Despite their perceived rarity, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rising in incidence and prevalence. The biology, natural history, and therapeutic options for GEP-NETs are heterogeneous: NETs arising in the pancreas can be distinguished from those arising elsewhere in the gastrointestinal tract, and therapy is dichotomized between these two groups. Somatostatin analogues are the mainstay of oncologic management of bowel NETs; everolimus, streptozocin, and sunitinib are approved to treat pancreatic NETs. There are significant differences in molecular genetics between pancreatic and extrapancreatic NETs, and studies are evaluating whether additional NET patients may benefit from targeted agents. We discuss the distinguishing features of these two groups of tumors, as well as the therapeutic implications of the distinction. We also examine the evolving therapeutic landscape and discuss the likelihood that treatment will be developed independently for pancreatic and extrapancreatic gastrointestinal NETs, with novel therapeutics effective for newly identified pathologically or molecularly defined subgroups.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Yao JC, Hassan M, Phan A. 1.  et al. 2008. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 26:3063–72 [Google Scholar]
  2. Vortmeyer AO, Huang S, Lubensky I, Zhuang Z. 2.  2004. Non-islet origin of pancreatic islet cell tumors. J. Clin. Endocrinol. Metab. 89:1934–38 [Google Scholar]
  3. Jensen RT, Berna MJ, Bingham DB, Norton JA. 3.  2008. Inherited pancreatic endocrine tumor syndromes: advances in molecular pathogenesis, diagnosis, management, and controversies. Cancer 113:1807–43 [Google Scholar]
  4. Jiao Y, Shi C, Edil BH. 4.  et al. 2011. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331:1199–203 [Google Scholar]
  5. Wang Y, Ozawa A, Zaman S. 5.  et al. 2011. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization. Cancer Res. 71:371–82 [Google Scholar]
  6. Heaphy CM, de Wilde RF, Jiao Y. 6.  et al. 2011. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333:425 [Google Scholar]
  7. Lovejoy CA, Li W, Reisenweber S. 7.  et al. 2012. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLOS Genet. 8:e1002772 [Google Scholar]
  8. Francis J, Lin W, Rozenblatt-Rosen O, Meyerson M. 8.  2011. The menin tumor suppressor protein is phosphorylated in response to DNA damage. PLOS ONE 6:e16119 [Google Scholar]
  9. Liu L, Broaddus RR, Yao JC. 9.  et al. 2005. Epigenetic alterations in neuroendocrine tumors: methylation of RAS-association domain family 1, isoform A and p16 genes are associated with metastasis. Mod. Pathol. 18:1632–40 [Google Scholar]
  10. Banck MS, Kanwar R, Kulkarni AA. 10.  et al. 2013. The genomic landscape of small intestine neuroendocrine tumors. J. Clin. Investig. 123:2502–8 [Google Scholar]
  11. Francis JM, Kiezun A, Ramos AH. 11.  et al. 2013. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat. Genet. 45:1483–86 [Google Scholar]
  12. Pizzi S, Azzoni C, Bottarelli L. 12.  et al. 2005. RASSF1A promoter methylation and 3p21.3 loss of heterozygosity are features of foregut, but not midgut and hindgut, malignant endocrine tumours. J. Pathol. 206:409–16 [Google Scholar]
  13. Rindi G, Klöppel G, Alhman H. 13.  et al. 2006. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 449:395–401 [Google Scholar]
  14. Edge SB, Byrd DR, Compton CC. 14.  et al. 2010. AJCC Cancer Staging Manual New York: Springer. 7th ed. [Google Scholar]
  15. Kulke MH, Siu LL, Tepper JE. 15.  et al. 2011. Future directions in the treatment of neuroendocrine tumors: consensus report of the National Cancer Institute Neuroendocrine Tumor clinical trials planning meeting. J. Clin. Oncol. 29:934–43 [Google Scholar]
  16. Sorbye H, Welin S, Langer SW. 16.  et al. 2013. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann. Oncol. 24:152–60 [Google Scholar]
  17. Khan MS, Luong TV, Watkins J. 17.  et al. 2013. A comparison of Ki-67 and mitotic count as prognostic markers for metastatic pancreatic and midgut neuroendocrine neoplasms. Br. J. Cancer 108:1838–45 [Google Scholar]
  18. Modlin IM, Gustafsson BI, Moss SF. 18.  et al. 2010. Chromogranin A–biological function and clinical utility in neuro endocrine tumor disease. Ann. Surg. Oncol. 17:2427–43 [Google Scholar]
  19. Bajetta E, Ferrari L, Martinetti A. 19.  et al. 1999. Chromogranin A, neuron specific enolase, carcinoembryonic antigen, and hydroxyindole acetic acid evaluation in patients with neuroendocrine tumors. Cancer 86:858–65 [Google Scholar]
  20. Modlin IM, Drozdov I, Kidd M. 20.  2013. The identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood. PLOS ONE 8:e63364 [Google Scholar]
  21. Whipple AO, Frantz VK. 21.  1935. Adenoma of islet cells with hyperinsulinism: a review. Ann. Surg. 101:1299–335 [Google Scholar]
  22. Kulke MH, Anthony LB, Bushnell DL. 22.  et al. 2010. NANETS treatment guidelines: well-differentiated neuroendocrine tumors of the stomach and pancreas. Pancreas 39:735–52 [Google Scholar]
  23. Nauck MA, Meier JJ. 23.  2012. Diagnostic accuracy of an “amended” insulin-glucose ratio for the biochemical diagnosis of insulinomas. Ann. Intern. Med. 157:767–75 [Google Scholar]
  24. Gorden P, Skarulis MC, Roach P. 24.  et al. 1995. Plasma proinsulin-like component in insulinoma: a 25-year experience. J. Clin. Endocrinol. Metab. 80:2884–87 [Google Scholar]
  25. Zollinger RM, Ellison EH. 25.  1955. Primary peptic ulcerations of the jejunum associated with islet cell tumors of the pancreas. Ann. Surg. 142:709–23; discussion, 724–28 [Google Scholar]
  26. Lamers CG, Van Tongeren JH. 26.  1977. Comparative study of the value of the calcium, secretin, and meal stimulated increase in serum gastrin to the diagnosis of the Zollinger-Ellison syndrome. Gut 18:128–35 [Google Scholar]
  27. Norton JA, Venzon DJ, Berna MJ. 27.  et al. 2008. Prospective study of surgery for primary hyperparathyroidism (HPT) in multiple endocrine neoplasia-type 1 and Zollinger-Ellison syndrome: long-term outcome of a more virulent form of HPT. Ann. Surg. 247:501–10 [Google Scholar]
  28. Alexander HR, Fraker DL, Norton JA. 28.  et al. 1998. Prospective study of somatostatin receptor scintigraphy and its effect on operative outcome in patients with Zollinger-Ellison syndrome. Ann. Surg. 228:228–38 [Google Scholar]
  29. Norton JA, Alexander HR, Fraker DL. 29.  et al. 2004. Does the use of routine duodenotomy (DUODX) affect rate of cure, development of liver metastases, or survival in patients with Zollinger-Ellison syndrome?. Ann. Surg. 239:617–25; discussion 626 [Google Scholar]
  30. Vinik AI, Gonzales MRC. 30.  2011. New and emerging syndromes due to neuroendocrine tumors. Endocrinol. Metab. Clin. North Am. 40:19–63 [Google Scholar]
  31. Verner JV, Morrison AB. 31.  1958. Islet cell tumor and a syndrome of refractory watery diarrhea and hypokalemia. Am. J. Med. 25:374–80 [Google Scholar]
  32. Bloom SR, Polak JM, Pearse AG. 32.  1973. Vasoactive intestinal peptide and watery-diarrhoea syndrome. Lancet 302:14–16 [Google Scholar]
  33. Balls KF, Nicholson JT, Goodman HL, Touchstone JC. 33.  1959. Functioning islet-cell carcinoma of the pancreas with Cushing's syndrome. J. Clin. Endocrinol. Metab. 19:1134–43 [Google Scholar]
  34. Thorner MO, Perryman RL, Cronin MJ. 34.  et al. 1982. Somatotroph hyperplasia. Successful treatment of acromegaly by removal of a pancreatic islet tumor secreting a growth hormone-releasing factor. J. Clin. Investig. 70:965–77 [Google Scholar]
  35. Klöppel G, Rindi G, Anlauf M. 35.  et al. 2007. Site-specific biology and pathology of gastroenteropancreatic neuroendocrine tumors. Virchows Arch. 451:Suppl.S9–27 [Google Scholar]
  36. Geokas MC, Chun JY, Dinan JJ, Beck IT. 36.  1965. Islet-cell carcinoma (Zollinger-Ellison syndrome) with fulminating adrenocortical hyperfunction and hypokalemia. Can. Med. Assoc. J. 93:137–43 [Google Scholar]
  37. Thorson A, Biorck G, Bjorkman G, Waldenstrom J. 37.  1954. Malignant carcinoid of the small intestine with metastases to the liver, valvular disease of the right side of the heart (pulmonary stenosis and tricuspid regurgitation without septal defects), peripheral vasomotor symptoms, bronchoconstriction, and an unusual type of cyanosis; a clinical and pathologic syndrome. Am. Heart J. 47:795–817 [Google Scholar]
  38. Erspamer V, Asero B. 38.  1952. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169:800–1 [Google Scholar]
  39. Su AP, Ke NW, Zhang Y. 39.  et al. 2014. Is laparoscopic approach for pancreatic insulinomas safe? Results of a systematic review and meta-analysis. J. Surg. Res. 186:126–34 [Google Scholar]
  40. Tonelli F, Fratini G, Nesi G. 40.  et al. 2006. Pancreatectomy in multiple endocrine neoplasia type 1-related gastrinomas and pancreatic endocrine neoplasias. Ann. Surg. 244:61–70 [Google Scholar]
  41. Lee LC, Grant CS, Salomao DR. 41.  et al. 2012. Small, nonfunctioning, asymptomatic pancreatic neuroendocrine tumors (PNETs): role for nonoperative management. Surgery 152:965–74 [Google Scholar]
  42. Kuo EJ, Salem RR. 42.  2013. Population-level analysis of pancreatic neuroendocrine tumors 2 cm or less in size. Ann. Surg. Oncol. 20:2815–21 [Google Scholar]
  43. Haynes AB, Deshpande V, Ingkakul T. 43.  et al. 2011. Implications of incidentally discovered, nonfunctioning pancreatic endocrine tumors: short-term and long-term patient outcomes. Arch. Surg. 146:534–38 [Google Scholar]
  44. Yao KA, Talamonti MS, Nemcek A. 44.  et al. 2001. Indications and results of liver resection and hepatic chemoembolization for metastatic gastrointestinal neuroendocrine tumors. Surgery 130:677–82; discussion 682–85 [Google Scholar]
  45. Sarmiento JM, Heywood G, Rubin J. 45.  et al. 2003. Surgical treatment of neuroendocrine metastases to the liver: a plea for resection to increase survival. J. Am. Coll. Surg. 197:29–37 [Google Scholar]
  46. Bacchetti S, Bertozzi S, Londero AP. 46.  et al. 2013. Surgical treatment and survival in patients with liver metastases from neuroendocrine tumors: a meta-analysis of observational studies. Int. J. Hepatol. 2013:235040 [Google Scholar]
  47. Saxena A, Chua TC, Perera M. 47.  et al. 2012. Surgical resection of hepatic metastases from neuroendocrine neoplasms: a systematic review. Surg. Oncol. 21:e131–41 [Google Scholar]
  48. Mazzaferro V, Pulvirenti A, Coppa J. 48.  2007. Neuroendocrine tumors metastatic to the liver: how to select patients for liver transplantation?. J. Hepatol. 47:460–66 [Google Scholar]
  49. Pavel M, Baudin E, Couvelard A. 49.  et al. 2012. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology 95:157–76 [Google Scholar]
  50. Gedaly R, Daily MF, Davenport D. 50.  et al. 2011. Liver transplantation for the treatment of liver metastases from neuroendocrine tumors: an analysis of the UNOS database. Arch. Surg. 146:953–58 [Google Scholar]
  51. Le Treut YP, Gregoire E, Klempnauer J. 51.  et al. 2013. Liver transplantation for neuroendocrine tumors in Europe—results and trends in patient selection: a 213-case European liver transplant registry study. Ann. Surg. 257:807–15 [Google Scholar]
  52. Rossi RE, Burroughs AK, Caplin ME. 52.  2014. Liver transplantation for unresectable neuroendocrine tumor liver metastases. Ann. Surg. Oncol. 21:2398–405 [Google Scholar]
  53. Breedis C, Young G. 53.  1954. The blood supply of neoplasms in the liver. Am. J. Pathol. 30:969–77 [Google Scholar]
  54. Mitty HA, Warner RR, Newman LH. 54.  et al. 1985. Control of carcinoid syndrome with hepatic artery embolization. Radiology 155:623–26 [Google Scholar]
  55. Roche A, Girish BV, de Baere T. 55.  et al. 2003. Trans-catheter arterial chemoembolization as first-line treatment for hepatic metastases from endocrine tumors. Eur. Radiol. 13:136–40 [Google Scholar]
  56. Rhee TK, Lewandowski RJ, Liu DM. 56.  et al. 2008. 90Y Radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience. Ann. Surg. 247:1029–35 [Google Scholar]
  57. Eriksson BK, Larsson EG, Skogseid BM. 57.  et al. 1998. Liver embolizations of patients with malignant neuroendocrine gastrointestinal tumors. Cancer 83:2293–301 [Google Scholar]
  58. Gupta S, Johnson MM, Murthy R. 58.  et al. 2005. Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumors: variables affecting response rates and survival. Cancer 104:1590–602 [Google Scholar]
  59. Engelman ES, Leon-Ferre R, Naraev BG. 59.  et al. 2014. Comparison of transarterial liver-directed therapies for low-grade metastatic neuroendocrine tumors in a single institution. Pancreas 43:219–25 [Google Scholar]
  60. Fiore F, Del Prete M, Franco R. 60.  et al. 2014. Transarterial embolization (TAE) is equally effective and slightly safer than transarterial chemoembolization (TACE) to manage liver metastases in neuroendocrine tumors. Endocrine 47177–82 [Google Scholar]
  61. Rose DM, Allegra DP, Bostick PJ. 61.  et al. 1999. Radiofrequency ablation: a novel primary and adjunctive ablative technique for hepatic malignancies. Am. Surg. 65:1009–14 [Google Scholar]
  62. Bauer W, Briner U, Doepfner W. 62.  et al. 1982. SMS 201–995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci. 31:1133–40 [Google Scholar]
  63. Maton PN, O'Dorisio TM, Howe BA. 63.  et al. 1985. Effect of a long-acting somatostatin analogue (SMS 201–995) in a patient with pancreatic cholera. N. Engl. J. Med. 312:17–21 [Google Scholar]
  64. Kvols LK, Buck M, Moertel CG. 64.  et al. 1987. Treatment of metastatic islet cell carcinoma with a somatostatin analogue (SMS 201–995). Ann. Intern. Med. 107:162–68 [Google Scholar]
  65. Kvols LK, Martin JK, Marsh HM, Moertel CG. 65.  1985. Rapid reversal of carcinoid crisis with a somatostatin analogue. N. Engl. J. Med. 313:1229–30 [Google Scholar]
  66. Kvols LK, Moertel CG, O'Connell MJ. 66.  et al. 1986. Treatment of the malignant carcinoid syndrome. Evaluation of a long-acting somatostatin analogue. N. Engl. J. Med. 315:663–66 [Google Scholar]
  67. Rinke A, Müller H-H, Schade-Brittinger C. 67.  et al. 2009. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol. 27:4656–63 [Google Scholar]
  68. Caplin ME, Pavel M, Cwikla JB. 68.  et al. 2014. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 371:224–33 [Google Scholar]
  69. Hosokawa M, Dolci W, Thorens B. 69.  2001. Differential sensitivity of GLUT1- and GLUT2-expressing beta cells to streptozotocin. Biochem. Biophys. Res. Commun. 289:1114–17 [Google Scholar]
  70. Schein P, Kahn R, Gorden P. 70.  et al. 1973. Streptozotocin for malignant insulinomas and carcinoid tumor. Report of eight cases and review of the literature. Arch. Intern. Med. 132:555–61 [Google Scholar]
  71. Broder LE, Carter SK. 71.  1973. Pancreatic islet cell carcinoma. II. Results of therapy with streptozotocin in 52 patients. Ann. Intern. Med. 79:108–18 [Google Scholar]
  72. Moertel CG, Hanley JA, Johnson LA. 72.  1980. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 303:1189–94 [Google Scholar]
  73. Moertel CG, Lefkopoulo M, Lipsitz S. 73.  et al. 1992. Streptozocin-doxorubicin, streptozocin-fluorouracil or chlorozotocin in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 326:519–23 [Google Scholar]
  74. Kouvaraki MA, Ajani JA, Hoff P. 74.  et al. 2004. Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J. Clin. Oncol. 22:4762–71 [Google Scholar]
  75. McCollum AD, Kulke MH, Ryan DP. 75.  et al. 2004. Lack of efficacy of streptozocin and doxorubicin in patients with advanced pancreatic endocrine tumors. Am. J. Clin. Oncol. 27:485–88 [Google Scholar]
  76. Cheng PN, Saltz LB. 76.  1999. Failure to confirm major objective antitumor activity for streptozocin and doxorubicin in the treatment of patients with advanced islet cell carcinoma. Cancer 86:944–48 [Google Scholar]
  77. Ekeblad S, Sundin A, Janson ET. 77.  et al. 2007. Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin. Cancer Res. 13:2986–91 [Google Scholar]
  78. Kulke MH, Bendell J, Kvols L. 78.  et al. 2011. Evolving diagnostic and treatment strategies for pancreatic neuroendocrine tumors. J. Hematol. Oncol. 4:29 [Google Scholar]
  79. Kulke MH, Hornick JL, Frauenhoffer C. 79.  et al. 2009. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin. Cancer Res. 15:338–45 [Google Scholar]
  80. Strosberg JR, Fine RL, Choi J. 80.  et al. 2011. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 117:268–75 [Google Scholar]
  81. Chan JA, Stuart K, Earle CC. 81.  et al. 2012. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 30:2963–68 [Google Scholar]
  82. Chan JA, Blaszkowsky L, Stuart K. 82.  et al. 2013. A prospective, phase 1/2 study of everolimus and temozolomide in patients with advanced pancreatic neuroendocrine tumor. Cancer 119:3212–18 [Google Scholar]
  83. Kulke MH, Stuart K, Enzinger PC. 83.  et al. 2006. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J. Clin. Oncol. 24:401–6 [Google Scholar]
  84. Yao JC, Shah MH, Ito T. 84.  et al. 2011. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364:514–23 [Google Scholar]
  85. Kulke MH, Bergsland EK, Yao JC. 85.  2009. Glycemic control in patients with insulinoma treated with everolimus. N. Engl. J. Med. 360:195–97 [Google Scholar]
  86. Yao JC, Phan AT, Chang DZ. 86.  et al. 2008. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J. Clin. Oncol. 26:4311–18 [Google Scholar]
  87. Pavel ME, Hainsworth JD, Baudin E. 87.  et al. 2011. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378:2005–12 [Google Scholar]
  88. Kulke MH, Lenz H-J, Meropol NJ. 88.  et al. 2008. Activity of sunitinib in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 26:3403–10 [Google Scholar]
  89. Raymond E, Dahan L, Raoul J-L. 89.  et al. 2011. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364:501–13 [Google Scholar]
  90. Bushnell DL Jr, O'Dorisio TM, O'Dorisio MS. 90.  et al. 2010. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J. Clin. Oncol. 28:1652–59 [Google Scholar]
  91. Kwekkeboom DJ, de Herder WW, Kam BL. 91.  et al. 2008. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate: toxicity, efficacy, and survival. J. Clin. Oncol. 26:2124–30 [Google Scholar]
  92. Zhang J, Jia Z, Li Q. 92.  et al. 2007. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer 109:1478–86 [Google Scholar]
  93. Kulke MH, Chan JA, Meyerhardt JA. 93.  et al. 2011. A prospective phase II study of 2-methoxyestradiol administered in combination with bevacizumab in patients with metastatic carcinoid tumors. Cancer Chemother. Pharmacol. 68:293–300 [Google Scholar]
  94. Chan JA, Stuart K, Earle CC. 94.  et al. 2012. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 30:2963–68 [Google Scholar]
  95. Yao JC, Phan AT, Fogleman D. 95.  et al. 2010. Randomized run-in study of bevacizumab (B) and everolimus (E) in low- to intermediate-grade neuroendocrine tumors (LGNETs) using perfusion CT as functional biomarker. J. Clin. Oncol. 28:Suppl. 154002 (Abstr.) [Google Scholar]
  96. Hobday TJ, Qin R, Moore MJ. 96.  et al. 2013. Multicenter phase II trial of temsirolimus (TEM) and bevacizumab (BEV) in pancreatic neuroendocrine tumor (PNET). J. Clin. Oncol. 31:Suppl.4032 (Abstr.) [Google Scholar]
  97. Phan AT, Yao JC, Fogelman DR. 97.  et al. 2010. A prospective, multi-institutional phase II study of GW786034 (pazopanib) and depot octreotide (sandostatin LAR) in advanced low-grade neuroendocrine carcinoma (LGNEC). J. Clin. Oncol. 28:Suppl. 154001 (Abstr.) [Google Scholar]
  98. Pulido EG, Castellano DE, Garcia-Carbonero R. 98.  et al. 2012. PAZONET: Results of a phase II trial of pazopanib as a sequencing treatment in progressive metastatic neuroendocrine tumors (NETs) patients (pts), on behalf of the Spanish task force for NETs (GETNE)—NCT01280201. J. Clin. Oncol. 30:Suppl.4119 (Abstr.) [Google Scholar]
  99. Like AA, Rossini AA. 99.  1976. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193:415–17 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error