1932

Abstract

The intracellular nucleotide cyclic guanosine monophosphate (cGMP) is found in many human organ tissues. Its concentration increases in response to the activation of receptor enzymes called guanylyl cyclases (GCs). Different ligands bind GCs, generating the second messenger cGMP, which in turn leads to a variety of biological actions. A deficit or dysfunction of this pathway at the cardiac, vascular, and renal levels manifests in cardiovascular diseases such as heart failure, arterial hypertension, and pulmonary arterial hypertension. An impairment of the cGMP pathway also may be involved in the pathogenesis of obesity as well as dementia. Therefore, agents enhancing the generation of cGMP for the treatment of these conditions have been intensively studied. Some have already been approved, and others are currently under investigation. This review discusses the potential of novel drugs directly or indirectly targeting cGMP as well as the progress of research to date.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-052914-091923
2016-01-14
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/med/67/1/annurev-med-052914-091923.html?itemId=/content/journals/10.1146/annurev-med-052914-091923&mimeType=html&fmt=ahah

Literature Cited

  1. Fischmeister R, Castro LR, Abi-Gerges A. 1.  et al. 2006. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ. Res. 99:816–28 [Google Scholar]
  2. Cheepala S, Hulot JS, Morgan JA. 2.  et al. 2013. Cyclic nucleotide compartmentalization: contributions of phosphodiesterases and ATP-binding cassette transporters. Annu. Rev. Pharmacol. Toxicol. 53:231–53 [Google Scholar]
  3. Zaccolo M, Movsesian MA. 3.  2007. cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ. Res. 100:1569–78 [Google Scholar]
  4. Burnett JC Jr, Opgenorth TJ, Granger JP. 4.  1986. The renal action of atrial natriuretic peptide during control of glomerular filtration. Kidney Int. 30:16–19 [Google Scholar]
  5. Melo LG, Veress AT, Ackermann U, Sonnenberg H. 5.  1998. Chronic regulation of arterial blood pressure by ANP: role of endogenous vasoactive endothelial factors. Am. J. Physiol. 275:H1826–33 [Google Scholar]
  6. Potter LR, Yoder AR, Flora DR. 6.  et al. 2009. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. 191341–66 [Google Scholar]
  7. Cody RJ, Atlas SA, Laragh JH. 7.  et al. 1986. Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J. Clin. Investig. 78:1362–74 [Google Scholar]
  8. Huntley BK, Sandberg SM, Heublein DM. 8.  et al. 2015. Pro-B-type natriuretic peptide-1–108 processing and degradation in human heart failure. Circ. Heart Fail. 8:89–97 [Google Scholar]
  9. Hawkridge AM, Heublein DM, Bergen HR 3rd. 9.  et al. 2005. Quantitative mass spectral evidence for the absence of circulating brain natriuretic peptide (BNP-32) in severe human heart failure. PNAS 102:17442–47 [Google Scholar]
  10. Macheret F, Heublein D, Costello-Boerrigter LC. 10.  et al. 2012. Human hypertension is characterized by a lack of activation of the antihypertensive cardiac hormones ANP and BNP. J. Am. Coll. Cardiol. 60:1558–65 [Google Scholar]
  11. Wang TJ, Larson MG, Levy D. 11.  et al. 2004. Impact of obesity on plasma natriuretic peptide levels. Circulation 109:594–600 [Google Scholar]
  12. Sarzani R, Salvi F, Dessi-Fulgheri P, Rappelli A. 12.  2008. Renin-angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. J. Hypertens. 26:831–43 [Google Scholar]
  13. Bordicchia M, Liu D, Amri E. 13.  et al. 2012. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Investig. 122:1022–36 [Google Scholar]
  14. Mitschke MM, Hoffmann LS, Gnad T. 14.  et al. 2013. Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J. 27:1621–30 [Google Scholar]
  15. Klinger JR, Abman SH, Gladwin MT. 15.  2013. Nitric oxide deficiency and endothelial dysfunction in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 188:639–46 [Google Scholar]
  16. Giaid A, Saleh D. 16.  1995. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 333:214–21 [Google Scholar]
  17. Steinbrecher KA. 17.  2014. The multiple roles of guanylate cyclase C, a heat stable enterotoxin receptor. Curr. Opin. Gastroenterol. 30:1–6 [Google Scholar]
  18. Kuhn M. 18.  2003. Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ. Res. 93:700–9 [Google Scholar]
  19. Lucas KA, Pitari GM, Kazerounian S. 19.  et al. 2000. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev. 52:375–414 [Google Scholar]
  20. McKie PM, Burnett JC Jr. 20.  2015. Rationale and therapeutic opportunities for natriuretic peptide system augmentation in heart failure. Curr. Heart Fail. Rep. 12:7–14 [Google Scholar]
  21. 21.  Publication Committee for the VMAC Investigators 2002. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA 287:1531–40 [Google Scholar]
  22. O'Connor CM, Starling RC, Hernandez AF. 22.  et al. 2011. Effect of nesiritide in patients with acute decompensated heart failure. N. Engl. J. Med. 365:32–43 [Google Scholar]
  23. Chen HH, Anstrom KJ, Givertz MM. 23.  et al. 2013. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA 310:2533–43 [Google Scholar]
  24. Chen HH, Glockner JF, Schirger JA. 24.  2012. Novel protein therapeutics for systolic heart failure: chronic subcutaneous B-type natriuretic peptide. J. Am. Coll. Cardiol. 60:2305–12 [Google Scholar]
  25. Ahmad T, Felker GM. 25.  2012. Subcutaneous B-type natriuretic peptide for treatment of heart failure: a dying therapy reborn?. J. Am. Coll. Cardiol. 60:2313–15 [Google Scholar]
  26. Anker SD, Ponikowski P, Mitrovic V. 26.  et al. 2015. Ularitide for the treatment of acute decompensated heart failure: from preclinical to clinical studies. Eur. Heart J. 36:715–23 [Google Scholar]
  27. Arora P, Wu C, Khan AM. 27.  et al. 2013. Atrial natriuretic peptide is negatively regulated by microRNA-425. J. Clin. Invest. 123:3378–82 [Google Scholar]
  28. Cannone V, Boerrigter G, Cataliotti A. 28.  et al. 2011. A genetic variant of the atrial natriuretic peptide gene is associated with cardiometabolic protection in the general community. J. Am. Coll. Cardiol. 58:629–36 [Google Scholar]
  29. McKie PM, Cataliotti A, Ichiki T. 29.  et al. 2014. M-atrial natriuretic peptide and nitroglycerin in a canine model of experimental acute hypertensive heart failure: differential actions of 2 cGMP activating therapeutics. J. Am. Heart Assoc. 3:e000206 [Google Scholar]
  30. Lee CY, Boerrigter G, Chen HH. 30.  et al. 2008. Cardiorenal and neurohormonal actions of a novel designer natriuretic peptide, CU-NP, in canine experimental heart failure. Circulation 118:S293 [Google Scholar]
  31. Kilic A, Rajapurohitam V, Sandberg SM. 31.  et al. 2010. A novel chimeric natriuretic peptide reduces cardiomyocyte hypertrophy through the NHE-1-calcineurin pathway. Cardiovasc. Res. 88:434–42 [Google Scholar]
  32. Evgenov OV, Pacher P, Schmidt PM. 32.  et al. 2006. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat. Rev. Drug Discov. 5:755–68 [Google Scholar]
  33. Forstermann U, Sessa WC. 33.  2012. Nitric oxide synthases: regulation and function. Eur. Heart J. 33:829–37 [Google Scholar]
  34. Boerrigter G, Burnett JC Jr. 34.  2009. Soluble guanylate cyclase: not a dull enzyme. Circulation 119:2752–54 [Google Scholar]
  35. Ghofrani HA, Galie N, Grimminger F. 35.  et al. 2013. Riociguat for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 369:330–40 [Google Scholar]
  36. Ghofrani HA, D'Armini AM, Grimminger F. 36.  et al. 2013. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N. Engl. J. Med. 369:319–29 [Google Scholar]
  37. Erdmann E, Semigran MJ, Nieminen MS. 37.  et al. 2013. Cinaciguat, a soluble guanylate cyclase activator, unloads the heart but also causes hypotension in acute decompensated heart failure. Eur. Heart J. 34:57–67 [Google Scholar]
  38. Stasch JP, Schlossmann J, Hocher B. 38.  2015. Renal effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Curr. Opin. Pharmacol. 21:95–104 [Google Scholar]
  39. Williams IL, Wheatcroft SB, Shah AM, Kearney MT. 39.  2002. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int. J. Obes. 26:754–64 [Google Scholar]
  40. Maurice DH, Ke H, Ahmad F. 40.  et al. 2014. Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov. 13:290–314 [Google Scholar]
  41. Goldstein I, Lue TF, Padma-Nathan H. 41.  et al. 1998. Oral sildenafil in the treatment of erectile dysfunction. N. Engl. J. Med. 338:1397–404 [Google Scholar]
  42. Galie N, Ghofrani HA, Torbicki A. 42.  et al. 2005. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 353:2148–57 [Google Scholar]
  43. Guazzi M, Vicenzi M, Arena R, Guazzi MD. 43.  2011. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ. Heart Fail. 4:8–17 [Google Scholar]
  44. Redfield MM, Chen HH, Borlaug BA. 44.  et al. 2013. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309:1268–77 [Google Scholar]
  45. Lee DI, Zhu G, Sasaki T. 45.  et al. 2015. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519:472–76 [Google Scholar]
  46. Almeida CB, Scheiermann C, Jang JE. 46.  et al. 2012. Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood 120:2879–88 [Google Scholar]
  47. Margulies KB, Cavero PG, Seymour AA. 47.  et al. 1990. Neutral endopeptidase inhibition potentiates the renal actions of atrial natriuretic factor. Kidney Int. 38:67–72 [Google Scholar]
  48. Martin FL, Stevens TL, Cataliotti A. 48.  et al. 2005. Natriuretic and antialdosterone actions of chronic oral NEP inhibition during progressive congestive heart failure. Kidney Int. 67:1723–30 [Google Scholar]
  49. Supaporn T, Sandberg SM, Borgeson DD. 49.  et al. 1996. Blunted cGMP response to agonists and enhanced glomerular cyclic 3′,5′-nucleotide phosphodiesterase activities in experimental congestive heart failure. Kidney Int. 50:1718–25 [Google Scholar]
  50. Chen HH, Huntley BK, Schirger JA. 50.  et al. 2006. Maximizing the renal cyclic 3′-5′-guanosine monophosphate system with type V phosphodiesterase inhibition and exogenous natriuretic peptide: a novel strategy to improve renal function in experimental overt heart failure. J. Am. Soc. Nephrol. 17:2742–47 [Google Scholar]
  51. Burnett JC Jr. 51.  1999. Vasopeptidase inhibition: a new concept in blood pressure management. J. Hypertens. Suppl. 17:S37–43 [Google Scholar]
  52. Cao Z, Burrell LM, Tikkanen I. 52.  et al. 2001. Vasopeptidase inhibition attenuates the progression of renal injury in subtotal nephrectomized rats. Kidney Int. 60:715–21 [Google Scholar]
  53. Morazo P, Fortepiani LA, Ortiz MC. 53.  et al. 2001. Omapatrilat normalizes renal function curve in spontaneously hypertensive rats. BMC Pharmacol. 1:5 [Google Scholar]
  54. McClean DR, Ikram H, Garlick AH. 54.  et al. 2000. The clinical, cardiac, renal, arterial and neurohormonal effects of omapatrilat, a vasopeptidase inhibitor, in patients with chronic heart failure. J. Am. Coll. Cardiol. 36:741–45 [Google Scholar]
  55. Deddish PA, Marcic BM, Tan F. 55.  et al. 2002. Neprilysin inhibitors potentiate effects of bradykinin on B2 receptor. Hypertension 39:619–23 [Google Scholar]
  56. Ruilope LM, Dukat A, Bohm M. 56.  et al. 2010. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 375:1255–66 [Google Scholar]
  57. Packer M, McMurray JJ, Desai AS. 57.  et al. 2015. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation 131:54–61 [Google Scholar]
  58. Krum H. 58.  2015. Prospective comparison of ARNi with ACE-I to determine impact on global mortality and morbidity in heart failure (PARADIGM-HF): paragon of a study or further investigation paramount?. Circulation 131:11–12 [Google Scholar]
  59. Volpe M, Rubattu S, Burnett J Jr. 59.  2014. Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur. Heart J. 35:419–25 [Google Scholar]
  60. Buglioni A, Cannone V, Cataliotti A. 60.  et al. 2015. Circulating aldosterone and natriuretic peptides in the general community: relationship to cardiorenal and metabolic disease. Hypertension 65:45–53 [Google Scholar]
  61. Newton-Cheh C, Larson MG, Vasan RS. 61.  et al. 2009. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat. Genet. 41:348–53 [Google Scholar]
  62. McKie PM, Cataliotti A, Huntley BK. 62.  et al. 2009. A human atrial natriuretic peptide gene mutation reveals a novel peptide with enhanced blood pressure-lowering, renal-enhancing, and aldosterone-suppressing actions. J. Am. Coll. Cardiol. 54:1024–32 [Google Scholar]
  63. Andersen IA, Huntley BK, Harty G. 63.  et al. 2013. In vitro and in vivo actions of Ang1-7/BNP: a novel chimeric peptide with dual actions through the natriuretic peptide and Mas receptors. Circulation 128:A11323 [Google Scholar]
/content/journals/10.1146/annurev-med-052914-091923
Loading
/content/journals/10.1146/annurev-med-052914-091923
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error