1932

Abstract

The modern genomic era has seen remarkable advancement in our understanding of the molecular basis for disease, yet translation of basic discoveries into new disease treatments has arguably lagged behind. Recently, breakthroughs in genome editing technologies have created hope for their potential to directly treat the genetic causes of disease. Like any therapeutic intervention, genome editing should be considered in light of its potential risks and benefits. In this review, we highlight the promise of genome editing therapies, as well as the conceptual and technical barriers to their clinical application, with a special emphasis on hematologic malignancies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-052318-100741
2020-01-27
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/med/71/1/annurev-med-052318-100741.html?itemId=/content/journals/10.1146/annurev-med-052318-100741&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pauling L, Itano HA, Singer SJ, Wells IC 1949. Sickle cell anemia, a molecular disease. Science 110:543–48
    [Google Scholar]
  2. 2. 
    Neel JV. 1949. The inheritance of sickle cell anemia. Science 110:64–66
    [Google Scholar]
  3. 3. 
    Buniello A, MacArthur JAL, Cerezo M et al. 2019. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47:D1005–12
    [Google Scholar]
  4. 4. 
    Shendure J, Findlay GM, Snyder MW 2019. Genomic medicine—progress, pitfalls, and promise. Cell 177:45–57
    [Google Scholar]
  5. 5. 
    Ginsburg D. 2011. Genetics and genomics to the clinic: a long road ahead. Cell 147:17–19
    [Google Scholar]
  6. 6. 
    Silva G, Poirot L, Galetto R et al. 2011. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr. Gene Ther. 11:11–27
    [Google Scholar]
  7. 7. 
    Urnov FD, Rebar EJ, Holmes MC et al. 2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11:636–46
    [Google Scholar]
  8. 8. 
    Joung JK, Sander JD. 2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14:49–55
    [Google Scholar]
  9. 9. 
    Jinek M, Chylinski K, Fonfara I et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  10. 10. 
    Gasiunas G, Barrangou R, Horvath P, Siksnys V 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–86
    [Google Scholar]
  11. 11. 
    Cong L, Ran FA, Cox D et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23
    [Google Scholar]
  12. 12. 
    Mali P, Yang LH, Esvelt KM et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823–26
    [Google Scholar]
  13. 13. 
    Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–70
    [Google Scholar]
  14. 14. 
    Auton A, Abecasis GR (1000 Genomes Project Consortium). 2015. A global reference for human genetic variation. Nature 526:68–74
    [Google Scholar]
  15. 15. 
    Barroso I, McCarthy MI. 2019. The genetic basis of metabolic disease. Cell 177:146–61
    [Google Scholar]
  16. 16. 
    Musunuru K, Kathiresan S. 2019. Genetics of common, complex coronary artery disease. Cell 177:132–45
    [Google Scholar]
  17. 17. 
    Torkamani A, Wineinger NE, Topol EJ 2018. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19:581–90
    [Google Scholar]
  18. 18. 
    Bladen CL, Salgado D, Monges S et al. 2015. The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 36:395–402
    [Google Scholar]
  19. 19. 
    Lawrence MS, Stojanov P, Polak P et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–18
    [Google Scholar]
  20. 20. 
    Dagogo-Jack I, Shaw AT. 2018. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15:81–94
    [Google Scholar]
  21. 21. 
    Pon JR, Marra MA. 2015. Driver and passenger mutations in cancer. Annu. Rev. Pathol. Mech. Dis. 10:25–50
    [Google Scholar]
  22. 22. 
    Bauer DE, Kamran SC, Lessard S et al. 2013. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342:253–57
    [Google Scholar]
  23. 23. 
    Wu Y, Zeng J, Roscoe BP et al. 2019. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 25:776–83
    [Google Scholar]
  24. 24. 
    Tebas P, Stein D, Tang WW et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370:901–10
    [Google Scholar]
  25. 25. 
    Doench JG, Fusi N, Sullender M et al. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34:184–91
    [Google Scholar]
  26. 26. 
    Xu H, Xiao T, Chen CH et al. 2015. Sequence determinants of improved CRISPR sgRNA design. Genome Res 25:1147–57
    [Google Scholar]
  27. 27. 
    Moreno-Mateos MA, Vejnar CE, Beaudoin JD et al. 2015. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 12:982–88
    [Google Scholar]
  28. 28. 
    Collins PW, Blanchette VS, Fischer K et al. 2009. Break-through bleeding in relation to predicted factor VIII levels in patients receiving prophylactic treatment for severe hemophilia A. J. Thromb. Haemost. 7:413–20
    [Google Scholar]
  29. 29. 
    Lino CA, Harper JC, Carney JP, Timlin JA 2018. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25:1234–57
    [Google Scholar]
  30. 30. 
    Tsai SQ, Joung JK. 2016. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat. Rev. Genet. 17:300–12
    [Google Scholar]
  31. 31. 
    Tsai SQ, Zheng Z, Nguyen NT et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33:187–97
    [Google Scholar]
  32. 32. 
    Kim D, Bae S, Park J et al. 2015. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12:237–43
    [Google Scholar]
  33. 33. 
    Wienert B, Wyman SK, Richardson CD et al. 2019. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364:286–89
    [Google Scholar]
  34. 34. 
    Wilson LOW, O'Brien AR, Bauer DC 2018. The current state and future of CRISPR-Cas9 gRNA design tools. Front. Pharmacol. 9:749
    [Google Scholar]
  35. 35. 
    Pattanayak V, Guilinger JP, Liu DR 2014. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol 546:47–78
    [Google Scholar]
  36. 36. 
    Ran FA, Hsu PD, Lin CY et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–89
    [Google Scholar]
  37. 37. 
    Qi LS, Larson MH, Gilbert LA et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–83
    [Google Scholar]
  38. 38. 
    Gilbert LA, Larson MH, Morsut L et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–51
    [Google Scholar]
  39. 39. 
    Tanenbaum ME, Gilbert LA, Qi LS et al. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–46
    [Google Scholar]
  40. 40. 
    Rees HA, Liu DR. 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19:770–88
    [Google Scholar]
  41. 41. 
    Kleinstiver BP, Pattanayak V, Prew MS et al. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–95
    [Google Scholar]
  42. 42. 
    Slaymaker IM, Gao L, Zetsche B et al. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88
    [Google Scholar]
  43. 43. 
    Koonin EV, Makarova KS, Zhang F 2017. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37:67–78
    [Google Scholar]
  44. 44. 
    Yang LH, Grishin D, Wang G et al. 2014. Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nat. Commun. 5:5507
    [Google Scholar]
  45. 45. 
    Walsh NC, Kenney LL, Jangalwe S et al. 2017. Humanized mouse models of clinical disease. Annu. Rev. Pathol. Mech. Dis. 12:187–215
    [Google Scholar]
  46. 46. 
    Druker BJ, Guilhot F, O'Brien SG et al. 2006. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355:2408–17
    [Google Scholar]
  47. 47. 
    Hochhaus A, Erben P, Ernst T, Mueller MC 2007. Resistance to targeted therapy in chronic myelogenous leukemia. Semin. Hematol. 44:S15–24
    [Google Scholar]
  48. 48. 
    Ley TJ, Miller C, Ding L et al. (Cancer Genome Atlas Res. Netw.). 2013. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368:2059–74
    [Google Scholar]
  49. 49. 
    Welch JS, Ley TJ, Link DC et al. 2012. The origin and evolution of mutations in acute myeloid leukemia. Cell 150:264–78
    [Google Scholar]
  50. 50. 
    Klco JM, Spencer DH, Miller CA et al. 2014. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25:379–92
    [Google Scholar]
  51. 51. 
    Estey E, Levine RL, Lowenberg B 2015. Current challenges in clinical development of “targeted therapies”: the case of acute myeloid leukemia. Blood 125:2461–66
    [Google Scholar]
  52. 52. 
    Mahon FX, Rea D, Guilhot J et al. 2010. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11:1029–35
    [Google Scholar]
  53. 53. 
    Ross DM, Branford S, Seymour JF et al. 2013. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 122:515–22
    [Google Scholar]
  54. 54. 
    Genovese P, Schiroli G, Escobar G et al. 2014. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510:235–40
    [Google Scholar]
  55. 55. 
    Hoban MD, Cost GJ, Mendel MC et al. 2015. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 125:2597–604
    [Google Scholar]
  56. 56. 
    Park JH, Riviere I, Gonen M et al. 2018. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378:449–59
    [Google Scholar]
  57. 57. 
    Guedan S, Ruella M, June CH 2019. Emerging cellular therapies for cancer. Annu. Rev. Immunol. 37:145–71
    [Google Scholar]
  58. 58. 
    Wang CM, Wu ZQ, Wang Y et al. 2017. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin. Cancer Res. 23:1156–66
    [Google Scholar]
  59. 59. 
    Brudno JN, Maric I, Hartman SD et al. 2018. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36:2267–80
    [Google Scholar]
  60. 60. 
    Hofmann S, Schubert ML, Wang L et al. 2019. Chimeric antigen receptor (CAR) T cell therapy in acute myeloid leukemia (AML). J. Clin. Med. 8:E200
    [Google Scholar]
  61. 61. 
    Cherkassky L, Morello A, Villena-Vargas J et al. 2016. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Investig. 126:3130–44
    [Google Scholar]
  62. 62. 
    Ren J, Liu X, Fang C et al. 2017. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23:2255–66
    [Google Scholar]
  63. 63. 
    Rupp LJ, Schumann K, Roybal KT et al. 2017. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7:737
    [Google Scholar]
  64. 64. 
    Eyquem J, Mansilla-Soto J, Giavridis T et al. 2017. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543:113–17
    [Google Scholar]
  65. 65. 
    Ruella M, Kenderian SS. 2017. Next-generation chimeric antigen receptor T-cell therapy: going off the shelf. BioDrugs 31:473–81
    [Google Scholar]
  66. 66. 
    Porter DL, Levine BL, Kalos M et al. 2011. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365:725–33
    [Google Scholar]
  67. 67. 
    Kim MY, Yu KR, Kenderian SS et al. 2018. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 173:1439–53.e19
    [Google Scholar]
  68. 68. 
    Hoban MD, Bauer DE. 2016. A genome editing primer for the hematologist. Blood 127:2525–35
    [Google Scholar]
  69. 69. 
    Osborn MJ, Belanto JJ, Tolar J, Voytas DF 2016. Gene editing and its application for hematological diseases. Int. J. Hematol. 104:18–28
    [Google Scholar]
  70. 70. 
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. 2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–19
    [Google Scholar]
  71. 71. 
    Hacein-Bey-Abina S, Garrigue A, Wang GP et al. 2008. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 118:3132–42
    [Google Scholar]
  72. 72. 
    Dunbar CE, High KA, Joung JK et al. 2018. Gene therapy comes of age. Science 359:eaan4672
    [Google Scholar]
  73. 73. 
    Corrigan-Curay J, O'Reilly M, Kohn DB et al. 2015. Genome editing technologies: defining a path to clinic. Mol. Ther. 23:796–806
    [Google Scholar]
  74. 74. 
    Lander ES. 2016. The heroes of CRISPR. Cell 164:18–28
    [Google Scholar]
  75. 75. 
    Ishino Y, Krupovic M, Forterre P 2018. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J. Bacteriol. 200:e00580–17
    [Google Scholar]
/content/journals/10.1146/annurev-med-052318-100741
Loading
/content/journals/10.1146/annurev-med-052318-100741
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error