1932

Abstract

The microbiome is an integrated part of the human body that can modulate a variety of disease processes and affect prognosis, treatment response, complications, and outcomes. The importance of allogeneic hematopoietic cell transplantation in cancer treatment has resulted in extensive investigations on the interaction between the microbiome and this treatment modality. These investigations are beginning to lead to clinical trials of microbiome-targeted interventions. Here we review some of these discoveries and describe strategies being investigated to manipulate the microbiome for favorable outcomes, such as the proper selection and timing of antibiotics, type of diet and route of administration, probiotics, prebiotics, and fecal microbiota transplantation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-052918-122440
2020-01-27
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/med/71/1/annurev-med-052918-122440.html?itemId=/content/journals/10.1146/annurev-med-052918-122440&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Slingerland AE, Schwabkey Z, Wiesnoski DH, Jenq RR 2017. Clinical evidence for the microbiome in inflammatory diseases. Front. Immunol. 8:400
    [Google Scholar]
  2. 2. 
    Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:7402207–14
    [Google Scholar]
  3. 3. 
    Eckburg PB, Bik EM, Bernstein CN et al. 2005. Diversity of the human intestinal microbial flora. Science 308:57281635–38
    [Google Scholar]
  4. 4. 
    Taur Y. 2016. Intestinal microbiome changes and stem cell transplantation: lessons learned. Virulence 7:8930–38
    [Google Scholar]
  5. 5. 
    Montassier E, Batard E, Massart S et al. 2014. 16S rRNA gene pyrosequencing reveals shift in patient faecal microbiota during high-dose chemotherapy as conditioning regimen for bone marrow transplantation. Microb. Ecol. 67:3690–99
    [Google Scholar]
  6. 6. 
    Jenq RR, Ubeda C, Taur Y et al. 2012. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J. Exp. Med. 209:5903–11
    [Google Scholar]
  7. 7. 
    Eriguchi Y, Takashima S, Oka H et al. 2012. Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of alpha-defensins. Blood 120:1223–31
    [Google Scholar]
  8. 8. 
    Shono Y, Docampo MD, Peled JU et al. 2016. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci. Transl. Med. 8:339339ra371
    [Google Scholar]
  9. 9. 
    Jenq RR, Taur Y, Devlin SM et al. 2015. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol. Blood Marrow Transplant. 21:81373–83
    [Google Scholar]
  10. 10. 
    Golob JL, Pergam SA, Srinivasan S et al. 2017. Stool microbiota at neutrophil recovery is predictive for severe acute graft versus host disease after hematopoietic cell transplantation. Clin. Infect. Dis. 65:121984–91
    [Google Scholar]
  11. 11. 
    Simms-Waldrip TR, Sunkersett G, Coughlin LA et al. 2017. Antibiotic-induced depletion of anti-inflammatory Clostridia is associated with the development of graft-versus-host disease in pediatric stem cell transplantation patients. Biol. Blood Marrow Transplant. 23:5820–29
    [Google Scholar]
  12. 12. 
    Bhattacharyya A, Hanafi LA, Sheih A et al. 2018. Graft-derived reconstitution of mucosal-associated invariant T cells after allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 24:2242–51
    [Google Scholar]
  13. 13. 
    Mathewson ND, Jenq R, Mathew AV et al. 2016. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol. 17:5505–13
    [Google Scholar]
  14. 14. 
    Biagi E, Zama D, Nastasi C et al. 2015. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transplant 50:7992–98
    [Google Scholar]
  15. 15. 
    McDonald LC, Gerding DN, Johnson S et al. 2018. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66:7e1–48
    [Google Scholar]
  16. 16. 
    Willems L, Porcher R, Lafaurie M et al. 2012. Clostridium difficile infection after allogeneic hematopoietic stem cell transplantation: incidence, risk factors, and outcome. Biol. Blood Marrow Transplant. 18:81295–301
    [Google Scholar]
  17. 17. 
    Dubberke ER, Reske KA, Olsen MA et al. 2017. Risk for Clostridium difficile infection after allogeneic hematopoietic cell transplant remains elevated in the postengraftment period. Transplant. Direct. 3:4e145
    [Google Scholar]
  18. 18. 
    Lee YJ, Arguello ES, Jenq RR et al. 2017. Protective factors in the intestinal microbiome against Clostridium difficile infection in recipients of allogeneic hematopoietic stem cell transplantation. J. Infect. Dis. 215:71117–23
    [Google Scholar]
  19. 19. 
    Chang JY, Antonopoulos DA, Kalra A et al. 2008. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J. Infect. Dis. 197:3435–38
    [Google Scholar]
  20. 20. 
    Taur Y, Xavier JB, Lipuma L et al. 2012. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55:7905–14
    [Google Scholar]
  21. 21. 
    Holler E, Butzhammer P, Schmid K et al. 2014. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol. Blood Marrow Transplant. 20:5640–45
    [Google Scholar]
  22. 22. 
    Tamburini FB, Andermann TM, Tkachenko E et al. 2018. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat. Med. 24:121809–14
    [Google Scholar]
  23. 23. 
    Man WH, de Steenhuijsen Piters WA, Bogaert D 2017. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 15:5259–70
    [Google Scholar]
  24. 24. 
    Zinter MS, Dvorak CC, Mayday MY et al. 2019. Pulmonary metagenomic sequencing suggests missed infections in immunocompromised children. Clin. Infect. Dis. 68:111847–55
    [Google Scholar]
  25. 25. 
    Harris B, Morjaria SM, Littmann ER et al. 2016. Gut microbiota predict pulmonary infiltrates after allogeneic hematopoietic cell transplantation. Am. J. Respir. Crit. Care Med. 194:4450–63
    [Google Scholar]
  26. 26. 
    Ogimi C, Krantz EM, Golob JL et al. 2018. Antibiotic exposure prior to respiratory viral infection is associated with progression to lower respiratory tract disease in allogeneic hematopoietic cell transplant recipients. Biol. Blood Marrow Transplant. 24:112293–301
    [Google Scholar]
  27. 27. 
    Haak BW, Littmann ER, Chaubard JL et al. 2018. Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT. Blood 131:262978–86
    [Google Scholar]
  28. 28. 
    Bunker JJ, Flynn TM, Koval JC et al. 2015. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43:3541–53
    [Google Scholar]
  29. 29. 
    Taur Y, Jenq RR, Perales MA et al. 2014. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 124:71174–82
    [Google Scholar]
  30. 30. 
    Cantoni N, Hirsch HH, Khanna N et al. 2010. Evidence for a bidirectional relationship between cytomegalovirus replication and acute graft-versus-host disease. Biol. Blood Marrow Transplant. 16:91309–14
    [Google Scholar]
  31. 31. 
    Peled JU, Devlin SM, Staffas A et al. 2017. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J. Clin. Oncol. 35:151650–59
    [Google Scholar]
  32. 32. 
    Wagner BD, Grunwald GK, Zerbe GO et al. 2018. On the use of diversity measures in longitudinal sequencing studies of microbial communities. Front. Microbiol. 9:1037
    [Google Scholar]
  33. 33. 
    Weber D, Oefner PJ, Hiergeist A et al. 2015. Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood 126:141723–28
    [Google Scholar]
  34. 34. 
    Routy B, Letendre C, Enot D et al. 2017. The influence of gut-decontamination prophylactic antibiotics on acute graft-versus-host disease and survival following allogeneic hematopoietic stem cell transplantation. Oncoimmunology 6:1e1258506
    [Google Scholar]
  35. 35. 
    Weber D, Jenq RR, Peled JU et al. 2017. Microbiota disruption induced by early use of broad-spectrum antibiotics is an independent risk factor of outcome after allogeneic stem cell transplantation. Biol. Blood Marrow Transplant. 23:5845–52
    [Google Scholar]
  36. 36. 
    Jones JM, Wilson R, Bealmear PM 1971. Mortality and gross pathology of secondary disease in germfree mouse radiation chimeras. Radiat. Res. 45:3577–88
    [Google Scholar]
  37. 37. 
    Storb R, Prentice RL, Buckner CD et al. 1983. Graft-versus-host disease and survival in patients with aplastic anemia treated by marrow grafts from HLA-identical siblings. Beneficial effect of a protective environment. N. Engl. J. Med. 308:6302–7
    [Google Scholar]
  38. 38. 
    Beelen DW, Elmaagacli A, Muller KD et al. 1999. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trial. Blood 93:103267–75
    [Google Scholar]
  39. 39. 
    Petersen FB, Buckner CD, Clift RA et al. 1986. Laminar air flow isolation and decontamination: a prospective randomized study of the effects of prophylactic systemic antibiotics in bone marrow transplant patients. Infection 14:3115–21
    [Google Scholar]
  40. 40. 
    Vossen JM, Guiot HF, Lankester AC et al. 2014. Complete suppression of the gut microbiome prevents acute graft-versus-host disease following allogeneic bone marrow transplantation. PLOS ONE 9:9e105706
    [Google Scholar]
  41. 41. 
    Taplitz RA, Kennedy EB, Bow EJ et al. 2018. Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update. J. Clin. Oncol. 2018:JCO1800374
    [Google Scholar]
  42. 42. 
    Bucaneve G, Micozzi A, Menichetti F et al. 2005. Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N. Engl. J. Med. 353:10977–87
    [Google Scholar]
  43. 43. 
    Weber D, Oefner PJ, Dettmer K et al. 2016. Rifaximin preserves intestinal microbiota balance in patients undergoing allogeneic stem cell transplantation. Bone Marrow Transplant 51:81087–92
    [Google Scholar]
  44. 44. 
    Bechard LJ, Guinan EC, Feldman HA et al. 2007. Prognostic factors in the resumption of oral dietary intake after allogeneic hematopoietic stem cell transplantation (HSCT) in children. J. Parenter. Enteral Nutr. 31:4295–301
    [Google Scholar]
  45. 45. 
    Seguy D, Duhamel A, Rejeb MB et al. 2012. Better outcome of patients undergoing enteral tube feeding after myeloablative conditioning for allogeneic stem cell transplantation. Transplantation 94:3287–94
    [Google Scholar]
  46. 46. 
    Svahn BM, Remberger M, Heijbel M et al. 2008. Case-control comparison of at-home and hospital care for allogeneic hematopoietic stem-cell transplantation: the role of oral nutrition. Transplantation 85:71000–7
    [Google Scholar]
  47. 47. 
    Seguy D, Berthon C, Micol JB et al. 2006. Enteral feeding and early outcomes of patients undergoing allogeneic stem cell transplantation following myeloablative conditioning. Transplantation 82:6835–39
    [Google Scholar]
  48. 48. 
    Guieze R, Lemal R, Cabrespine A et al. 2014. Enteral versus parenteral nutritional support in allogeneic haematopoietic stem-cell transplantation. Clin. Nutr. 33:3533–38
    [Google Scholar]
  49. 49. 
    Trifilio S, Helenowski I, Giel M et al. 2012. Questioning the role of a neutropenic diet following hematopoetic stem cell transplantation. Biol. Blood Marrow Transplant. 18:91385–90
    [Google Scholar]
  50. 50. 
    Taggart C, Neumann N, Alonso PB et al. 2019. Comparing a neutropenic diet to a food safety-based diet in pediatric patients undergoing hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 18:91385–90
    [Google Scholar]
  51. 51. 
    Moody KM, Baker RA, Santizo RO et al. 2018. A randomized trial of the effectiveness of the neutropenic diet versus food safety guidelines on infection rate in pediatric oncology patients. Pediatr. Blood Cancer 65:1e26711
    [Google Scholar]
  52. 52. 
    David LA, Maurice CF, Carmody RN et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:7484559–63
    [Google Scholar]
  53. 53. 
    Wu GD, Chen J, Hoffmann C et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:6052105–8
    [Google Scholar]
  54. 54. 
    Iyama S, Sato T, Tatsumi H et al. 2014. Efficacy of enteral supplementation enriched with glutamine, fiber, and oligosaccharide on mucosal injury following hematopoietic stem cell transplantation. Case Rep. Oncol. 7:3692–99
    [Google Scholar]
  55. 55. 
    Suez J, Zmora N, Segal E, Elinav E 2019. The pros, cons, and many unknowns of probiotics. Nat. Med. 25:5716–29
    [Google Scholar]
  56. 56. 
    Ladas EJ, Bhatia M, Chen L et al. 2016. The safety and feasibility of probiotics in children and adolescents undergoing hematopoietic cell transplantation. Bone Marrow Transplant 51:2262–66
    [Google Scholar]
  57. 57. 
    Gerbitz A, Schultz M, Wilke A et al. 2004. Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. Blood 103:114365–67
    [Google Scholar]
  58. 58. 
    Gorshein E, Wei C, Ambrosy S et al. 2017. Lactobacillus rhamnosus GG probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation. Clin. Transplant. 31:5e12947
    [Google Scholar]
  59. 59. 
    Alander M, Satokari R, Korpela R et al. 1999. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl. Environ. Microbiol. 65:1351–54
    [Google Scholar]
  60. 60. 
    Kassam Z, Lee CH, Yuan Y, Hunt RH 2013. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol. 108:4500–8
    [Google Scholar]
  61. 61. 
    van Nood E, Vrieze A, Nieuwdorp M et al. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. . Med 368:5407–15
    [Google Scholar]
  62. 62. 
    Moss EL, Falconer SB, Tkachenko E et al. 2017. Long-term taxonomic and functional divergence from donor bacterial strains following fecal microbiota transplantation in immunocompromised patients. PLOS ONE 12:8e0182585
    [Google Scholar]
  63. 63. 
    Bluestone H, Kronman MP, Suskind DL 2018. Fecal microbiota transplantation for recurrent Clostridium difficile infections in pediatric hematopoietic stem cell transplant recipients. J. Pediatr. Infect. Dis. Soc. 7:1e6–e8
    [Google Scholar]
  64. 64. 
    Webb BJ, Brunner A, Ford CD et al. 2016. Fecal microbiota transplantation for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl. Infect. Dis. 18:4628–33
    [Google Scholar]
  65. 65. 
    Kakihana K, Fujioka Y, Suda W et al. 2016. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood 128:162083–88
    [Google Scholar]
  66. 66. 
    Spindelboeck W, Schulz E, Uhl B et al. 2017. Repeated fecal microbiota transplantations attenuate diarrhea and lead to sustained changes in the fecal microbiota in acute, refractory gastrointestinal graft-versus-host-disease. Haematologica 102:5e210–13
    [Google Scholar]
  67. 67. 
    Kaito S, Toya T, Yoshifuji K et al. 2018. Fecal microbiota transplantation with frozen capsules for a patient with refractory acute gut graft-versus-host disease. Blood Adv 2:223097–101
    [Google Scholar]
  68. 68. 
    Qi X, Li X, Zhao Y et al. 2018. Treating steroid refractory intestinal acute graft-versus-host disease with fecal microbiota transplantation: a pilot study. Front. Immunol. 9:2195
    [Google Scholar]
  69. 69. 
    DeFilipp Z, Peled JU, Li S et al. 2018. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv 2:7745–53
    [Google Scholar]
  70. 70. 
    Taur Y, Coyte K, Schluter J et al. 2018. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10:460eaap9489
    [Google Scholar]
/content/journals/10.1146/annurev-med-052918-122440
Loading
/content/journals/10.1146/annurev-med-052918-122440
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error