Noninvasive prenatal DNA testing is the vanguard of genomic medicine. In only four years, this screening test has revolutionized prenatal care globally and opened up new prospects for personalized medicine for the fetus. There are widespread implications for increasing the scope of human genetic variation that can be detected before birth, and for discovering more about maternofetal and placental biology. These include an urgent need to develop pretest education for all pregnant women and consistent post-test management recommendations for those with discordant test results. The reduction in invasive testing has had downstream effects on specialist training and caused many countries to re-examine their national approaches to prenatal screening. Finally, the accumulating datasets of genomic information on pregnant women and their fetuses raise ethical issues regarding consent for future data mining and intellectual property.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Wang L, Wheeler DA. 1.  2014. Genomic sequencing for cancer diagnosis and therapy. Annu. Rev. Med. 65:33–48 [Google Scholar]
  2. Weeke P, Roden DM. 2.  2014. Applied pharmacogenomics in cardiovascular medicine. Annu. Rev. Med. 65:81–94 [Google Scholar]
  3. Bianchi DW. 3.  2012. From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges. Nat. Med. 18:1041–51 [Google Scholar]
  4. Wong FC, Lo YM. 4.  2016. Prenatal diagnosis innovation: genome sequencing of maternal plasma. Annu. Rev. Med. 67:419–32 [Google Scholar]
  5. 5. ACOG Comm. Pract. Bull. 2007. ACOG Practice Bulletin No. 77: screening for fetal chromosomal abnormalities. Obstet. Gynecol. 109:217–27 [Google Scholar]
  6. 6. UK NHS Fetal Anomaly Screening Programme 2014. Screening for Down's syndrome: UK National Screening Committee policy recommendations, 2011–2014 model of best practice http://anr-dpn.vjf.cnrs.fr/sites/default/files/NSCModel-of-Best-Practice-DS%20screening2011-2014Sept2011.pdf
  7. Wald NJ, Rodeck C, Hackshaw AK. 7.  et al. 2003. First and second trimester antenatal screening for Down's syndrome: the results of the Serum, Urine and Ultrasound Screening Study (SURUSS). J. Med. Screen. 10:56–104 [Google Scholar]
  8. Malone FD, Canick JA, Ball RH. 8.  et al. 2005. First-trimester or second-trimester screening, or both, for Down's syndrome. N. Engl. J. Med. 353:2001–11 [Google Scholar]
  9. Hui L, Muggli E, Halliday J. 9.  2015. Population-based trends in prenatal screening and diagnosis for aneuploidy: a retrospective analysis of 38 years of state-wide data. BJOG 123:90–97 [Google Scholar]
  10. Lo YM, Corbetta N, Chamberlain PF. 10.  et al. 1997. Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–87 [Google Scholar]
  11. Alberry M, Maddocks D, Jones M. 11.  et al. 2007. Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat. Diagn. 27:415–18 [Google Scholar]
  12. Canick JA, Palomaki GE, Kloza EM. 12.  et al. 2013. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat. Diagn. 33:667–74 [Google Scholar]
  13. Lui YY, Chik KW, Chiu RW. 13.  et al. 2002. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin. Chem. 48:421–27 [Google Scholar]
  14. Vora NL, Johnson KL, Basu S. 14.  et al. 2012. A multifactorial relationship exists between total circulating cell-free DNA levels and maternal BMI. Prenat. Diagn. 32:912–14 [Google Scholar]
  15. Taylor-Phillips S, Freeman K, Geppert J. 15.  et al. 2016. Accuracy of non-invasive prenatal testing using cellfree DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open 6:e010002 doi:10.1136/bmjopen-2015-010002 [Google Scholar]
  16. Mennuti MT, Cherry AM, Morrissette JJ, Dugoff L. 16.  2013. Is it time to sound an alarm about false-positive cell-free DNA testing for fetal aneuploidy?. Am. J. Obstet. Gynecol. 209:415–19 [Google Scholar]
  17. Benn P, Borrell A, Chiu R. 17.  et al. 2015. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat. Diagn. 35:725–34 [Google Scholar]
  18. 18. Comm. Genet. Soc. Matern.-Fetal Med 2015. Committee Opinion No. 640: cell-free DNA screening for fetal aneuploidy. Obstet. Gynecol. 126:e31–e37 [Google Scholar]
  19. Dar P, Curnow KJ, Gross SJ. 19.  et al. 2014. Clinical experience and follow-up with large scale single-nucleotide polymorphism-based noninvasive prenatal aneuploidy testing. Am. J. Obstet. Gynecol. 211:527.e1–e17 [Google Scholar]
  20. Bianchi DW, Parker RL, Wentworth JW. 20.  et al. 2014. DNA sequencing versus standard prenatal aneuploidy screening. N. Engl. J. Med. 370:799–808 [Google Scholar]
  21. Fiorentino F, Bobo S, Pizzuti F. 21.  et al. 2016. The importance of determining the limit of detection of non-invasive prenatal testing methods. Prenat. Diagn. 36:304–11 [Google Scholar]
  22. Palomaki GE, Kloza EM, Lambert-Messerlian GM. 22.  et al. 2015. Circulating cell free DNA testing: Are some test failures informative?. Prenat. Diagn. 35:289–93 [Google Scholar]
  23. Gil MM, Quezada MS, Bregant B. 23.  et al. 2013. Implementation of maternal blood cell-free DNA testing in early screening for aneuploidies. Ultrasound Obstet. Gynecol. 42:34–40 [Google Scholar]
  24. Gil MM, Revello R, Poon LC. 24.  et al. 2016. Clinical implementation of routine screening for fetal trisomies in the UK NHS: cell-free DNA test contingent on results from first-trimester combined test. Ultrasound Obstet. Gynecol. 47:45–52 [Google Scholar]
  25. Bianchi DW, Prosen T, Platt LD. 25.  et al. 2013. Massively parallel sequencing of maternal plasma DNA in 113 cases of fetal nuchal cystic hygroma. Obstet. Gynecol. 121:1057–62 [Google Scholar]
  26. Gil MM, Quezada MS, Revello R. 26.  et al. 2015. Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: updated meta-analysis. Ultrasound Obstet. Gynecol. 45:249–66 [Google Scholar]
  27. Bianchi DW, Parsa S, Bhatt S. 27.  et al. 2015. Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology. Obstet. Gynecol. 125:375–82 [Google Scholar]
  28. Grati FR, Bajaj K, Malvestiti F. 28.  et al. 2015. The type of feto-placental aneuploidy detected by cfDNA testing may influence the choice of confirmatory diagnostic procedure. Prenat. Diagn. 35:994–98 [Google Scholar]
  29. Wang Y, Chen Y, Tian F. 29.  et al. 2014. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing. Clin. Chem. 60:251–59 [Google Scholar]
  30. Russell LM, Strike P, Browne CE. 30.  et al. 2007. X chromosome loss and ageing. Cytogenet. Genome Res. 116:181–85 [Google Scholar]
  31. Peters D, Chu T, Yatsenko SA. 31.  et al. 2011. Noninvasive prenatal diagnosis of a fetal microdeletion syndrome. N. Engl. J. Med. 365:1847–48 [Google Scholar]
  32. Jensen TJ, Dzakula Z, Deciu C. 32.  et al. 2012. Detection of microdeletion 22q11.2 in a fetus by next-generation sequencing of maternal plasma. Clin. Chem. 58:1148–51 [Google Scholar]
  33. Srinivasan A, Bianchi DW, Huang H. 33.  et al. 2013. Noninvasive detection of fetal subchromosome abnormalities via deep sequencing of maternal plasma. Am. J. Hum. Genet. 92:167–76 [Google Scholar]
  34. Yu SC, Jiang P, Choy KW. 34.  et al. 2013. Noninvasive prenatal molecular karyotyping from maternal plasma. PLOS ONE 8:e60968 doi:10.1371/journal.pone.0060968 [Google Scholar]
  35. Chen S, Lau TK, Zhang C. 35.  et al. 2013. A method for noninvasive detection of fetal large deletions/duplications by low coverage massively parallel sequencing. Prenat. Diagn. 33:584–90 [Google Scholar]
  36. Wapner RJ, Babiarz JE, Levy B. 36.  et al. 2015. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am. J. Obstet. Gynecol. 212:332e1–e9 [Google Scholar]
  37. Zhao C, Tynan J, Ehrich M. 37.  et al. 2015. Detection of fetal subchromosomal abnormalities by sequencing circulating cell-free DNA from maternal plasma. Clin. Chem. 61:608–16 [Google Scholar]
  38. Yin A-H, Peng C-F, Zhao X. 38.  et al. 2015. Noninvasive detection of fetal subchromosomal abnormalities by semiconductor sequencing of maternal plasma DNA. PNAS 112:14670–75 [Google Scholar]
  39. Lo KK, Karampetsou E, Boustred C. 39.  et al. 2016. Limited clinical utility of non-invasive prenatal testing for subchromosomal abnormalities. Am. J. Hum. Genet. 98:1–11 [Google Scholar]
  40. Wapner RJ, Martin CL, Levy B. 40.  et al. 2012. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 367:2175–84 [Google Scholar]
  41. Norton ME, Jelliffe-Pawlowski LL, Currier RJ. 41.  2014. Chromosome abnormalities detected by current prenatal screening and noninvasive prenatal testing. Obstet. Gynecol. 124:979–86 [Google Scholar]
  42. Helgeson J, Wardrop J, Boomer T. 42.  et al. 2015. Clinical outcome of subchromosomal events detected by whole-genome noninvasive prenatal testing. Prenat. Diagn. 35:999–1004 [Google Scholar]
  43. Gross SJ, Stosic M, McDonald-McGinn DM. 43.  et al. 2016. Clinical experience with single-nucleotide polymorphism-based non-invasive prenatal screening for 22q11.2 deletion syndrome. Ultrasound Obstet. Gynecol. 47:177–83 [Google Scholar]
  44. Hui L. 44.  2016. Cell-free DNA testing for 22q11.2 deletion syndrome: appraising the viability, effectiveness and appropriateness of screening. Ultrasound Obstet. Gynecol. 47:137–41 [Google Scholar]
  45. Yaron Y, Jani J, Schmid M. 45.  et al. 2015. Current status of testing for microdeletion syndromes and rare autosomal trisomies using cell-free DNA technology. Obstet. Gynecol. 126:1095–99 [Google Scholar]
  46. 46. American Congress of Obstetricians and Gynecologists 2016. Practice Bulletin No. 162 summary: screening for fetal aneuploidy. Obstet. Gynecol. 127:979–81 [Google Scholar]
  47. Lefkowitz RB, Tynan JA, Liu T. 47.  et al. 2016. Clinical validation of a noninvasive prenatal test for genomewide detection of fetal copy number variants. Am. J. Obstet. Gynecol. 215:227.e1–e.16 [Google Scholar]
  48. Taglauer ES, Wilkins-Haug L, Bianchi DW. 48.  2014. Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta 35:Suppl.S64–S68 [Google Scholar]
  49. Kalousek DK, Vekemans M. 49.  1996. Confined placental mosaicism. J. Med. Genet. 33:529–33 [Google Scholar]
  50. Curnow KJ, Wilkins-Haug L, Ryan A. 50.  et al. 2015. Detection of triploid, molar, and vanishing twin pregnancies by a single-nucleotide polymorphism-based noninvasive prenatal test. Am. J. Obstet. Gynecol. 212:79.e1–e9 [Google Scholar]
  51. Sachs A, Blanchard L, Buchanan A. 51.  et al. 2015. Recommended pre-test counseling points for noninvasive prenatal testing using cell-free DNA: a 2015 perspective. Prenat. Diagn. 35:968–71 [Google Scholar]
  52. Bianchi DW. 52.  2015. Pregnancy: prepare for unexpected prenatal test results. Nature 522:29–30 [Google Scholar]
  53. Snyder HL, Curnow KJ, Bhatt S, Bianchi DW. 53.  2016. Follow-up of multiple aneuploidies and single monosomies detected by noninvasive prenatal testing: implications for management and counseling. Prenat. Diagn. 36:203–9 [Google Scholar]
  54. Snyder MW, Simmons LE, Kitzman JO. 54.  et al. 2015. Copy-number variation and false positive prenatal aneuploidy screening results. N. Engl. J. Med. 372:1639–45 [Google Scholar]
  55. Meschino WS, Miller K, Bedford HM. 55.  2016. Incidental detection of familial APP duplication: an unusual reason for a false positive NIPT result of trisomy 21. Prenat. Diagn. 36:382–84 [Google Scholar]
  56. Schuring-Blom H, Lichtenbelt K, van Galen K. 56.  et al. 2016. Maternal vitamin B12 deficiency and abnormal cell-free DNA results in pregnancy. Prenat. Diagn. 36:790–93 [Google Scholar]
  57. Dharajiya NG, Namba A, Horiuchi I. 57.  et al. 2015. Uterine leiomyoma confounding a noninvasive prenatal test result. Prenat. Diagn. 35:990–93 [Google Scholar]
  58. Osborne CM, Hardisty E, Devers P. 58.  et al. 2013. Discordant noninvasive prenatal testing results in a patient subsequently diagnosed with metastatic disease. Prenat. Diagn. 33:609–11 [Google Scholar]
  59. Vandenberghe P, Wlodarska I, Tousseyn T. 59.  et al. 2015. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin's lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. Lancet Haematol 2:e55–e65 [Google Scholar]
  60. Amant F, Verheecke M, Wlodarska I. 60.  et al. 2015. Presymptomatic identification of cancers in pregnant women during noninvasive prenatal testing. JAMA Oncol 1:814–19 [Google Scholar]
  61. Bianchi DW, Chudova D, Sehnert AJ. 61.  et al. 2015. Noninvasive prenatal testing and incidental detection of occult maternal malignancies. JAMA 314:2162–69 [Google Scholar]
  62. Chandrasekharan S, Minear MA, Hung A, Allyse MA. 62.  2014. Noninvasive prenatal testing goes global. Sci. Transl. Med. 6:231fs15 [Google Scholar]
  63. Chitty L, Cameron L, Daley R. 63.  et al. 2015. RAPID non-invasive prenatal testing (NIPT) evaluation study: executive summary http://legacy.screening.nhs.uk/policydb_download.php?doc=551
  64. 64. EMGO Inst. Health Care Res 2014. TRIDENT study: trial by Dutch laboratories for evaluation of non-invasive prenatal testing (NIPT).EMGO Inst. Health Care Res., Amsterdam. http://www.emgo.nl/research/quality-of-care/research-projects/1451/trident-study-trial-by-dutch-laboratories-for-evaluation-of-non-invasive-prenatal-testing-nipt/background
  65. Robson S, Hui L. 65.  2015. National decline in invasive diagnostic procedures in association with combined first trimester and cell-free DNA-based aneuploidy screening. Aust. N. Z. J. Obstet. Gynaecol. 55:507–10 [Google Scholar]
  66. Larion S, Warsof SL, Romary L. 66.  et al. 2014. Association of combined first-trimester screen and noninvasive prenatal testing on diagnostic procedures. Obstet. Gynecol. 123:1303–10 [Google Scholar]
  67. Platt LD, Janicki MB, Prosen T. 67.  et al. 2014. Impact of noninvasive prenatal testing in regionally dispersed medical centers in the United States. Am. J. Obstet. Gynecol. 211:368.e1–e7 [Google Scholar]
  68. Williams J 3rd, Rad S, Beauchamp S. 68.  et al. 2015. Utilization of noninvasive prenatal testing: impact on referrals for diagnostic testing. Am. J. Obstet. Gynecol. 213:102.e1–e6 [Google Scholar]
  69. Tabor A, Vestergaard CH, Lidegaard O. 69.  2009. Fetal loss rate after chorionic villus sampling and amniocentesis: an 11-year national registry study. Ultrasound Obstet. Gynecol. 34:19–24 [Google Scholar]
  70. Halliday JL, Lumley J, Sheffield LJ. 70.  et al. 1992. Importance of complete follow-up of spontaneous fetal loss after amniocentesis and chorion villus sampling. Lancet 340:886–90 [Google Scholar]
  71. Hui L, The S, McCarthy EA, Walker SP. 71.  2015. Emerging issues in invasive prenatal diagnosis: safety and competency in the post-NIPT era. Aust. N. Z. J. Obstet. Gynaecol. 55:541–46 [Google Scholar]
  72. Hui L, Tabor A, Walker SP, Kilby MD. 72.  2016. How to safeguard competency and training in invasive prenatal diagnosis: “The elephant in the room.”. Ultrasound Obstet. Gynecol. 47:8–13 [Google Scholar]
  73. Warsof SL, Larion S, Abuhamad AZ. 73.  2015. Overview of the impact of noninvasive prenatal testing on diagnostic procedures. Prenat. Diagn. 35:972–79 [Google Scholar]
  74. Sago H, Sekizawa A. 74.  Japan NIPT Consortium 2015. Nationwide demonstration project of next-generation sequencing of cell-free DNA in maternal plasma in Japan: 1-year experience. Prenat. Diagn. 35:331–36 [Google Scholar]
  75. Natoli JL, Ackerman DL, McDermott S, Edwards JG. 75.  2012. Prenatal diagnosis of Down syndrome: a systematic review of termination rates (1995–2011). Prenat. Diagn. 32:142–53 [Google Scholar]
  76. Scior K, Addai-Davis J, Kenyon M, Sheridan JC. 76.  2013. Stigma, public awareness about intellectual disability and attitudes to inclusion among different ethnic groups. J. Intellect. Disabil. Res. 57:1014–26 [Google Scholar]
  77. Halverson CM, Clift KE, McCormick JB. 77.  2016. Was it worth it? Patients' perspectives on the perceived value of genomic-based individualized medicine. J. Community Genet. 7:145–52 [Google Scholar]
  78. Bernhardt BA, Soucier D, Hanson K. 78.  et al. 2013. Women's experiences receiving abnormal prenatal chromosomal microarray testing results. Genet. Med. 15:139–45 [Google Scholar]
  79. Dondorp W, de Wert G, Bombard Y. 79.  et al. 2015. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening. Eur. J. Hum. Genet. 23:1592 [Google Scholar]
  80. Hodgson J, Metcalfe S, Gaff C. 80.  et al. 2016. Outcomes of a randomised controlled trial of a complex genetic counselling intervention to improve family communication. Eur. J. Hum. Genet. 24:356–60 [Google Scholar]
  81. Minear MA, Lewis C, Pradhan S, Chandrasekharan S. 81.  2015. Global perspectives on clinical adoption of NIPT. Prenat. Diagn. 35:959–67 [Google Scholar]
  82. Sun Y, Almasri E, Wu Y. 82.  et al. 2015. Characterization of common maternal copy number variations observed in non-invasive prenatal testing Presented at Am. Soc. Hum. Genet. Annu. Meet., Baltimore, MD, Oct. 6–10
  83. Xu H, Chen F, Jin X. 83.  et al. 2015. Chinese population allele frequency estimations based on large-scale non-invasive prenatal testing samples Presented at Am. Soc. Hum. Genet. Annu. Meet., Baltimore, MD, Oct. 6–10
  84. Edwards KL, Korngiebel DM, Pfeifer L. 84.  et al. 2016. Participant views on consent in cancer genetics research: preparing for the precision medicine era. J. Community Genet. 7:133–43 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error