1932

Abstract

Macrophage activation syndrome (MAS) is an acute episode of overwhelming inflammation characterized by activation and expansion of T lymphocytes and hemophagocytic macrophages. In rheumatology, it occurs most frequently in patients with systemic juvenile idiopathic arthritis (SJIA) and systemic lupus erythematosus. The main clinical manifestations include cytopenias, liver dysfunction, coagulopathy resembling disseminated intravascular coagulation, and extreme hyperferritinemia. Clinically and pathologically, MAS bears strong similarity to hemophagocytic lymphohistiocytosis (HLH), and some authors prefer the term secondary HLH to describe it. Central to its pathogenesis is a cytokine storm, with markedly increased levels of numerous proinflammatory cytokines including IL-1, IL-6, IL-18, TNFα, and IFNγ. Although there is evidence that IFNγ may play a central role in the pathogenesis of MAS, the role of other cytokines is still not clear. There are several reports of SJIA-associated MAS dramatically benefiting from anakinra, a recombinant IL-1 receptor antagonist, but the utility of other biologics in MAS is not clear. The mainstay of treatment remains corticosteroids; other medications, including cyclosporine, are used in patients who fail to respond.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-061813-012806
2015-01-14
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/med/66/1/annurev-med-061813-012806.html?itemId=/content/journals/10.1146/annurev-med-061813-012806&mimeType=html&fmt=ahah

Literature Cited

  1. Hadchouel M, Prieur AM, Griscelli C. 1.  1985. Acute hemorrhagic, hepatic, and neurologic manifestations in juvenile rheumatoid arthritis: possible relationship to drugs or infection. J. Pediatr. 106:561–66 [Google Scholar]
  2. Mouy R, Stephan JL, Pillet P. 2.  et al. 1996. Efficacy of cyclosporine A in the treatment of macrophage activation syndrome in juvenile arthritis: report of five cases. J. Pediatr. 129:750–54 [Google Scholar]
  3. Grom AA, Passo M. 3.  1996. Macrophage activation syndrome in systemic juvenile rheumatoid arthritis. J. Pediatr. 129:630–32 [Google Scholar]
  4. Ravelli A, De Benedetti F, Viola S, Martini A. 4.  1996. Macrophage activation syndrome in systemic juvenile rheumatoid arthritis successfully treated with cyclosporine. J. Pediatr. 128:275–78 [Google Scholar]
  5. Stephan JL, Kone-Paut I, Galambrun C. 5.  et al. 2001. Reactive haemophagocytic syndrome in children with inflammatory disorders. A retrospective study of 24 patients. Rheumatology 40:1285–92 [Google Scholar]
  6. Sawhney S, Woo P, Murray KJ. 6.  2001. Macrophage activation syndrome: a potentially fatal complication of rheumatic disorders. Arch. Dis. Childhood 85:421–26 [Google Scholar]
  7. Favara BE, Feller AC, Pauli M. 7.  et al. 1997. Contemporary classification of histiocytic disorders. The WHO Committee on Histiocytic/Reticulum Cell Proliferations. Reclassification Working Group of the Histiocyte Society. Med. Pediatr. Oncol. 29:157–66 [Google Scholar]
  8. Jordan MB, Allen CE, Weitzman S. 8.  et al. 2011. How I treat hemophagocytic lymphohistiocytosis. Blood 118:4041–52 [Google Scholar]
  9. Zhang KJ, Jordan MB, Marsh R. 9.  et al. 2011. Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood 118:5794–98 [Google Scholar]
  10. Athreya BH.10.  2002. Is macrophage activation syndrome a new entity?. Clin. Exp. Rheumatol. 20:121–23 [Google Scholar]
  11. Ramanan AV, Schneider R. 11.  2003. Macrophage activation syndrome following initiation of etanercept in a child with systemic onset juvenile rheumatoid arthritis. J. Rheumatol. 30:401–3 [Google Scholar]
  12. Parodi A, Davi S, Pringe AB. 12.  et al. 2009. Macrophage activation syndrome in juvenile systemic lupus erythematosus: a multinational multicenter study of thirty-eight patients. Arthritis Rheum. 60:3388–99 [Google Scholar]
  13. Avcin T, Tse SM, Schneider R. 13.  et al. 2006. Macrophage activation syndrome as the presenting manifestation of rheumatic diseases in childhood. J. Pediatr. 148:683–86 [Google Scholar]
  14. Latino GA, Manlhiot C, Yeung RS. 14.  et al. 2010. Macrophage activation syndrome in the acute phase of Kawasaki disease. J. Pediatr. Hematol./Oncol. 32:527–31 [Google Scholar]
  15. Simonini G, Pagnini I, Innocenti L. 15.  et al. 2010. Macrophage activation syndrome/hemophagocytic lymphohistiocytosis and Kawasaki disease. Pediatr. Blood Cancer 55:592 [Google Scholar]
  16. Dhote R, Simon J, Papo T. 16.  et al. 2003. Reactive hemophagocytic syndrome in adult systemic disease: report of twenty-six cases and literature review. Arthritis Rheum. 49:633–39 [Google Scholar]
  17. Lin CI, Yu HH, Lee JH. 17.  et al. 2012. Clinical analysis of macrophage activation syndrome in pediatric patients with autoimmune diseases. Clin. Rheumatol. 31:1223–30 [Google Scholar]
  18. Moradinejad MH, Ziaee V. 18.  2011. The incidence of macrophage activation syndrome in children with rheumatic disorders. Minerva Pediatr. 63:459–66 [Google Scholar]
  19. Bleesing J, Prada A, Siegel DM. 19.  et al. 2007. The diagnostic significance of soluble CD163 and soluble interleukin-2 receptor alpha-chain in macrophage activation syndrome and untreated new-onset systemic juvenile idiopathic arthritis. Arthritis Rheum. 56:965–71 [Google Scholar]
  20. Behrens EM, Beukelman T, Paessler M, Cron RQ. 20.  2007. Occult macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis. J. Rheumatol. 34:1133–38 [Google Scholar]
  21. Henter JI, Horne A, Arico M. 21.  et al. 2007. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 48:124–31 [Google Scholar]
  22. Ravelli A, Magni-Manzoni S, Pistorio A. 22.  et al. 2005. Preliminary diagnostic guidelines for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. J. Pediatr. 146:598–604 [Google Scholar]
  23. Davi S, Consolaro A, Guseinova D. 23.  et al. 2011. An international consensus survey of diagnostic criteria for macrophage activation syndrome in systemic juvenile idiopathic arthritis. J. Rheumatol. 38:764–68 [Google Scholar]
  24. Stepp SE, Dufourcq-Lagelouse R, Le Deist F. 24.  et al. 1999. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286:1957–59 [Google Scholar]
  25. Feldmann J, Callebaut I, Raposo G. 25.  et al. 2003. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115:461–73 [Google Scholar]
  26. zur Stadt U, Schmidt S, Diler AS. 26.  et al. 2005. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum. Mol. Genet. 14:827–34 [Google Scholar]
  27. Crozat K, Hoebe K, Ugolini S. 27.  et al. 2007. Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. J. Exp. Med. 204:853–63 [Google Scholar]
  28. zur Stadt U, Rohr J, Seifert W. 28.  et al. 2009. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to Syntaxin 11. Am. J. Hum. Genet. 85:482–92 [Google Scholar]
  29. Bode SF, Lehmberg K, Maul-Pavicic A. 29.  et al. 2012. Recent advances in the diagnosis and treatment of hemophagocytic lymphohistiocytosis. Arthritis Res. Ther. 14:213–25 [Google Scholar]
  30. Grom AA, Villanueva J, Lee S. 30.  et al. 2003. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J. Pediatr. 142:292–96 [Google Scholar]
  31. Kaufman KM, Linghu B, Szustakowski JD. 31.  et al. 2014. Whole exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis Rheum. In press
  32. Zhang K, Biroschak J, Glass DN. 32.  et al. 2008. Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis is associated with MUNC13-4 polymorphisms. Arthritis Rheum. 58:2892–96 [Google Scholar]
  33. Vastert SJ, van Wijk R, D'Urbano LE. 33.  et al. 2010. Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology 49:441–49 [Google Scholar]
  34. Jordan MB, Hildeman D, Kappler J, Marrack P. 34.  2004. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood 104:735–43 [Google Scholar]
  35. Pachlopnik Schmid J, Ho CH, Chretien F. 35.  et al. 2009. Neutralization of IFNgamma defeats haemophagocytosis in LCMV-infected perforin- and Rab27a-deficient mice. EMBO Mol. Med. 1:112–24 [Google Scholar]
  36. Pachlopnik Schmid J, Ho CH, Diana J. 36.  et al. 2008. A Griscelli syndrome type 2 murine model of hemophagocytic lymphohistiocytosis (HLH). Eur. J. Immunol. 38:3219–25 [Google Scholar]
  37. Billiau AD, Roskams T, Van Damme-Lombaerts R. 37.  et al. 2005. Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-gamma-producing lymphocytes and IL-6- and TNF-alpha-producing macrophages. Blood 105:1648–51 [Google Scholar]
  38. Krebs P, Crozat K, Popkin D. 38.  et al. 2011. Disruption of MyD88 signaling suppresses hemophagocytic lymphohistiocytosis in mice. Blood 117:6582–88 [Google Scholar]
  39. Pascual V, Allantaz F, Arce E. 39.  et al. 2005. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201:1479–86 [Google Scholar]
  40. Fall N, Barnes M, Thornton S. 40.  et al. 2007. Gene expression profiling of peripheral blood from patients with untreated new-onset systemic juvenile idiopathic arthritis reveals molecular heterogeneity that may predict macrophage activation syndrome. Arthritis Rheum. 56:3793–804 [Google Scholar]
  41. Behrens EM, Canna SW, Slade K. 41.  et al. 2011. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J. Clin. Invest. 121:2264–77 [Google Scholar]
  42. Henter JI, Elinder G, Soder O. 42.  et al. 1991. Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood 78:2918–22 [Google Scholar]
  43. Henter JI, Andersson B, Elinder G. 43.  et al. 1996. Elevated circulating levels of interleukin-1 receptor antagonist but not IL-1 agonists in hemophagocytic lymphohistiocytosis. Med. Pediatr. Oncol. 27:21–25 [Google Scholar]
  44. Sumegi J, Barnes MG, Nestheide SV. 44.  et al. 2011. Gene expression profiling of peripheral blood mononuclear cells from children with active hemophagocytic lymphohistiocytosis. Blood 117:e151–60 [Google Scholar]
  45. Gattorno M, Piccini A, Lasiglie D. 45.  et al. 2008. The pattern of response to anti-interleukin-1 treatment distinguishes two subsets of patients with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 58:1505–15 [Google Scholar]
  46. Nigrovic PA, Mannion M, Prince FH. 46.  et al. 2011. Anakinra as first-line disease-modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum. 63:545–55 [Google Scholar]
  47. Zeft A, Hollister R, LaFleur B. 47.  et al. 2009. Anakinra for systemic juvenile arthritis: the Rocky Mountain experience. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskeletal Dis. 15:161–64 [Google Scholar]
  48. Fitzgerald AA, Leclercq SA, Yan A. 48.  et al. 2005. Rapid responses to anakinra in patients with refractory adult-onset Still's disease. Arthritis Rheum. 52:1794–803 [Google Scholar]
  49. Quartier P, Allantaz F, Cimaz R. 49.  et al. 2011. A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann. Rheum. Dis. 70:747–54 [Google Scholar]
  50. Ruperto N, Brunner HI, Quartier P. 50.  et al. 2012. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367:2396–406 [Google Scholar]
  51. Kelly A, Ramanan AV. 51.  2008. A case of macrophage activation syndrome successfully treated with anakinra. Nat. Clin. Pract. Rheumatol. 4:615–20 [Google Scholar]
  52. Miettunen PM, Narendran A, Jayanthan A. 52.  et al. 2011. Successful treatment of severe paediatric rheumatic disease-associated macrophage activation syndrome with interleukin-1 inhibition following conventional immunosuppressive therapy: case series with 12 patients. Rheumatology 50:417–19 [Google Scholar]
  53. Durand M, Troyanov Y, Laflamme P, Gregoire G. 53.  2010. Macrophage activation syndrome treated with anakinra. J. Rheumatol. 37:879–80 [Google Scholar]
  54. Grom AA, Brunner HI, Ruperto N. 54.  et al. 2014. Canakinumab in systemic juvenile idiopathic arthritis: impact on the rate and clinical presentation of macrophage activation syndrome. Ann. Rheum. Dis. 73:Suppl. 2Abstr. FRI 0528 [Google Scholar]
  55. de Benedetti F, Massa M, Robbioni P. 55.  et al. 1991. Correlation of serum interleukin-6 levels with joint involvement and thrombocytosis in systemic juvenile rheumatoid arthritis. Arthritis Rheum. 34:1158–63 [Google Scholar]
  56. Xu XJ, Tang YM, Song H. 56.  et al. 2012. Diagnostic accuracy of a specific cytokine pattern in hemophagocytic lymphohistiocytosis in children. J. Pediatr. 160:984–90 [Google Scholar]
  57. Strippoli R, Carvello F, Scianaro R. 57.  et al. 2012. Amplification of the response to toll-like receptor ligands by prolonged exposure to interleukin-6 in mice: implication for the pathogenesis of macrophage activation syndrome. Arthritis Rheum. 64:1680–88 [Google Scholar]
  58. de Benedetti F, Brunner HI, Ruperto N. 58.  et al. 2012. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367:2385–95 [Google Scholar]
  59. Kobayashi M, Takahashi Y, Yamashita H. 59.  et al. 2011. Benefit and a possible risk of tocilizumab therapy for adult-onset Still's disease accompanied by macrophage-activation syndrome. Mod. Rheumatol./Jpn. Rheum. Assoc. 21:92–96 [Google Scholar]
  60. Shimizu M, Nakagishi Y, Kasai K. 60.  et al. 2012. Tocilizumab masks the clinical symptoms of systemic juvenile idiopathic arthritis-associated macrophage activation syndrome: the diagnostic significance of interleukin-18 and interleukin-6. Cytokine 58:287–94 [Google Scholar]
  61. Chiossone L, Audonnet S, Chetaille B. 61.  et al. 2012. Protection from inflammatory organ damage in a murine model of hemophagocytic lymphohistiocytosis using treatment with IL-18 binding protein. Front. Immunol. 3:239–49 [Google Scholar]
  62. van Dommelen SL, Sumaria N, Schreiber RD. 62.  et al. 2006. Perforin and granzymes have distinct roles in defensive immunity and immunopathology. Immunity 25:835–48 [Google Scholar]
  63. Makay B, Yilmaz S, Turkyilmaz Z. 63.  et al. 2008. Etanercept for therapy-resistant macrophage activation syndrome. Pediatr. Blood Cancer 50:419–21 [Google Scholar]
  64. Prahalad S, Bove KE, Dickens D. 64.  et al. 2001. Etanercept in the treatment of macrophage activation syndrome. J. Rheumatol. 28:2120–24 [Google Scholar]
  65. Aeberli D, Oertle S, Mauron H. 65.  et al. 2002. Inhibition of the TNF-pathway: use of infliximab and etanercept as remission-inducing agents in cases of therapy-resistant chronic inflammatory disorders. Swiss Med. Wkly. 132:414–22 [Google Scholar]
  66. Stern A, Riley R, Buckley L. 66.  2001. Worsening of macrophage activation syndrome in a patient with adult onset Still's disease after initiation of etanercept therapy. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskeletal Dis. 7:252–56 [Google Scholar]
  67. Puren AJ, Fantuzzi G, Dinarello CA. 67.  1999. Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1 beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc. Natl. Acad. Sci. USA 96:2256–61 [Google Scholar]
  68. Dinarello CA.68.  2007. Interleukin-18 and the pathogenesis of inflammatory diseases. Semin. Nephrol. 27:98–114 [Google Scholar]
  69. Mazodier K, Marin V, Novick D. 69.  et al. 2005. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood 106:3483–89 [Google Scholar]
  70. Maeno N, Takei S, Imanaka H. 70.  et al. 2004. Increased interleukin-18 expression in bone marrow of a patient with systemic juvenile idiopathic arthritis and unrecognized macrophage-activation syndrome. Arthritis Rheum. 50:1935–38 [Google Scholar]
  71. Kawashima M, Yamamura M, Taniai M. 71.  et al. 2001. Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients with adult-onset Still's disease. Arthritis Rheum. 44:550–60 [Google Scholar]
  72. Novick D, Schwartsburd B, Pinkus R. 72.  et al. 2001. A novel IL-18BP ELISA shows elevated serum IL-18BP in sepsis and extensive decrease of free IL-18. Cytokine 14:334–42 [Google Scholar]
  73. Novick D, Elbirt D, Miller G. 73.  et al. 2009. High circulating levels of free interleukin-18 in patients with active SLE in the presence of elevated levels of interleukin-18 binding protein. Cytokine 48:103–4 [Google Scholar]
  74. Favilli F, Anzilotti C, Martinelli L. 74.  et al. 2009. IL-18 activity in systemic lupus erythematosus. Ann. N. Y. Acad. Sci. 1173:301–9 [Google Scholar]
  75. Shimizu M, Yokoyama T, Yamada K. 75.  et al. 2010. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology 49:1645–53 [Google Scholar]
  76. de Jager W, Vastert SJ, Beekman JM. 76.  et al. 2009. Defective phosphorylation of interleukin-18 receptor beta causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 60:2782–93 [Google Scholar]
  77. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 77.  2004. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukocyte Biol. 75:163–89 [Google Scholar]
  78. Mosser DM.78.  2003. The many faces of macrophage activation. J. Leukocyte Biol. 73:209–12 [Google Scholar]
  79. Mantovani A, Sica A, Sozzani S. 79.  et al. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–86 [Google Scholar]
  80. Zoller EE, Lykens JE, Terrell CE. 80.  et al. 2011. Hemophagocytosis causes a consumptive anemia of inflammation. J. Exp. Med. 208:1203–14 [Google Scholar]
  81. Martinez FO, Sica A, Mantovani A, Locati M. 81.  2008. Macrophage activation and polarization. Front. Biosci. 13:453–61 [Google Scholar]
  82. Sikora KA, Fall N, Thornton S, Grom AA. 82.  2012. The limited role of interferon-gamma in systemic juvenile idiopathic arthritis cannot be explained by cellular hyporesponsiveness. Arthritis Rheum. 64:3799–808 [Google Scholar]
  83. Ogilvie EM, Khan A, Hubank M. 83.  et al. 2007. Specific gene expression profiles in systemic juvenile idiopathic arthritis. Arthritis Rheum. 56:1954–65 [Google Scholar]
  84. Bracaglia C, Caiello I, de Graaf K. 84.  et al. 2014. Interferon-gamma in macrophage activation syndrome associated with systemic juvenile idiopathic arthritis: high levels in patients and a role in a murine MAS model Presented at Eur. Paediatr. Rheumatol. Congr., 21st, Belgrade (Abstr.)
  85. Osugi Y, Hara J, Tagawa S. 85.  et al. 1997. Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis. Blood 89:4100–3 [Google Scholar]
  86. Takada H, Takahata Y, Nomura A. 86.  et al. 2003. Increased serum levels of interferon-gamma-inducible protein 10 and monokine induced by gamma interferon in patients with haemophagocytic lymphohistiocytosis. Clin. Exp. Immunol. 133:448–53 [Google Scholar]
  87. de Saint Basile G, Menasche G, Latour S. 87.  2011. Inherited defects causing hemophagocytic lymphohistiocytic syndrome. Ann. N. Y. Acad. Sci. 1246:64–76 [Google Scholar]
  88. Ravelli A, Grom AA, Behrens EM, Cron RQ. 88.  2012. Macrophage activation syndrome as part of systemic juvenile idiopathic arthritis: diagnosis, genetics, pathophysiology and treatment. Genes Immunity 13:289–98 [Google Scholar]
  89. Ibarra MF, Klein-Gitelman M, Morgan E. 89.  et al. 2011. Serum neopterin levels as a diagnostic marker of hemophagocytic lymphohistiocytosis syndrome. Clin. Vaccine Immunol. 18:609–14 [Google Scholar]
  90. Quesnel B, Catteau B, Aznar V. 90.  et al. 1997. Successful treatment of juvenile rheumatoid arthritis associated haemophagocytic syndrome by cyclosporin A with transient exacerbation by conventional-dose G-CSF. Br. J. Haematol. 97:508–10 [Google Scholar]
  91. Gupta AA, Tyrrell P, Valani R. 91.  et al. 2009. Experience with hemophagocytic lymphohistiocytosis/macrophage activation syndrome at a single institution. J. Pediatr. Hematol./Oncol. 13:81–84 [Google Scholar]
  92. Sung L, King SM, Carcao M. 92.  et al. 2002. Adverse outcomes in primary hemophagocytic lymphohistiocytosis. J. Pediatr. Hematol./Oncol. 24:550–54 [Google Scholar]
  93. Coca A, Bundy KW, Marston B. 93.  et al. 2009. Macrophage activation syndrome: serological markers and treatment with anti-thymocyte globulin. Clin. Immunol. 132:10–18 [Google Scholar]
  94. Mahlaoui N, Ouachee-Chardin M, de Saint Basile G. 94.  et al. 2007. Immunotherapy of familial hemophagocytic lymphohistiocytosis with antithymocyte globulins: a single-center retrospective report of 38 patients. Pediatrics 120:e622–28 [Google Scholar]
  95. Su IJ, Wang CH, Cheng AL, Chen RL. 95.  1995. Hemophagocytic syndrome in Epstein-Barr virus-associated T-lymphoproliferative disorders: disease spectrum, pathogenesis, and management. Leukemia Lymphoma 19:401–6 [Google Scholar]
  96. Larroche C, Mouthon L, Casadevall N. 96.  et al. 2000. Successful treatment of thymoma-associated pure red cell aplasia with intravenous immunoglobulins. Eur. J. Haematol. 65:74–76 [Google Scholar]
  97. Balamuth NJ, Nichols KE, Paessler M, Teachey DT. 97.  2007. Use of rituximab in conjunction with immunosuppressive chemotherapy as a novel therapy for Epstein Barr virus-associated hemophagocytic lymphohistiocytosis. J. Pediatr. Hematol./Oncol. 29:569–73 [Google Scholar]
  98. Bosman G, Langemeijer SM, Hebeda KM. 98.  et al. 2009. The role of rituximab in a case of EBV-related lymphoproliferative disease presenting with haemophagocytosis. Netherlands J. Med. 67:364–65 [Google Scholar]
  99. Marsh RA, Allen CE, McClain KL. 99.  et al. 2013. Salvage therapy of refractory hemophagocytic lymphohistiocytosis with alemtuzumab. Pediatr. Blood Cancer 60:101–9 [Google Scholar]
  100. Keith MP, Pitchford C, Bernstein WB. 100.  2012. Treatment of hemophagocytic lymphohistiocytosis with alemtuzumab in systemic lupus erythematosus. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskeletal Dis. 18:134–37 [Google Scholar]
/content/journals/10.1146/annurev-med-061813-012806
Loading
/content/journals/10.1146/annurev-med-061813-012806
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error