1932

Abstract

Interleukin-2 (IL-2) is integral to immune system regulation. Its opposing immunostimulatory and immunosuppressive actions make it an attractive therapeutic target for cancer and autoimmune diseases. A challenge in developing IL-2-directed anticancer therapies has been how to stimulate effector T cells (Teffs) without inducing regulatory T cells (Tregs) in the tumor microenvironment; conversely, IL-2 therapy for autoimmune diseases requires Treg induction without further stimulation of Teffs. High-dose IL-2 is approved for melanoma and renal cell carcinoma, but its therapeutic value is limited by a need for frequent dosing at specialist centers, its short half-life, severe toxicity, and a lack of efficacy in most patients. Re-engineered IL-2 therapeutics are designed to have longer in vivo half-lives, target specific IL-2 receptor conformations to stimulate specific T cell subsets, or localize to target tissues to optimize efficacy and reduce toxicity. We discuss recent studies that elucidate the potential of newly engineered IL-2-based therapeutics for cancer and autoimmune diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-073118-011031
2021-01-27
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/med/72/1/annurev-med-073118-011031.html?itemId=/content/journals/10.1146/annurev-med-073118-011031&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mitra S, Leonard WJ. 2018. Biology of IL-2 and its therapeutic modulation: mechanisms and strategies. J. Leukoc. Biol. 103:4643–55
    [Google Scholar]
  2. 2. 
    Feng Y, Arvey A, Chinen T et al. 2014. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158:4749–63
    [Google Scholar]
  3. 3. 
    Wang X, Rickert M, Garcia KC 2005. Structure of the quaternary complex of interleukin-2 with its α, β, and γc receptors. Science 310:57511159–63
    [Google Scholar]
  4. 4. 
    Balkwill FR, Capasso M, Hagemann T 2012. The tumor microenvironment at a glance. J. Cell Sci. 125:Pt. 235591–96
    [Google Scholar]
  5. 5. 
    Fridman WH, Pagès F, Sautès-Fridman C et al. 2012. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12:4298–306
    [Google Scholar]
  6. 6. 
    Diehl A, Yarchoan M, Hopkins A et al. 2017. Relationships between lymphocyte counts and treatment-related toxicities and clinical responses in patients with solid tumors treated with PD-1 checkpoint inhibitors. Oncotarget 8:69114268–80
    [Google Scholar]
  7. 7. 
    Suzuki H, Kündig TM, Furlonger C et al. 1995. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268:52161472–76
    [Google Scholar]
  8. 8. 
    Chatila TA, Blaeser F, Ho N et al. 2000. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Investig. 106:12R75–81
    [Google Scholar]
  9. 9. 
    Hori S, Nomura T, Sakaguchi S 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299:56091057–61
    [Google Scholar]
  10. 10. 
    Zorn E, Nelson EA, Mohseni M et al. 2006. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108:51571–79
    [Google Scholar]
  11. 11. 
    Klatzmann D, Abbas AK. 2015. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 15:5283–94
    [Google Scholar]
  12. 12. 
    Rosenberg SA, Lotze MT, Muul LM et al. 1985. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313:231485–92
    [Google Scholar]
  13. 13. 
    Rosenberg SA. 2014. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192:125451–58
    [Google Scholar]
  14. 14. 
    Rosenberg SA, Yang JC, Topalian SL et al. 1994. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271:12907–13
    [Google Scholar]
  15. 15. 
    Proleukin® (aldesleukin). Prescribing information San Diego, CA: Prometheus Laboratories 2012.
  16. 16. 
    Dutcher JP, Schwartzentruber DJ, Kaufman HL et al. 2014. High dose interleukin-2 (Aldesleukin)—expert consensus on best management practices—2014. J. Immunother. Cancer 2:126
    [Google Scholar]
  17. 17. 
    Yang JC, Sherry RM, Steinberg SM et al. 2003. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J. Clin. Oncol. 21:163127–32
    [Google Scholar]
  18. 18. 
    Rosenberg SA, Restifo NP. 2015. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:623062–68
    [Google Scholar]
  19. 19. 
    Rosenberg SA, Packard BS, Aebersold PM et al. 1988. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 319:251676–80
    [Google Scholar]
  20. 20. 
    Rosenberg SA, Yannelli JR, Yang JC et al. 1994. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst. 86:151159–66
    [Google Scholar]
  21. 21. 
    Rosenberg SA, Yang JC, Sherry RM et al. 2011. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17:134550–57
    [Google Scholar]
  22. 22. 
    Albertini MR, Hank JA, Schiller JH et al. 1997. Phase IB trial of chimeric antidisialoganglioside antibody plus interleukin 2 for melanoma patients. Clin. Cancer Res. 3:81277–88
    [Google Scholar]
  23. 23. 
    Yu AL, Gilman AL, Ozkaynak MF et al. 2010. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363:141324–34
    [Google Scholar]
  24. 24. 
    Unituxin (dinutuximab). Prescribing information Research Triangle Park, NC: United Therapeutics Corp. 2020.
  25. 25. 
    Zhao Z, Zhang X, Su L et al. 2018. Fine tuning subsets of CD4+ T cells by low-dosage of IL-2 and a new therapeutic strategy for autoimmune diseases. Int. Immunopharmacol. 56:269–76
    [Google Scholar]
  26. 26. 
    Koreth J, Matsuoka K, Kim HT et al. 2011. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365:222055–66
    [Google Scholar]
  27. 27. 
    Hartemann A, Bensimon G, Payan CA et al. 2013. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 1:4295–305
    [Google Scholar]
  28. 28. 
    von Spee-Mayer C, Siegert E, Abdirama D et al. 2016. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75:71407–15
    [Google Scholar]
  29. 29. 
    Boyman O, Kovar M, Rubinstein MP et al. 2006. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311:57691924–27
    [Google Scholar]
  30. 30. 
    Létourneau S, van Leeuwen EMM, Krieg C et al. 2010. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor α subunit CD25. PNAS 107:52171–76
    [Google Scholar]
  31. 31. 
    Spangler JB, Trotta E, Tomala J et al. 2018. Engineering a single-agent cytokine/antibody fusion that selectively expands regulatory T cells for autoimmune disease therapy. J. Immunol. 201:72094–106
    [Google Scholar]
  32. 32. 
    Long SA, Rieck M, Sanda S et al. 2012. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 61:92340–48
    [Google Scholar]
  33. 33. 
    Gold R, Giovannoni G, Selmaj K et al. 2013. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet 381:98842167–75
    [Google Scholar]
  34. 34. 
    Eur. Med. Agency (EMA) 2018. EMA review of Zinbryta confirms medicine's risks outweigh its benefits Press Release, May 18. EMA, Amsterdam, Neth. https://www.ema.europa.eu/en/news/ema-review-zinbryta-confirms-medicines-risks-outweigh-its-benefits
    [Google Scholar]
  35. 35. 
    Katre NV, Knauf MJ, Laird WJ 1987. Chemical modification of recombinant interleukin 2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model. PNAS 84:61487–91
    [Google Scholar]
  36. 36. 
    Charych D, Khalili S, Dixit V et al. 2017. Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLOS ONE 12:7e0179431
    [Google Scholar]
  37. 37. 
    Charych DH, Hoch U, Langowski JL et al. 2016. NKTR-214: an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22:3680–90
    [Google Scholar]
  38. 38. 
    Konrad MW, Hemstreet G, Hersh EM et al. 1990. Pharmacokinetics of recombinant interleukin 2 in humans. Cancer Res 50:72009–17
    [Google Scholar]
  39. 39. 
    Bentebibel S-E, Hurwitz ME, Bernatchez C et al. 2019. A first-in-human study and biomarker analysis of NKTR-214, a novel IL2rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov 9:6711–21
    [Google Scholar]
  40. 40. 
    Sharma M, Khong H, Fa'ak F et al. 2020. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat. Commun. 11:1661
    [Google Scholar]
  41. 41. 
    Parisi G, Saco JD, Salazar FB et al. 2020. Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nat. Commun. 11:1660
    [Google Scholar]
  42. 42. 
    Clark PA, Sriramaneni RN, Pieper A et al. 2020. Bempegaldesleukin (NKTR-214), a CD122 preferential IL-2 pathway agonist, augments the in situ vaccine response to radiation of an extracranial tumor in a murine melanoma model, conferring response at nonradiated tumor sites in the brain. Cancer Res 80:16 Suppl.4440 (Abstr.)
    [Google Scholar]
  43. 43. 
    Brown RJ, Zangl L, Arthur I et al. 2020. Combination of bempegaldesleukin and anti-CTLA-4 prevents metastatic dissemination after primary surgery or radiation therapy in a preclinical model of non-small cell lung cancer. Cancer Res 80:16 Suppl.4455 (Abstr.)
    [Google Scholar]
  44. 44. 
    Sosa GA, Bates AM, Patel R et al. 2020. In vivo efficacy of bempegaldesleukin, immune checkpoint inhibition, and targeted radionuclide therapy in immunocompetent murine model of head and neck cancer. Cancer Res 80:16 Suppl.903 (Abstr.)
    [Google Scholar]
  45. 45. 
    Torrejon DY, Abril-Rodriguez G, Champhekar AS et al. 2020. Overcoming genetically based resistance mechanisms to PD-1 blockade. Cancer Discov 10:81140–57
    [Google Scholar]
  46. 46. 
    Diab A, Tannir NM, Bentebibel S et al. 2020. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: Phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov 10:81158–73
    [Google Scholar]
  47. 47. 
    Diab A, Puzanov I, Maio M et al. 2019. Clinical activity of BEMPEG plus NIVO in previously untreated patients with metastatic melanoma: updated results from the phase 1/2 PIVOT-02 study Oral O35 presented at the Society for Immunotherapy of Cancer (SITC) Annual Meeting, Nov. 6–10 Natl. Harbor, MD: https://www.nektar.com/application/files/3515/7333/2286/Diab_et_al_PIVOT-02_Melanoma_SITC_2019_Oral_09Nov19Final.pdf
    [Google Scholar]
  48. 48. 
    Diab A, Hurwitz ME, Cho DC et al. 2018. NKTR-214 (CD122-biased agonist) plus nivolumab in patients with advanced solid tumors: preliminary phase 1/2 results of PIVOT. J. Clin. Oncol. 36:15 Suppl.3006 (Abstr.)
    [Google Scholar]
  49. 49. 
    Tolaney S, Baldini C, Spira A et al. 2019. Clinical activity of BEMPEG plus NIVO observed in metastatic TNBC: preliminary results from the TNBC cohort of the Ph1/2 PIVOT-02 study Poster A001 presented at the Fifth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference, Sep. 23–26 Paris: https://www.nektar.com/application/files/9215/6949/4543/PIVOT-02_TNBC_CICON_2019_Poster.pdf
    [Google Scholar]
  50. 50. 
    Siefker-Radtke A, Fishman M, Balar A et al. 2019. Bempegaldesleukin (NKTR-214) + nivolumab in first-line advanced/metastatic urothelial carcinoma (mUC): updated results from PIVOT-02. J. Clin. Oncol. 37:7 Suppl.388 (Abstr.)
    [Google Scholar]
  51. 51. 
    Daud AI, Wolchok JD, Robert C et al. 2016. Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma. J. Clin. Oncol. 34:344102–9
    [Google Scholar]
  52. 52. 
    Balar AV, Galsky MD, Rosenberg JE et al. 2017. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389:1006467–76
    [Google Scholar]
  53. 53. 
    Milla M, Ptacin J, Caffaro C et al. 2018. THOR-707: an engineered IL-2 for the treatment of solid tumors with superior pre-clinical efficacy and safety evidence Poster P417 presented at the Society for Immunotherapy of Cancer (SITC) 33rd Annual Meeting, Nov. 7–11 Washington, DC: https://synthorx.com/wp-content/uploads/2019/04/Synthorx-SITC-2018-FINAL.pdf
    [Google Scholar]
  54. 54. 
    Milla ME, Ptacin JL, Ma L et al. 2019. THOR-707, a novel not-alpha IL-2, promotes all key immune system anti-tumoral actions of IL-2 without eliciting vascular leak syndrome (VLS) Poster 1225P presented at the European Society for Medical Oncology (ESMO) 2019 Congress, Sep. 27–Oct. 1 Barcelona, Spain: https://synthorx.com/wp-content/uploads/2019/09/Synthorx-ESMO-Poster-20190930.pdf
    [Google Scholar]
  55. 55. 
    Joseph IB, Ma L, Ptacin JL et al. 2019. THOR-707, a novel not-alpha IL-2, elicits durable pharmacodynamic responses in non-human primates and efficacy as single agent and in combination with anti PD-1 in multiple syngeneic mouse models. Cancer Res 79:13 Suppl.3258 (Abstr.)
    [Google Scholar]
  56. 56. 
    Luo D, Abdul-Karim R, Azad A et al. 2019. Open-label, multicenter phase 1/2 dose escalation and expansion study of THOR-707 as a single agent and in combination with a PD-1 inhibitor in adult subjects with advanced or metastatic solid tumors. J. Immunother. Cancer 7:P430 (Abstr.)
    [Google Scholar]
  57. 57. 
    Medicenna 2020. IL-2 superkine, MDNA19, non-human primate study. Medicenna https://ir.medicenna.com/events/event-details/il-2-superkine-mdna19-non-human-primate-study
    [Google Scholar]
  58. 58. 
    Medicenna 2020. Medicenna announces March 31, 2020 year-end results Press Release, May 15, Medicenna, Toronto, Ont., Can. https://www.prnewswire.com/news-releases/medicenna-announces-march-31-2020-year-end-results-301060031.html
    [Google Scholar]
  59. 59. 
    Silva D-A, Yu S, Ulge UY et al. 2019. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565:7738186–91
    [Google Scholar]
  60. 60. 
    Leung I, Templeton M, Rubio A et al. 2020. Engineered variants of Neo-2/15 potently expand CAR-T cells and promote antitumor activity in lymphoma and solid tumor mouse models. Cancer Res 80:16 Suppl.2222 (Abstr.)
    [Google Scholar]
  61. 61. 
    Lopes JE, Fisher JL, Flick HL et al. 2020. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J. Immunother. Cancer 8:1e000673
    [Google Scholar]
  62. 62. 
    Vaishampayan U, Muzaffar J, Velcheti V et al. 2019. ALKS 4230, an engineered IL-2 fusion protein, in monotherapy dose-escalation and combination therapy with pembrolizumab in patients with solid tumors: ARTISTRY-1 trial Poster P447 presented at the Society for Immunotherapy of Cancer (SITC) Annual Meeting, Nov. 6–10 National Harbor, MD:
    [Google Scholar]
  63. 63. 
    Vaishampayan U, Muzaffar J, Velcheti V et al. 2020. ALKS 4230 monotherapy and in combination with pembrolizumab (pembro) in patients (pts) with refractory solid tumours (ARTISTRY-1). Ann. Oncol. 31:4 Suppl.S645–71:1027MO
    [Google Scholar]
  64. 64. 
    Arenas-Ramirez N, Woytschak J, Boyman O 2015. Interleukin-2: biology, design and application. Trends Immunol 36:12763–77
    [Google Scholar]
  65. 65. 
    Weide B, Neri D, Elia G 2017. Intralesional treatment of metastatic melanoma: a review of therapeutic options. Cancer Immunol. Immunother. 66:5647–56
    [Google Scholar]
  66. 66. 
    Carnemolla B, Borsi L, Balza E et al. 2002. Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99:51659–65
    [Google Scholar]
  67. 67. 
    Schwager K, Hemmerle T, Aebischer D et al. 2013. The immunocytokine L19-IL2 eradicates cancer when used in combination with CTLA-4 blockade or with L19-TNF. J. Investig. Dermatol. 133:3751–58
    [Google Scholar]
  68. 68. 
    Danielli R, Patuzzo R, Di Giacomo AM et al. 2015. Intralesional administration of L19-IL2/L19-TNF in stage III or stage IVM1a melanoma patients: results of a phase II study. Cancer Immunol. Immunother. 64:8999–1009
    [Google Scholar]
  69. 69. 
    Miura JT, Zager JS. 2019. Neo-DREAM study investigating Daromun for the treatment of clinical stage IIIB/C melanoma. Future Oncol 15:323665–74
    [Google Scholar]
  70. 70. 
    Becker JC, Pancook JD, Gillies SD et al. 1996. T cell-mediated eradication of murine metastatic melanoma induced by targeted interleukin 2 therapy. J. Exp. Med. 183:52361–66
    [Google Scholar]
  71. 71. 
    Sabzevari H, Gillies SD, Mueller BM et al. 1994. A recombinant antibody-interleukin 2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice. PNAS 91:209626–30
    [Google Scholar]
  72. 72. 
    Shusterman S, London WB, Gillies SD et al. 2010. Antitumor activity of hu14.18-IL2 in patients with relapsed/refractory neuroblastoma: a Children's Oncology Group (COG) phase II study. J. Clin. Oncol. 28:334969–75
    [Google Scholar]
  73. 73. 
    Shusterman S, Naranjo A, Ryn CV et al. 2019. Antitumor activity and tolerability of hu14.18-IL2 with GMCSF and isotretinoin in recurrent or refractory neuroblastoma: a Children's Oncology Group phase II study. Clin. Cancer Res. 25:206044–51
    [Google Scholar]
  74. 74. 
    Albertini MR, Yang RK, Ranheim EA et al. 2018. Pilot trial of the hu14.18-IL2 immunocytokine in patients with completely resectable recurrent stage III or stage IV melanoma. Cancer Immunol. Immunother. 67:101647–58
    [Google Scholar]
  75. 75. 
    Soerensen MM, Ros W, Rodriguez-Ruiz ME et al. 2018. Safety, PK/PD, and anti-tumor activity of RO6874281, an engineered variant of interleukin-2 (IL-2v) targeted to tumor-associated fibroblasts via binding to fibroblast activation protein (FAP). J. Clin. Oncol. 36:15 Suppl.e15155 (Abstr.)
    [Google Scholar]
  76. 76. 
    Klein C, Waldhauer I, Nicolini VG et al. 2017. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology 6:3e1277306
    [Google Scholar]
  77. 77. 
    van Brummelen EMJ, Huisman MC, de Wit-van der Veen LJ et al. 2018. 89Zr-labeled CEA-targeted IL-2 variant immunocytokine in patients with solid tumors: CEA-mediated tumor accumulation and role of IL-2 receptor-binding. Oncotarget 9:3724737–49
    [Google Scholar]
  78. 78. 
    Schellens JHM, Tabernero J, Lassenn UN et al. 2015. CEA-targeted engineered IL2: clinical confirmation of tumor targeting and evidence of intra-tumoral immune activation. J. Clin. Oncol. 33:Suppl.3016 (Abstr.)
    [Google Scholar]
  79. 79. 
    Sarnaik A, Khushalani NI, Chesney JA et al. 2020. Long-term follow up of lifileucel (LN-144) cryo-preserved autologous tumor infiltrating lymphocyte therapy in patients with advanced melanoma progressed on multiple prior therapies. J. Clin. Oncol. 38:15 Suppl.10006 (Abstr.)
    [Google Scholar]
  80. 80. 
    Jazaeri AA, Zsiros E, Amaria RN et al. 2019. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma. J. Clin. Oncol. 37:15 Suppl.2538 (Abstr.)
    [Google Scholar]
  81. 81. 
    Stevanović S, Helman SR, Wunderlich JR et al. 2019. A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin. Cancer Res. 25:51486–93
    [Google Scholar]
  82. 82. 
    Sockolosky JT, Trotta E, Parisi G et al. 2018. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359:63791037–42
    [Google Scholar]
  83. 83. 
    He J, Zhang X, Wei Y et al. 2016. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22:9991–93
    [Google Scholar]
  84. 84. 
    He J, Zhang R, Shao M et al. 2020. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 79:1141–49
    [Google Scholar]
  85. 85. 
    Rosenzwajg M, Lorenzon R, Cacoub P et al. 2019. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 78:2209–17
    [Google Scholar]
  86. 86. 
    Xu L, Song X, Su L et al. 2019. New therapeutic strategies based on IL-2 to modulate Treg cells for autoimmune diseases. Int. Immunopharmacol. 72:322–29
    [Google Scholar]
  87. 87. 
    Laurent J, Touvrey C, Gillessen S et al. 2013. T-cell activation by treatment of cancer patients with EMD 521873 (Selectikine), an IL-2/anti-DNA fusion protein. J. Transl. Med. 11:5
    [Google Scholar]
  88. 88. 
    Langowski J, Kirk P, Addepalli M et al. 2017. NKTR-358: A selective, first-in-class IL-2 pathway agonist which increases number and suppressive function of regulatory T cells for the treatment of immune inflammatory disorders Poster 2715 presented at the ACR/ARHP Annual Meeting, Nov. 3–8 San Diego, CA:
    [Google Scholar]
  89. 89. 
    Fanton C, Siddhanti S, Dixit N et al. 2019. Selective expansion of regulatory T-cells in humans by a novel IL-2 conjugate T-reg stimulator, NKTR-358, being developed for the treatment of autoimmune diseases. Ann. Rheum. Dis. 78:Suppl. 2172–73
    [Google Scholar]
  90. 90. 
    Siddhanti S, Fanton C, Dixit N et al. 2020. THU0054 NKTR-358, a novel IL-2 conjugate, stimulates high levels of regulatory T cells in patients with systemic lupus erythematosus. Ann. Rheum. Dis 79:238–39
    [Google Scholar]
  91. 91. 
    Ptacin J, Caffaro CE, Ma L et al. 2019. THOR-809: An IL-2 engineered from an expanded genetic alphabet for the potential treatment of autoimmune disorders Poster 86 presented at the ACR/ARP Annual Meeting, Nov. 8–13 Atlanta, GA:
    [Google Scholar]
  92. 92. 
    IL-2 Mutein/Fc Fusion Protein AMG 592 2020. MedGen. https://www.ncbi.nlm.nih.gov/medgen/1633069
  93. 93. 
    Gorski KS, Stern J, Hsu Y-H et al. 2018. THU0031 phenotype of Foxp3+ regulatory T-cells expanded by the IL-2 mutein, AMG 592 in healthy subjects in phase 1, first-in-human study. Ann. Rheum. Dis. 77:Suppl. 2243
    [Google Scholar]
  94. 94. 
    Peterson LB, Bell CJM, Howlett SK et al. 2018. A long-lived IL-2 mutein that selectively activates and expands regulatory T cells as a therapy for autoimmune disease. J. Autoimmun. 95:1–14
    [Google Scholar]
  95. 95. 
    Tang Q, Adams JY, Penaranda C et al. 2008. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28:5687–97
    [Google Scholar]
  96. 96. 
    Bolton HA, Zhu E, Terry AM et al. 2015. Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents graft-versus-host disease. J. Clin. Investig. 125:93627–41
    [Google Scholar]
  97. 97. 
    Trotta E, Bessette PH, Silveria SL et al. 2018. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat. Med. 24:71005–14
    [Google Scholar]
  98. 98. 
    Rosen DB, Laufer B, Knappe T et al. 2020. TransCon IL-2 β/γ: a novel long-acting prodrug of receptor-biased IL-2 designed for improved pharmocokinetics and optimal activation of T cells for the treatment of cancer. Cancer Res 80:16 Suppl.4507 (Abstr.)
    [Google Scholar]
  99. 99. 
    Weide B, Eigentler TK, Pflugfelder A et al. 2014. Intralesional treatment of stage III metastatic melanoma patients with L19-IL2 results in sustained clinical and systemic immunologic responses. Cancer Immunol. Res. 2:7668–78
    [Google Scholar]
  100. 100. 
    Lieverse RIY, Van Limbergen EJ, Oberije CJG et al. 2020. Stereotactic ablative body radiotherapy (SABR) combined with immunotherapy (L19-IL2) versus standard of care in stage IV NSCLC patients, ImmunoSABR: a multicentre, randomised controlled open-label phase II trial. BMC Cancer 20:1557
    [Google Scholar]
  101. 101. 
    Klein C, Codarri-Deak L, Nicolini V et al. 2019. A novel PD1-IL2v immunocytokine for preferential cis-activation of IL-2R signaling on PD-1 expressing T cell subsets strongly potentiates anti-tumor T cell activity of PD-1 checkpoint inhibition and IL-2R-beta-gamma agonism. Cancer Res 79:13 Suppl.1552 (Abstr.)
    [Google Scholar]
  102. 102. 
    Collins G, Horwitz S, Hamadani M et al. 2019. Analysis of clinical determinants driving safety and efficacy of camidanlumab tesirine (ADCT-301, Cami) in relapsed/refractory (R/R) classical Hodgkin lymphoma (cHL). Hematol. Oncol. 37:S295–97
    [Google Scholar]
  103. 103. 
    Collins GP, Horwitz S, Davies A et al. 2018. ADCT-301 (camidanlumab tesirine), a novel pyrrolobenzodiazepine-based CD25-targeting antibody drug conjugate, in a phase 1 study of relapsed/refractory non-Hodgkin lymphoma shows activity in T-cell lymphoma. Blood 132:Suppl. 11658 (Abstr.)
    [Google Scholar]
  104. 104. 
    Goldberg AD, Atallah E, Rizzieri D et al. 2020. Camidanlumab tesirine, an antibody-drug conjugate, in relapsed/refractory CD25-positive acute myeloid leukemia or acute lymphoblastic leukemia: a phase I study. Leuk. Res. 95:106385
    [Google Scholar]
  105. 105. 
    Tchao N, Gorski KS, Yuraszeck T et al. 2017. Amg 592 is an investigational IL-2 mutein that induces highly selective expansion of regulatory T cells. Blood 130:Suppl. 1696 (Abstr.)
    [Google Scholar]
  106. 106. 
    Medicenna 2020. IL-2 superkines—MDNA109 & MDNA209. Medicenna https://www.medicenna.com/our-pipeline/il-2-superkines-mdna109-mdna209/
    [Google Scholar]
/content/journals/10.1146/annurev-med-073118-011031
Loading
/content/journals/10.1146/annurev-med-073118-011031
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error