Anticancer targeted therapies are designed to exploit a particular vulnerability in the tumor, which in most cases results from its dependence on an oncogene and/or loss of a tumor suppressor. Genes in the phosphoinositide 3-kinase (PI3K)/AKT pathway are the most frequently altered in human cancers. Aberrant activation of this pathway, as a result of these somatic alterations, is associated with cellular transformation, tumorigenesis, cancer progression, and drug resistance. Several drugs targeting PI3K/ATK are currently in clinical trials, alone or in combination, in both solid tumors and hematologic malignancies. These drugs are the focus of this review.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: The PI3K/AKT Pathway as a Target for Cancer Treatment

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Engelman JA. 1.  2009. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9:550–62 [Google Scholar]
  2. Engelman JA, Luo J, Cantley LC. 2.  2006. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7:606–19 [Google Scholar]
  3. Salmena L, Carracedo A, Pandolfi PP. 3.  2008. Tenets of PTEN tumor suppression. Cell 133:403–14 [Google Scholar]
  4. Manning BD, Cantley LC. 4.  2007. AKT/PKB signaling: navigating downstream. Cell 129:1261–74 [Google Scholar]
  5. Guertin DA, Sabatini DM. 5.  2007. Defining the role of mTOR in cancer. Cancer Cell 12:9–22 [Google Scholar]
  6. Thorpe LM, Yuzugullu H, Zhao JJ. 6.  2015. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer 15:7–24 [Google Scholar]
  7. Ciraolo E, Morello F, Hobbs RM. 7.  et al. 2010. Essential role of the p110beta subunit of phosphoinositide 3-OH kinase in male fertility. Mol. Biol. Cell 21:704–11 [Google Scholar]
  8. Okkenhaug K, Bilancio A, Farjot G. 8.  et al. 2002. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297:1031–34 [Google Scholar]
  9. Sasaki T, Suzuki A, Sasaki J, Penninger JM. 9.  2002. Phosphoinositide 3-kinases in immunity: lessons from knockout mice. J. Biochem. 131:495–501 [Google Scholar]
  10. Huang CH, Mandelker D, Schmidt-Kittler O. 10.  et al. 2007. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 318:1744–48 [Google Scholar]
  11. Hao Y, Wang C, Cao B. 11.  et al. 2013. Gain of interaction with IRS1 by p110alpha-helical domain mutants is crucial for their oncogenic functions. Cancer Cell 23:583–93 [Google Scholar]
  12. Burke JE, Perisic O, Masson GR. 12.  et al. 2012. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110alpha (PIK3CA). PNAS 109:15259–64 [Google Scholar]
  13. Engelman JA, Chen L, Tan X. 13.  et al. 2008. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14:1351–56 [Google Scholar]
  14. Liu P, Cheng H, Santiago S. 14.  et al. 2011. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nat. Med. 17:1116–20 [Google Scholar]
  15. Kinross KM, Montgomery KG, Kleinschmidt M. 15.  et al. 2012. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice. J. Clin. Investig. 122:553–57 [Google Scholar]
  16. Philp AJ, Campbell IG, Leet C. 16.  et al. 2001. The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res. 61:7426–29 [Google Scholar]
  17. Jaiswal BS, Janakiraman V, Kljavin NM. 17.  et al. 2009. Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell 16:463–74 [Google Scholar]
  18. Taniguchi CM, Winnay J, Kondo T. 18.  et al. 2010. The phosphoinositide 3-kinase regulatory subunit p85alpha can exert tumor suppressor properties through negative regulation of growth factor signaling. Cancer Res. 70:5305–15 [Google Scholar]
  19. Luo J, Sobkiw CL, Logsdon NM. 19.  et al. 2005. Modulation of epithelial neoplasia and lymphoid hyperplasia in PTEN+/– mice by the p85 regulatory subunits of phosphoinositide 3-kinase. PNAS 102:10238–43 [Google Scholar]
  20. Cortes I, Sanchez-Ruiz J, Zuluaga S. 20.  et al. 2012. p85beta phosphoinositide 3-kinase subunit regulates tumor progression. PNAS 109:11318–23 [Google Scholar]
  21. Utermark T, Rao T, Cheng H. 21.  et al. 2012. The p110alpha and p110beta isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis. Genes Dev. 26:1573–86 [Google Scholar]
  22. Castellano E, Sheridan C, Thin MZ. 22.  et al. 2013. Requirement for interaction of PI3-kinase p110alpha with RAS in lung tumor maintenance. Cancer Cell 24:617–30 [Google Scholar]
  23. Gritsman K, Yuzugullu H, Von T. 23.  et al. 2014. Hematopoiesis and RAS-driven myeloid leukemia differentially require PI3K isoform p110alpha. J. Clin. Invest. 124:1794–809 [Google Scholar]
  24. Dbouk HA, Vadas O, Shymanets A. 24.  et al. 2012. G protein-coupled receptor-mediated activation of p110β by Gβγ is required for cellular transformation and invasiveness. Sci. Signal. 5:ra89 [Google Scholar]
  25. Jia S, Liu Z, Zhang S. 25.  et al. 2008. Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–79 [Google Scholar]
  26. Wang Q, Von T, Bronson R. 26.  et al. 2013. Spatially distinct roles of class Ia PI3K isoforms in the development and maintenance of PTEN hamartoma tumor syndrome. Genes Dev. 27:1568–80 [Google Scholar]
  27. Weigelt B, Warne PH, Lambros MB. 27.  et al. 2013. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. Clin. Cancer Res. 19:3533–44 [Google Scholar]
  28. Costa C, Ebi H, Martini M. 28.  et al. 2015. Measurement of PIP3 levels reveals an unexpected role for p110beta in early adaptive responses to p110alpha-specific inhibitors in luminal breast cancer. Cancer Cell 27:97–108 [Google Scholar]
  29. Juric D, Castel P, Griffith M. 29.  et al. 2015. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature 518:240–44 [Google Scholar]
  30. 30. Cancer Genome Atlas Network Collaborators 2012. Comprehensive molecular portraits of human breast tumours. Nature 490:61–70 [Google Scholar]
  31. 31. Cancer Genome Atlas Research Network Collaborators 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–68 [Google Scholar]
  32. Iyer G, Hanrahan AJ, Milowsky MI. 32.  et al. 2012. Genome sequencing identifies a basis for everolimus sensitivity. Science 338:221 [Google Scholar]
  33. Wagle N, Grabiner BC, Van Allen EM. 33.  et al. 2014. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N. Engl. J. Med. 371:1426–33 [Google Scholar]
  34. Wagle N, Grabiner BC, Van Allen EM. 34.  et al. 2014. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov. 4:546–53 [Google Scholar]
  35. Chandarlapaty S, Sawai A, Scaltriti M. 35.  et al. 2011. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19:58–71 [Google Scholar]
  36. Chakrabarty A, Sanchez V, Kuba MG. 36.  et al. 2012. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. PNAS 109:2718–23 [Google Scholar]
  37. Garrett JT, Olivares MG, Rinehart C. 37.  et al. 2011. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. PNAS 108:5021–26 [Google Scholar]
  38. Serra V, Scaltriti M, Prudkin L. 38.  et al. 2011. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 30:2547–57 [Google Scholar]
  39. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC. 39.  et al. 2011. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 1:248–59 [Google Scholar]
  40. O'Reilly KE, Rojo F, She QB. 40.  et al. 2006. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66:1500–8 [Google Scholar]
  41. Majumder PK, Febbo PG, Bikoff R. 41.  et al. 2004. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat. Med. 10:594–601 [Google Scholar]
  42. Bendell JC, Rodon J, Burris HA. 42.  et al. 2012. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 30:282–90 [Google Scholar]
  43. Fox EM, Kuba MG, Miller TW. 43.  et al. 2013. Autocrine IGF-I/insulin receptor axis compensates for inhibition of AKT in ER-positive breast cancer cells with acquired resistance to estrogen deprivation. Breast Cancer Res. 15:R55 [Google Scholar]
  44. Tao JJ, Castel P, Radosevic-Robin N. 44.  et al. 2014. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer. Sci. Signal. 7:ra29 [Google Scholar]
  45. Garrett JT, Sutton CR, Kurupi R. 45.  et al. 2013. Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110alpha inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers. Cancer Res. 73:6013–23 [Google Scholar]
  46. Elkabets M, Pazarentzos E, Juric D. 46.  et al. 2015. AXL mediates resistance to PI3Kalpha inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell 27:533–46 [Google Scholar]
  47. Ellis MJ, Lin L, Crowder R. 47.  et al. 2010. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res. Treat. 119:379–90 [Google Scholar]
  48. Miller TW, Balko JM, Arteaga CL. 48.  2011. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J. Clin. Oncol. 29:4452–61 [Google Scholar]
  49. Mayer IA, Abramson VG, Isakoff SJ. 49.  et al. 2014. Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 32:1202–9 [Google Scholar]
  50. Miller TW, Hennessy BT, Gonzalez-Angulo AM. 50.  et al. 2010. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J. Clin. Invest. 120:2406–13 [Google Scholar]
  51. Crowder RJ, Phommaly C, Tao Y. 51.  et al. 2009. PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res. 69:3955–62 [Google Scholar]
  52. Creighton CJ, Fu X, Hennessy BT. 52.  et al. 2010. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res. 12:R40 [Google Scholar]
  53. Bosch A, Li Z, Bergamaschi A. 53.  et al. 2015. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci. Transl. Med. 7:283ra51 [Google Scholar]
  54. Miller TW, Balko JM, Fox EM. 54.  et al. 2011. ERalpha-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discov. 1:338–51 [Google Scholar]
  55. Vora SR, Juric D, Kim N. 55.  et al. 2014. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell 26:136–49 [Google Scholar]
  56. Juvekar A, Burga LN, Hu H. 56.  et al. 2012. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2:1048–63 [Google Scholar]
  57. Janku F, Wheler JJ, Westin SN. 57.  et al. 2012. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J. Clin. Oncol. 30:777–82 [Google Scholar]
  58. Ackermann TF, Hortnagl H, Wolfer DP. 58.  et al. 2008. Phosphatidylinositide dependent kinase deficiency increases anxiety and decreases GABA and serotonin abundance in the amygdala. Cell. Physiol. Biochem. 22:735–44 [Google Scholar]
  59. Kalkman HO. 59.  2006. The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacol. Ther. 110:117–34 [Google Scholar]
  60. Kurmasheva RT, Huang S, Houghton PJ. 60.  2006. Predicted mechanisms of resistance to mTOR inhibitors. Br. J. Cancer 95:955–60 [Google Scholar]
  61. 61. Cancer Genome Atlas Research Network Collaborators 2014. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–50 [Google Scholar]
  62. Hudes G, Carducci M, Tomczak P. 62.  et al. 2007. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356:2271–81 [Google Scholar]
  63. Motzer RJ, Escudier B, Oudard S. 63.  et al. 2008. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–56 [Google Scholar]
  64. Baselga J, Campone M, Piccart M. 64.  et al. 2012. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366:520–29 [Google Scholar]
  65. Hortobagyi GN. 65.  2015. Everolimus plus exemestane for the treatment of advanced breast cancer: a review of subanalyses from BOLERO-2. Neoplasia 17:279–88 [Google Scholar]
  66. Loi S, Haibe-Kains B, Majjaj S. 66.  et al. 2010. PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. PNAS 107:10208–13 [Google Scholar]
  67. Krop IE, Johnston S, Mayer IA. 67.  et al. 2014. The FERGI phase II study of the PI3K inhibitor pictilisib (GDC-0941) plus fulvestrant versus fulvestrant plus placebo in patients with ER+, aromatase inhibitor (AI)-resistant advanced or metastatic breast cancer—Part I results. Proc. San Antonio Breast Cancer Symp. Abstr. S2-02 [Google Scholar]
  68. Serra V, Markman B, Scaltriti M. 68.  et al. 2008. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 68:8022–30 [Google Scholar]
  69. Chakrabarty A, Rexer BN, Wang SE. 69.  et al. 2010. H1047R phosphatidylinositol 3-kinase mutant enhances HER2-mediated transformation by heregulin production and activation of HER3. Oncogene 29:5193–203 [Google Scholar]
  70. Eichhorn PJ, Gili M, Scaltriti M. 70.  et al. 2008. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 68:9221–30 [Google Scholar]
  71. Hanker AB, Pfefferle AD, Balko JM. 71.  et al. 2013. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. PNAS 110:14372–77 [Google Scholar]
  72. Cizkova M, Susini A, Vacher S. 72.  et al. 2012. PIK3CA mutation impact on survival in breast cancer patients and in ERalpha, PR and ERBB2-based subgroups. Breast Cancer Res. 14:R28 [Google Scholar]
  73. Berns K, Horlings HM, Hennessy BT. 73.  et al. 2007. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12:395–402 [Google Scholar]
  74. Cizkova M, Dujaric ME, Lehmann-Che J. 74.  et al. 2013. Outcome impact of PIK3CA mutations in HER2-positive breast cancer patients treated with trastuzumab. Br. J. Cancer 108:1807–9 [Google Scholar]
  75. Jensen JD, Knoop A, Laenkholm AV. 75.  et al. 2012. PIK3CA mutations, PTEN, and pHER2 expression and impact on outcome in HER2-positive early-stage breast cancer patients treated with adjuvant chemotherapy and trastuzumab. Ann. Oncol. 23:2034–42 [Google Scholar]
  76. Baselga J, Cortes J, Im SA. 76.  et al. 2014. Biomarker analyses in CLEOPATRA: a phase III, placebo-controlled study of pertuzumab in human epidermal growth factor receptor 2-positive, first-line metastatic breast cancer. J. Clin. Oncol. 32:3753–61 [Google Scholar]
  77. Baselga J, Majewski I, Nuciforo PG. 77.  et al. 2013. PIK3CA mutations and correlation with pCR in the NeoALTTO trial (BIG 01–06). Proc. Eur. Cancer Congr. Abstr. 1859 [Google Scholar]
  78. Loibl S, von Minckwitz G, Schneeweiss A. 78.  et al. 2014. PIK3CA mutations are associated with lower rates of pathologic complete response to anti-human epidermal growth factor receptor 2 (her2) therapy in primary HER2-overexpressing breast cancer. J. Clin. Oncol. 32:3212–20 [Google Scholar]
  79. Majewski IJ, Nuciforo P, Mittempergher L. 79.  et al. 2015. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J. Clin. Oncol. 33:1334–39 [Google Scholar]
  80. Gianni L, Bianchini G, Kiermaier A. 80.  et al. 2011. Neoadjuvant pertuzumab (P) and trastuzumab (H): biomarker analyses of a 4-arm randomized phase ii study (NeoSphere) in patients (pts) with HER2-positive breast cancer (BC) Presented at San Antonio Breast Cancer Symp., San Antonio, TX, Dec 6–10 [Google Scholar]
  81. Contreras A, Herrera S, Wang T. 81.  et al. 2013. PIK3CA mutations and/or low PTEN predict resistance to combined anti-HER2 therapy with lapatinib and trastuzumab and without chemotherapy in TBCRC006, a neoadjuvant trial of HER2-positive breast cancer patients Poster at San Antonio Breast Cancer Symp., San Antonio, TX, Dec. 10–14 [Google Scholar]
  82. Pogue-Geile KL, Song N, Jeong JH. 82.  et al. 2015. Intrinsic subtypes, PIK3CA mutation, and the degree of benefit from adjuvant trastuzumab in the NSABP B-31 trial. J. Clin. Oncol. 33:1340–47 [Google Scholar]
  83. Lannutti BJ, Meadows SA, Herman SE. 83.  et al. 2011. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117:591–94 [Google Scholar]
  84. Herman SE, Gordon AL, Wagner AJ. 84.  et al. 2010. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 116:2078–88 [Google Scholar]
  85. Meadows SA, Vega F, Kashishian A. 85.  et al. 2012. PI3Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood 119:1897–900 [Google Scholar]
  86. Keating MJ, Flinn I, Jain V. 86.  et al. 2002. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 99:3554–61 [Google Scholar]
  87. Lemery SJ, Zhang J, Rothmann MD. 87.  et al. 2010. U.S. Food and Drug Administration approval: ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab. Clin. Cancer Res. 16:4331–38 [Google Scholar]
  88. Fischer K, Cramer P, Busch R. 88.  et al. 2011. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J. Clin. Oncol. 29:3559–66 [Google Scholar]
  89. Castillo JJ, Furman M, Winer ES. 89.  2012. CAL-101: a phosphatidylinositol-3-kinase p110-delta inhibitor for the treatment of lymphoid malignancies. Expert Opin. Investig. Drugs 21:15–22 [Google Scholar]
  90. Furman RR, Sharman JP, Coutre SE. 90.  et al. 2014. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 370:997–1007 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error