta S. 24.  et al. 2008. IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 29:899–911 [Google Scholar]
  25. Brustle A, Heink S, Huber M. 25.  et al. 2007. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8:958–66 [Google Scholar]
  26. Isgro J, Gupta S, Jacek E. 26.  et al. 2013. Enhanced rho-associated protein kinase activation in patients with systemic lupus erythematosus. Arthritis Rheum. 65:1592–602 [Google Scholar]
  27. Zanin-Zhorov A, Weiss JM, Nyuydzefe MS. 27.  et al. 2014. Selective oral ROCK2 inhibitor down-regulates IL-21 and IL-17 secretion in human T cells via STAT3-dependent mechanism. PNAS 111:16814–19 [Google Scholar]
  28. Zhu M, Liu PY, Kasahara DI. 28.  et al. 2011. Role of Rho kinase isoforms in murine allergic airway responses. Eur. Respir. J. 38:841–50 [Google Scholar]
  29. Tybulewicz VL, Henderson RB. 29.  2009. Rho family GTPases and their regulators in lymphocytes. Nat. Rev. Immunol. 9:630–44 [Google Scholar]
  30. Mele S, Devereux S, Ridley AJ. 30.  2014. Rho and Rap guanosine triphosphatase signaling in B cells and chronic lymphocytic leukemia. Leuk. Lymphoma 55:1993–2001 [Google Scholar]
  31. Natkanski E, Lee WY, Mistry B. 31.  et al. 2013. B cells use mechanical energy to discriminate antigen affinities. Science 340:1587–90 [Google Scholar]
  32. Azab AK, Azab F, Blotta S. 32.  et al. 2009. RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 114:619–29 [Google Scholar]
  33. Cuesta-Mateos C, Lopez-Giral S, Alfonso-Perez M. 33.  et al. 2010. Analysis of migratory and prosurvival pathways induced by the homeostatic chemokines CCL19 and CCL21 in B-cell chronic lymphocytic leukemia. Exp. Hematol. 38:756–64.e4 [Google Scholar]
  34. McDonald DA, Shi C, Shenkar R. 34.  et al. 2012. Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke 43:571–74 [Google Scholar]
  35. Kobayashi M, Azuma E, Ido M. 35.  et al. 2001. A pivotal role of Rho GTPase in the regulation of morphology and function of dendritic cells. J. Immunol. 167:3585–91 [Google Scholar]
  36. Nitschke M, Aebischer D, Abadier M. 36.  et al. 2012. Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation. Blood 120:2249–58 [Google Scholar]
  37. Amuro H, Ito T, Miyamoto R. 37.  et al. 2010. Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, function as inhibitors of cellular and molecular components involved in type I interferon production. Arthritis Rheum. 62:2073–85 [Google Scholar]
  38. Honing H, van den Berg TK, van der Pol SM. 38.  et al. 2004. RhoA activation promotes transendothelial migration of monocytes via ROCK. J. Leukoc. Biol. 75:523–28 [Google Scholar]
  39. Worthylake RA, Burridge K. 39.  2003. RhoA and ROCK promote migration by limiting membrane protrusions. J. Biol. Chem. 278:13578–84 [Google Scholar]
  40. Liu L, Schwartz BR, Lin N. 40.  et al. 2002. Requirement for RhoA kinase activation in leukocyte de-adhesion. J. Immunol. 169:2330–36 [Google Scholar]
  41. Cheng CI, Chen PH, Lin YC, Kao YH. 41.  2015. High glucose activates Raw264.7 macrophages through RhoA kinase-mediated signaling pathway. Cell Signal. 27:283–92 [Google Scholar]
  42. Park SY, Lee SW, Lee WS. 42.  et al. 2013. RhoA/ROCK-dependent pathway is required for TLR2-mediated IL-23 production in human synovial macrophages: suppression by cilostazol. Biochem. Pharmacol. 86:1320–27 [Google Scholar]
  43. Liu C, Li Y, Yu J. 43.  et al. 2013. Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS ONE 8:e54841 [Google Scholar]
  44. Gaffen SL, Jain R, Garg AV, Cua DJ. 44.  2014. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14:585–600 [Google Scholar]
  45. Liu Z, Davidson A. 45.  2012. Taming lupus—a new understanding of pathogenesis is leading to clinical advances. Nat. Med. 18:871–82 [Google Scholar]
  46. Crispin JC, Tsokos GC. 46.  2010. Interleukin-17-producing T cells in lupus. Curr. Opin. Rheumatol. 22:499–503 [Google Scholar]
  47. Craft JE. 47.  2012. Follicular helper T cells in immunity and systemic autoimmunity. Nat. Rev. Rheumatol. 8:337–47 [Google Scholar]
  48. Pernis AB. 48.  2009. Th17 cells in rheumatoid arthritis and systemic lupus erythematosus. J. Intern. Med. 265:644–52 [Google Scholar]
  49. Crow MK. 49.  2010. Type I interferon in organ-targeted autoimmune and inflammatory diseases. Arthritis Res. Ther. 12:Suppl. 1S5 [Google Scholar]
  50. Elkon KB, Wiedeman A. 50.  2012. Type I IFN system in the development and manifestations of SLE. Curr. Opin. Rheumatol. 24:499–505 [Google Scholar]
  51. Stirzaker RA, Biswas PS, Gupta S. 51.  et al. 2012. Administration of fasudil, a ROCK inhibitor, attenuates disease in lupus-prone NZB/W F1 female mice. Lupus 21:656–61 [Google Scholar]
  52. Rankin AL, Guay H, Herber D. 52.  et al. 2012. IL-21 receptor is required for the systemic accumulation of activated B and T lymphocytes in MRL/MpJ-Faslpr/lpr/J mice. J. Immunol. 188:1656–67 [Google Scholar]
  53. Schiffer L, Bethunaickan R, Ramanujam M. 53.  et al. 2008. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J. Immunol. 180:1938–47 [Google Scholar]
  54. Lu Q, Shen N, Li XM, Chen SL. 54.  2007. Genomic view of IFN-alpha response in pre-autoimmune NZB/W and MRL/lpr mice. Genes Immun. 8:590–603 [Google Scholar]
  55. Li Y, Harada T, Juang YT. 55.  et al. 2007. Phosphorylated ERM is responsible for increased T cell polarization, adhesion, and migration in patients with systemic lupus erythematosus. J. Immunol. 178:1938–47 [Google Scholar]
  56. Apostolidis SA, Rauen T, Hedrich CM. 56.  et al. 2013. Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling. J. Biol. Chem. 288:26775–84 [Google Scholar]
  57. Komers R. 57.  2011. Rho kinase inhibition in diabetic nephropathy. Curr. Opin. Nephrol. Hypertens. 20:77–83 [Google Scholar]
  58. Miossec P, Kolls JK. 58.  2012. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov. 11:763–76 [Google Scholar]
  59. Burmester GR, Feist E, Dorner T. 59.  2014. Emerging cell and cytokine targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 10:77–88 [Google Scholar]
  60. Kahlenberg JM, Kaplan MJ. 60.  2013. Mechanisms of premature atherosclerosis in rheumatoid arthritis and lupus. Annu. Rev. Med. 64:249–63 [Google Scholar]
  61. He Y, Xu H, Liang L. 61.  et al. 2008. Antiinflammatory effect of Rho kinase blockade via inhibition of NF-kappaB activation in rheumatoid arthritis. Arthritis Rheum. 58:3366–76 [Google Scholar]
  62. Yokota K, Miyoshi F, Miyazaki T. 62.  et al. 2008. High concentration simvastatin induces apoptosis in fibroblast-like synoviocytes from patients with rheumatoid arthritis. J. Rheumatol. 35:193–200 [Google Scholar]
  63. Nagashima T, Okazaki H, Yudoh K. 63.  et al. 2006. Apoptosis of rheumatoid synovial cells by statins through the blocking of protein geranylgeranylation: a potential therapeutic approach to rheumatoid arthritis. Arthritis Rheum. 54:579–86 [Google Scholar]
  64. Ory S, Brazier H, Pawlak G, Blangy A. 64.  2008. Rho GTPases in osteoclasts: orchestrators of podosome arrangement. Eur. J. Cell Biol. 87:469–77 [Google Scholar]
  65. Bhattacharyya S, Wei J, Varga J. 65.  2012. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat. Rev. Rheumatol. 8:42–54 [Google Scholar]
  66. van Bon L, Cossu M, Radstake TR. 66.  2011. An update on an immune system that goes awry in systemic sclerosis. Curr. Opin. Rheumatol. 23:505–10 [Google Scholar]
  67. Akhmetshina A, Dees C, Pileckyte M. 67.  et al. 2008. Rho-associated kinases are crucial for myofibroblast differentiation and production of extracellular matrix in scleroderma fibroblasts. Arthritis Rheum. 58:2553–64 [Google Scholar]
  68. Zhou Y, Huang X, Hecker L. 68.  et al. 2013. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J. Clin. Investig. 123:1096–108 [Google Scholar]
  69. Matucci-Cerinic M, Kahaleh B, Wigley FM. 69.  2013. Review: evidence that systemic sclerosis is a vascular disease. Arthritis Rheum. 65:1953–62 [Google Scholar]
  70. Duong-Quy S, Bei Y, Liu Z, Dinh-Xuan AT. 70.  2013. Role of Rho-kinase and its inhibitors in pulmonary hypertension. Pharmacol. Ther. 137:352–64 [Google Scholar]
  71. Shimizu T, Fukumoto Y, Tanaka S. 71.  et al. 2013. Crucial role of ROCK2 in vascular smooth muscle cells for hypoxia-induced pulmonary hypertension in mice. Arterioscler. Thromb. Vasc. Biol. 33:2780–91 [Google Scholar]
  72. Weyand CM, Goronzy JJ. 72.  2013. Immune mechanisms in medium and large-vessel vasculitis. Nat. Rev. Rheumatol. 9:731–40 [Google Scholar]
  73. Lally L, Pernis A, Narula N. 73.  et al. 2015. Increased rho kinase activity in temporal artery biopsies from patients with giant cell arteritis. Rheumatology 54:554–58 [Google Scholar]
  74. Simmons SB, Pierson ER, Lee SY, Goverman JM. 74.  2013. Modeling the heterogeneity of multiple sclerosis in animals. Trends Immunol. 34:410–22 [Google Scholar]
  75. Sun X, Minohara M, Kikuchi H. 75.  et al. 2006. The selective Rho-kinase inhibitor Fasudil is protective and therapeutic in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 180:126–34 [Google Scholar]
  76. Yu JZ, Ding J, Ma CG. 76.  et al. 2010. Therapeutic potential of experimental autoimmune encephalomyelitis by Fasudil, a Rho kinase inhibitor. J. Neurosci. Res. 88:1664–72 [Google Scholar]
  77. Li YH, Yu JZ, Liu CY. 77.  et al. 2014. Intranasal delivery of FSD-C10, a novel Rho kinase inhibitor, exhibits therapeutic potential in experimental autoimmune encephalomyelitis. Immunology 143:219–29 [Google Scholar]
  78. Huang XN, Fu J, Wang WZ. 78.  2011. The effects of fasudil on the permeability of the rat blood–brain barrier and blood–spinal cord barrier following experimental autoimmune encephalomyelitis. J. Neuroimmunol. 239:61–67 [Google Scholar]
  79. Zhang X, Tao Y, Troiani L, Markovic-Plese S. 79.  2011. Simvastatin inhibits IFN regulatory factor 4 expression and Th17 cell differentiation in CD4+ T cells derived from patients with multiple sclerosis. J. Immunol. 187:3431–37 [Google Scholar]
  80. Herold KC, Vignali DA, Cooke A, Bluestone JA. 80.  2013. Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat. Rev. Immunol. 13:243–56 [Google Scholar]
  81. Biswas PS, Gupta S, Chang E. 81.  et al. 2011. Aberrant ROCK activation promotes the development of type I diabetes in NOD mice. Cell Immunol. 266:111–15 [Google Scholar]
  82. Goldring MB, Berenbaum F. 82.  2015. Emerging targets in osteoarthritis therapy. Curr. Opin. Pharmacol. 22:51–63 [Google Scholar]
  83. Haudenschild DR, Chen J, Pang N. 83.  et al. 2010. Rho kinase-dependent activation of SOX9 in chondrocytes. Arthritis Rheum. 62:191–200 [Google Scholar]
  84. Haudenschild DR, Nguyen B, Chen J. 84.  et al. 2008. Rho kinase-dependent CCL20 induced by dynamic compression of human chondrocytes. Arthritis Rheum. 58:2735–42 [Google Scholar]
  85. Appleton CT, Usmani SE, Mort JS, Beier F. 85.  2010. Rho/ROCK and MEK/ERK activation by transforming growth factor-alpha induces articular cartilage degradation. Lab. Investig. 90:20–30 [Google Scholar]
  86. Khatiwala CB, Kim PD, Peyton SR, Putnam AJ. 86.  2009. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24:886–98 [Google Scholar]
  87. Hamamura K, Swarnkar G, Tanjung N. 87.  et al. 2012. RhoA-mediated signaling in mechanotransduction of osteoblasts. Connect. Tissue Res. 53:398–406 [Google Scholar]
  88. Kohler J, Popov C, Klotz B. 88.  et al. 2013. Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration. Aging Cell 12:988–99 [Google Scholar]
  89. Shi J, Wei L. 89.  2013. Rho kinases in cardiovascular physiology and pathophysiology: the effect of fasudil. J. Cardiovasc. Pharmacol. 62:341–54 [Google Scholar]
  90. Chen M, Liu A, Ouyang Y. 90.  et al. 2013. Fasudil and its analogs: a new powerful weapon in the long war against central nervous system disorders?. Expert Opin. Investig. Drugs 22:537–50 [Google Scholar]
  91. Hahmann C, Schroeter T. 91.  2010. Rho-kinase inhibitors as therapeutics: from pan inhibition to isoform selectivity. Cell Mol. Life Sci. 67:171–77 [Google Scholar]
  92. Fava A, Wung PK, Wigley FM. 92.  et al. 2012. Efficacy of Rho kinase inhibitor fasudil in secondary Raynaud's phenomenon. Arthritis Care Res. 64:925–29 [Google Scholar]
  93. Sawada N, Liao JK. 93.  2014. Rho/Rho-associated coiled-coil forming kinase pathway as therapeutic targets for statins in atherosclerosis. Antioxid. Redox Signal. 20:1251–67 [Google Scholar]
  94. Rawlings R, Nohria A, Liu PY. 94.  et al. 2009. Comparison of effects of rosuvastatin (10 mg) versus atorvastatin (40 mg) on Rho kinase activity in Caucasian men with a previous atherosclerotic event. Am. J. Cardiol. 103:437–41 [Google Scholar]
  95. Nohria A, Prsic A, Liu PY. 95.  et al. 2009. Statins inhibit Rho kinase activity in patients with atherosclerosis. Atherosclerosis 205:517–21 [Google Scholar]
  96. Mihos CG, Artola RT, Santana O. 96.  2012. The pleiotropic effects of the hydroxy-methyl-glutaryl-CoA reductase inhibitors in rheumatologic disorders: a comprehensive review. Rheumatol. Int. 32:287–94 [Google Scholar]
  97. Russell RG. 97.  2011. Bisphosphonates: the first 40 years. Bone 49:2–19 [Google Scholar]
  98. Hata T, Soga J, Hidaka T. 98.  et al. 2011. Calcium channel blocker and Rho-associated kinase activity in patients with hypertension. J. Hypertens. 29:373–79 [Google Scholar]
  99. Antoniu SA. 99.  2012. Targeting RhoA/ROCK pathway in pulmonary arterial hypertension. Expert Opin. Ther. Targets 16:355–63 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error