The human gastrointestinal tract is home to trillions of bacteria, which vastly outnumber host cells in the body. Although generally overlooked in the field of endocrinology, gut microbial symbionts organize to form a key endocrine organ that converts nutritional cues from the environment into hormone-like signals that impact both normal physiology and chronic disease in the human host. Recent evidence suggests that several gut microbial-derived products are sensed by dedicated host receptor systems to alter cardiovascular disease (CVD) progression. In fact, gut microbial metabolism of dietary components results in the production of proatherogenic circulating factors that act through a meta-organismal endocrine axis to impact CVD risk. Whether pharmacological interventions at the level of the gut microbial endocrine organ will reduce CVD risk is a key new question in the field of cardiovascular medicine. Here we discuss the opportunities and challenges that lie ahead in targeting meta-organismal endocrinology for CVD prevention.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Go AS, Mozaffarian D, Roger VL. 1.  et al. 2014. Heart disease and stroke statistics: 2014 update, a report from the American Heart Association. Circulation 129:e28–e292 [Google Scholar]
  2. Nabel EG.2.  2003. Cardiovascular disease. N. Engl. J. Med. 349:60–72 [Google Scholar]
  3. Libby P, Ridker PM, Hansson GK. 3.  2011. Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–25 [Google Scholar]
  4. Teslovich TM, Musunuru K, Smith AV. 4.  et al. 2010. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–13 [Google Scholar]
  5. Kathiresan S, Willer CJ, Peloso GM. 5.  et al. 2009. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 41:56–65 [Google Scholar]
  6. Kathiresan S, Voight BF, Purcell S. 6. Myocardial Infarction Genetics Consortium et al. 2009. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 41:334–41 [Google Scholar]
  7. 7. CARDIoGRAMplusC4D Consortium 2013. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 45:125–33 [Google Scholar]
  8. Turnbaugh PJ, Ley RE, Mahowald MA. 8.  et al. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31 [Google Scholar]
  9. Möbius KA.9.  1877. Die Auster und dieAusternwirthschaft Berlin: Wiegandt, Hempel & Parey [Google Scholar]
  10. Kau AL, Ahern PP, Griffin NW. 10.  et al. 2011. Human nutrition, the gut microbiome and the immune system. Nature 474:327–36 [Google Scholar]
  11. Dumas ME, Barton RH, Toye A. 11.  et al. 2006. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA 103:12511–16 [Google Scholar]
  12. Delzenne NM, Cani PD. 12.  2011. Gut microbiota and the pathogenesis of insulin resistance. Curr. Diab. Rep. 11:154–59 [Google Scholar]
  13. Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K. 13.  2013. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin. Microbiol. Infect. 19:338–48 [Google Scholar]
  14. Sjögren K, Engdahl C, Henning P. 14.  et al. 2012. The gut microbiota regulates bone mass in mice. J. Bone Miner. Res. 27:1357–67 [Google Scholar]
  15. Yoshimoto S, Loo TM, Atarashi K. 15.  et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101 [Google Scholar]
  16. Kostic AD, Chun E, Robertson L. 16.  et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–15 [Google Scholar]
  17. Ray K.17.  2012. Gut microbiota: Colorectal cancer—driven by inflammation and gut bacteria?. Nat. Rev. Gastroenterol. Hepatol. 9:588 [Google Scholar]
  18. Trompette A, Gollwitzer ES, Yadava K. 18.  et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:159–66 [Google Scholar]
  19. Shulzhenko N, Morgun A, Hsiao W. 19.  et al. 2011. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat. Med. 17:1585–93 [Google Scholar]
  20. Wang Z, Klipfell E, Bennett BJ. 20.  et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63 [Google Scholar]
  21. Koeth RA, Wang Z, Levinson BS. 21.  et al. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19:576–85 [Google Scholar]
  22. Tang WH, Wang Z, Levison BS. 22.  et al. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368:1575–78 [Google Scholar]
  23. Wang Z, Tang WH, Buffa JA. 23.  et al. 2014. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 35:904–10 [Google Scholar]
  24. Bennett BJ, de Aguiar Vallim TQ, Wang Z. 24.  et al. 2013. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17:49–60 [Google Scholar]
  25. Tang WH, Wang Z, Fan Y. 25.  et al. 2014. Prognostic value of elevated levels of intestinal microbe-generated metabolite, trimethylamine-N-oxide, in patients with heart failure: refining the gut hypothesis. J. Am. Coll. Cardiol. 641908–14 [Google Scholar]
  26. Hartiala J, Bennett BJ, Tang WH. 26.  et al. 2014. Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine. Arterioscler. Thromb. Vasc. Biol. 34:1307–13 [Google Scholar]
  27. Wang Z, Levison BS, Hazen JE. 27.  et al. 2014. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry. Anal. Biochem. 455:35–40 [Google Scholar]
  28. Koeth RA, Levison BS, Culley MK. 27.  et al. 2014. γ-Butyrobetaine is a pro-atherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 20:5799–812 [Google Scholar]
  29. Whitman WB, Coleman DC, Wiebe WJ. 28.  1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:6578–83 [Google Scholar]
  30. 29. The Human Microbiome Project Consortium 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14 [Google Scholar]
  31. Qin J, Li R, Raes J. 30.  et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 [Google Scholar]
  32. Arumugam M, Raes J, Pelletier E. 31.  et al. 2011. MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature 473:174–80 [Google Scholar]
  33. Schloissnig S, Arumugam M, Sunagawa S. 32.  et al. 2013. Genomic variation landscape of the human gut microbiome. Nature 493:45–50 [Google Scholar]
  34. Jernberg C, Lofmark S, Edlund C, Jansson JK. 33.  2010. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156:3216–23 [Google Scholar]
  35. Claesson MJ, Jeffery IB, Conde S. 34.  et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–84 [Google Scholar]
  36. Yatsunenko T, Rey FE, Manary MJ. 35.  et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–27 [Google Scholar]
  37. Muegge BD, Kuczynski J, Knights D. 36.  et al. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332:970–74 [Google Scholar]
  38. Wu GD, Chen J, Hoffmann C. 37.  et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–8 [Google Scholar]
  39. Lozupone CA, Stombaugh JI, Gordon JI. 38.  et al. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489:220–30 [Google Scholar]
  40. Macfarlane GT, Macfarlane S. 39.  2012. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 95:50–60 [Google Scholar]
  41. den Besten G, Lange K, Havigna R. 40.  et al. 2013. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G900–10 [Google Scholar]
  42. Saemann MD, Bohmig GA, Osterreicher CH. 41.  et al. 2000. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 14:2380–82 [Google Scholar]
  43. Kimura I, Ozawa K, Inoue T. 42.  et al. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4:1829 [Google Scholar]
  44. Gao Z, Yin J, Zhang J. 43.  et al. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–17 [Google Scholar]
  45. De Vadder F, Kovatcheva-Datchary P, Goncalves D. 44.  et al. 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96 [Google Scholar]
  46. Brown AJ, Goldsworthy AA, Barnes AA. 45.  et al. 2003. The orphan G protein-coupled receptors GPR41 and GRP43 are activated by proprionate and other short chain carboxylic acids. J. Biol. Chem. 278:11312–19 [Google Scholar]
  47. Watanabe M, Houten SM, Mataki C. 46.  et al. 2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–89 [Google Scholar]
  48. Thomas C, Gioiello A, Noriega L. 47.  et al. 2009. TGR5-mediated bile acid sensing control glucose homeostasis. Cell Metab. 10:167–77 [Google Scholar]
  49. Pols TW, Nomura M, Harach T. 48.  et al. 2011. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14:747–57 [Google Scholar]
  50. Ma K, Saha PK, Chan LL, Moore DD. 49.  2006. Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Invest. 116:1102–9 [Google Scholar]
  51. Downes M, Verdecia MA, Roecker AJ. 50.  et al. 2003. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell 11:1079–92 [Google Scholar]
  52. Sayin SI, Wahlstrom A, Felin J. 51.  et al. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17:225–35 [Google Scholar]
  53. Hofmann AF, Hagey LR. 52.  2014. Bile acid chemistry, biology, and therapeutics during the last 80 years: historical aspects. J. Lipid Res. 55:1553–95 [Google Scholar]
  54. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. 53.  2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–18 [Google Scholar]
  55. Hsiao EY, McBride SW, Hsien S. 54.  et al. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neuro-developmental disorders. Cell 155:1451–63 [Google Scholar]
  56. Asano Y, Hiramoto T, Nishino R. 55.  et al. 2012. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 3030:G1288–95 [Google Scholar]
  57. Dinan TG, Cryan JF. 56.  2012. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoendocrinology 37:1369–78 [Google Scholar]
  58. Dockray GJ.57.  2014. Gastrointestinal hormones and the dialogue between gut and brain. J. Physiol. 592:2927–41 [Google Scholar]
  59. Schele E, Grahnemo L, Anesten F. 58.  et al. 2013. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology 154:3643–51 [Google Scholar]
  60. Everard A, Cani PD. 59.  2014. Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 15:189–96 [Google Scholar]
  61. Holzer P, Reichmann F, Farzi A. 60.  2012. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 46:261–74 [Google Scholar]
  62. Cryan JF, Dinan TG. 61.  2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13:701–12 [Google Scholar]
  63. Pan A, Sun Q, Bernstein AM. 62.  et al. 2012. Red meat consumption and mortality: results from 2 prospective cohort studies. Arch. Intern. Med. 172:555–63 [Google Scholar]
  64. Gao X, Liu X, Xu J. 63.  et al. 2014. Dietary trimethylamine-N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J. Biosci. Bioeng. S1389–1723:00081–84 [Google Scholar]
  65. Yancey PH, Clark ME, Hand SC. 64.  et al. 1982. Living with water stress: evolution of osmolyte systems. Science 217:1214–22 [Google Scholar]
  66. Lin TY, Timasheff SN. 65.  1994. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamin-N-oxide interactions with protein. Biochemistry 33:12695–701 [Google Scholar]
  67. Curtiss LK, Tobias PS. 68.  2009. Emerging role of Toll-like receptors in atherosclerosis. J. Lipid Res. 50:SupplS340–45 [Google Scholar]
  68. Philpott DJ, Sorbara MT, Robertson SJ. 69.  et al. 2014. NOD proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol. 14:9–23 [Google Scholar]
  69. Li Q, Korzan WJ, Ferrero DM. 66.  et al. 2013. Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr. Biol. 23:11–20 [Google Scholar]
  70. Wallrabenstein I, Kuklan J, Weber L. 67.  et al. 2013. Human trace amine-associated receptor TAAR5 can be activated by trimethylamine. PLoS ONE 8:e54950 [Google Scholar]
  71. Wells JM, Rossi O, Meijerink M, van Baarlen P. 70.  2011. Epithelial crosstalk at the microbiota-mucosal interface. Proc. Natl. Acad. Sci. USA 108:Suppl.4607–14 [Google Scholar]
  72. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F. 71.  et al. 2004. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118:229–41 [Google Scholar]
  73. Neves AL, Coelho J, Couto L. 72.  et al. 2013. Metabolic endotoxemia: a molecular link between obesity and cardiovascular disease. J. Mol. Endocrinol. 51:R51–64 [Google Scholar]
  74. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. 73.  2011. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 108:Suppl. 14615–22 [Google Scholar]
  75. Yuan H, Zelka S, Burkatovskaya M. 74.  et al. 2013. Pivotal role of NOD2 in inflammatory processes affecting atherosclerosis and periodontal bone loss. Proc. Natl. Acad. Sci. USA 110:E5059–68 [Google Scholar]
  76. Khovidhunkit W, Kim MS, Memon RA. 75.  et al. 2004. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J. Lipid Res. 45:1169–96 [Google Scholar]
  77. Fisher EA, Feig JE, Hewing B. 76.  et al. 2012. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 32:2813–20 [Google Scholar]
  78. Griffin JL, Atherton H, Shockcor J, Atzori L. 77.  2011. Metabolomics as a tool for cardiac research. Nat. Rev. Cardiol. 8:630–43 [Google Scholar]
  79. Haiser HJ, Turnbaugh PJ. 78.  2013. Developing a metagenomic view of xenobiotic metabolism. Pharmacol. Res. 69:21–31 [Google Scholar]
  80. Clayton TA, Baker D, Lindon JC. 79.  et al. 2009. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl. Acad. Sci. USA 106:14728–33 [Google Scholar]
  81. Saha JR, Butler VP Jr, Neu HC. 80.  et al. 1983. Digoxin-inactivating bacteria: identification in human gut flora. Science 220:325–27 [Google Scholar]
  82. Wallace BD, Wang H, Lane KT. 81.  et al. 2010. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–35 [Google Scholar]
  83. Lida N, Dzutsev A, Stewart CA. 82.  et al. 2013. Commensal bacteria control cancer response to therapy by modulating the tumor micrenvironment. Science 342:967–70 [Google Scholar]
  84. Viaud S, Saccheri F, Mignot G. 83.  et al. 2013. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–76 [Google Scholar]
  85. Eckburg PB, Bik EM, Bernstein CN. 84.  et al. 2005. Diversity of the human intestinal microbial flora. Science 308:1635–38 [Google Scholar]
  86. Ma L, Kim J, Hatzenpichler R. 85.  et al. 2014. Gene-targeted microfluidic cultivation validated by isolation of gut bacterium listed in Human Microbiome Project's Most Wanted taxa. Proc. Natl. Acad. Sci. USA 111:9768–73 [Google Scholar]
  87. Thomas CM, Nielsen KM. 86.  2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3:711–21 [Google Scholar]
  88. Ochiai K, Yamanaka T, Kimura K, Sawada O. 87.  1959. Inheritance of drug resistance (and its transfer) between Shigella strains and between Shigella and E. coli strains. Hihon Iji Shimpor 1861:34 [In Japanese] [Google Scholar]
  89. Smillie CS, Smith MB, Friedman J. 88.  et al. 2011. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–44 [Google Scholar]
  90. Hehemann JH, Correc G, Barbeyron T. 89.  et al. 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–12 [Google Scholar]
  91. Busby MG, Fischer L, da Costa KA. 90.  et al. 2004. Choline- and betaine-defined diets for use in clinical research and for the management of trimethylaminuria. J. Am. Diet. Assoc. 104:11836–45 [Google Scholar]
  92. Cleland JG, Huan Loh P, Freemantle N. 91.  et al. 2004. Clincial trials update from the European Society of Cariology: SENIORS, ACES, PROVE-IT, ACTION, and the HF-ACTION trial. Eur. J. Heart Fail. 6:787–91 [Google Scholar]
  93. Delzenne NM, Neyrinck AM, Backhed F, Cani PD. 92.  2011. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7:639–46 [Google Scholar]
  94. Degirolamo C, Rainaldi S, Bovenga F. 93.  et al. 2014. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 7:12–18 [Google Scholar]
  95. Chen Z, Guo L, Zhang Y. 94.  et al. 2014. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J. Clin. Invest. 124:3391–406 [Google Scholar]
  96. Craciun S, Balskus EP. 95.  2012. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc. Natl. Acad. Sci. USA 109:21307–12 [Google Scholar]
  97. Zhu Y, Jameson E, Crosatti M. 96.  et al. 2014. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc. Natl. Acad. Sci. USA 111:4268–73 [Google Scholar]
  98. Mejean V, Lobbi-Nivol C, Lepelletier M. 97.  et al. 1994. TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol. Microbiol. 11:1169–79 [Google Scholar]
  99. Lidbury I, Murrell JC, Chen Y. 98.  2014. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. Proc. Natl. Acad. Sci. USA 111:2710–15 [Google Scholar]
  100. Cashman JR, Zhang J. 99.  2006. Human flavin-containing monooxygenases. Annu. Rev. Pharmacol. Toxicol. 46:65–100 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error