1932

Abstract

The ability to efficiently modify the genome using CRISPR technology has rapidly revolutionized biology and genetics and will soon transform medicine. Duchenne muscular dystrophy (DMD) represents one of the first monogenic disorders that has been investigated with respect to CRISPR-mediated correction of causal genetic mutations. DMD results from mutations in the gene encoding dystrophin, a scaffolding protein that maintains the integrity of striated muscles. Thousands of different dystrophin mutations have been identified in DMD patients, who suffer from a loss of ambulation followed by respiratory insufficiency, heart failure, and death by the third decade of life. Using CRISPR to bypass DMD mutations, dystrophin expression has been efficiently restored in human cells and mouse models of DMD. Here, we review recent progress toward the development of possible CRISPR therapies for DMD and highlight opportunities and potential obstacles in attaining this goal.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-081117-010451
2019-01-27
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/med/70/1/annurev-med-081117-010451.html?itemId=/content/journals/10.1146/annurev-med-081117-010451&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Bonne G, Rivier F, Hamroun D 2017. The 2018 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul. Disord. 27:1152–83
    [Google Scholar]
  2. 2.  Hoffman EP, Brown RH Jr, Kunkel LM 1987. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–28
    [Google Scholar]
  3. 3.  Lee T, Takeshima Y, Kusunoki N et al. 2014. Differences in carrier frequency between mothers of Duchenne and Becker muscular dystrophy patients. J. Hum. Genet. 59:46–50
    [Google Scholar]
  4. 4.  Darras BT, Urion DK, Ghosh PS 1993–2018. Dystrophinopathies Seattle: Univ. Washington Press
    [Google Scholar]
  5. 5.  Andrews JG, Wahl RA 2018. Duchenne and Becker muscular dystrophy in adolescents: current perspectives. Adolesc. Health Med. Ther. 9:53–63
    [Google Scholar]
  6. 6.  Salmaninejad A, Valilou SF, Bayat H et al. 2018. Duchenne muscular dystrophy: an updated review of common available therapies. Int. J. Neurosci. 128:854–64
    [Google Scholar]
  7. 7.  Ahn AH, Kunkel LM 1993. The structural and functional diversity of dystrophin. Nat. Genet. 3:283–91
    [Google Scholar]
  8. 8.  Gao QQ, McNally EM 2015. The dystrophin complex: structure, function, and implications for therapy. Compr Physiol 5:1223–39
    [Google Scholar]
  9. 9.  Chang NC, Chevalier FP, Rudnicki MA 2016. Satellite cells in muscular dystrophy 2013; lost in polarity. Trends Mol. Med. 22:479–96
    [Google Scholar]
  10. 10.  Fayssoil A, Nardi O, Orlikowski D et al. 2009. Cardiomyopathy in Duchenne muscular dystrophy: pathogenesis and therapeutics. Heart Fail. Rev. 15:103
    [Google Scholar]
  11. 11.  Ginjaar IB, Kneppers AL, v d Meulen J-DM et al. 2000. Dystrophin nonsense mutation induces different levels of exon 29 skipping and leads to variable phenotypes within one BMD family. Eur. J. Hum. Genet. 8:793–96
    [Google Scholar]
  12. 12.  Duan D 2015. Duchenne muscular dystrophy gene therapy in the canine model. Hum. Gene Ther. Clin. Dev. 26:57–69
    [Google Scholar]
  13. 13.  Rodino-Klapac LR, Montgomery CL, Bremer WG et al. 2010. Persistent expression of FLAG-tagged micro dystrophin in nonhuman primates following intramuscular and vascular delivery. Mol. Ther. 18:109–17
    [Google Scholar]
  14. 14.  Jinek M, Chylinski K, Fonfara I et al. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  15. 15.  Cong L, Ran FA, Cox D et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23
    [Google Scholar]
  16. 16.  Mali P, Yang L, Esvelt KM et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823–26
    [Google Scholar]
  17. 17.  Ran FA, Cong L, Yan WX et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–91
    [Google Scholar]
  18. 18.  Zhang Y, Long C, Li H et al. 2017. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci. Adv. 3:e1602814
    [Google Scholar]
  19. 19.  Müller M, Lee CM, Gasiunas G et al. 2016. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol. Ther. 24:636–44
    [Google Scholar]
  20. 20.  Hou Z, Zhang Y, Propson NE et al. 2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. . PNAS 110:15644–49
    [Google Scholar]
  21. 21.  Zhang Y, Long C, Bassel-Duby R et al. 2018. Myoediting: toward prevention of muscular dystrophy by therapeutic genome editing. Physiol. Rev. 98:1205–40
    [Google Scholar]
  22. 22.  Amoasii L, Long C, Li H et al. 2017. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci. Transl. Med. 9:eaan8081
    [Google Scholar]
  23. 24.  Lemos BR, Kaplan AC, Bae JE et al. 2018. CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. PNAS 115:E2040
    [Google Scholar]
  24. 25.  Reinig AM, Mirzaei S, Berlau DJ 2017. Advances in the treatment of Duchenne muscular dystrophy: new and emerging pharmacotherapies. Pharmacother. J. Hum. Pharmacol. Drug Ther. 37:492–99
    [Google Scholar]
  25. 26.  Long C, McAnally JR, Shelton JM et al. 2014. Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science 345:1184–88
    [Google Scholar]
  26. 27.  Kim EY, Page P, Dellefave-Castillo LM et al. 2016. Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skeletal Muscle 6:32–48
    [Google Scholar]
  27. 28.  Long C, Li H, Tiburcy M et al. 2018. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci. Adv. 4:eaap9004
    [Google Scholar]
  28. 29.  Cai W-F, Huang W, Wang L et al. 2016. Induced pluripotent stem cells derived muscle progenitors effectively mitigate muscular dystrophy through restoring the dystrophin distribution. J. Stem Cell Res. Ther. 6:1000361
    [Google Scholar]
  29. 30.  Choi IY, Lim H, Estrellas K et al. 2016. Concordant but varied phenotypes among Duchenne muscular dystrophy patient-specific myoblasts derived using a human iPSC-based model. Cell Rep 15:2301–12
    [Google Scholar]
  30. 31.  Young CS, Hicks MR, Ermolova NV et al. 2016. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18:533–40
    [Google Scholar]
  31. 32.  Snider L, Geng LN, Lemmers RJLF et al. 2010. Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLOS Genet 6:e1001181
    [Google Scholar]
  32. 33.  Caron L, Kher D, Lee KL et al. 2016. A human pluripotent stem cell model of facioscapulohumeral muscular dystrophy-affected skeletal muscles. Stem Cells Transl. Med. 5:1145–61
    [Google Scholar]
  33. 34.  Turan S, Farruggio AP, Srifa W et al. 2016. Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular dystrophy. Mol. Ther. 24:685–96
    [Google Scholar]
  34. 35.  Wu J, Hunt SD, Matthias N et al. 2017. Generation of an induced pluripotent stem cell line (CSCRMi001-A) from a patient with a new type of limb-girdle muscular dystrophy (LGMD) due to a missense mutation in POGLUT1 (Rumi). Stem Cell Res 24:102–5
    [Google Scholar]
  35. 36.  Ueki J, Nakamori M, Nakamura M et al. 2017. Myotonic dystrophy type 1 patient-derived iPSCs for the investigation of CTG repeat instability. Sci. Rep. 7:42522
    [Google Scholar]
  36. 37.  Chen Y, Cao J, Xiong M et al. 2015. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell 17:233–44
    [Google Scholar]
  37. 38.  Adkar SS, Willard VP, Brunger JM et al. 2016. Targeted genome editing of human induced pluripotent stem cells using CRISPR/CAS9 to generate a knock-in type II collagen reporter for the purification of chondrogenic cells. Mol. Ther. 24:S128
    [Google Scholar]
  38. 39.  Li Hongmei L, Fujimoto N, Sasakawa N et al. 2015. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4:143–54
    [Google Scholar]
  39. 40.  Kyrychenko V, Kyrychenko S, Tiburcy M et al. 2017. Functional correction of dystrophin actin binding domain mutations by genome editing. JCI Insight 2:e95918
    [Google Scholar]
  40. 41.  Ousterout DG, Kabadi AM, Thakore PI et al. 2015. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun. 6:6244–57
    [Google Scholar]
  41. 42.  Bock C, Kiskinis E, Verstappen G et al. 2011. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–52
    [Google Scholar]
  42. 43.  Boulting GL, Kiskinis E, Croft GF et al. 2011. A functionally characterized test set of human induced pluripotent stem cells. Nat. Biotechnol. 29:279–86
    [Google Scholar]
  43. 44.  Mandai M, Watanabe A, Kurimoto Y et al. 2017. Autologous induced stem-cell–derived retinal cells for macular degeneration. N. Engl. J. Med. 376:1038–46
    [Google Scholar]
  44. 45.  McGreevy JW, Hakim CH, McIntosh MA, Duan D 2015. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis. Models Mech. 8:195–213
    [Google Scholar]
  45. 46.  Bulfield G, Siller WG, Wight PA et al. 1984. X chromosome-linked muscular dystrophy (mdx) in the mouse. PNAS 81:1189–92
    [Google Scholar]
  46. 47.  Sicinski P, Geng Y, Ryder-Cook AS et al. 1989. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–80
    [Google Scholar]
  47. 48.  Chamberlain JS, Metzger J, Reyes M et al. 2007. Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J 21:2195–204
    [Google Scholar]
  48. 49.  Carnwath JW, Shotton DM 1987. Muscular dystrophy in the mdx mouse: histopathology of the soleus and extensor digitorum longus muscles. J. Neurol. Sci. 80:39–54
    [Google Scholar]
  49. 50.  Dangain J, Vrbova G 1984. Muscle development in mdx mutant mice. Muscle Nerve 7:700–4
    [Google Scholar]
  50. 51.  Pastoret C, Sebille A 1995. mdx mice show progressive weakness and muscle deterioration with age. J. Neurol. Sci. 129:97–105
    [Google Scholar]
  51. 52.  Bostick B, Yue Y, Long C et al. 2008. Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary dystrophin/utrophin expression. Circ. Res. 102:121–30
    [Google Scholar]
  52. 53.  Lefaucheur Jean P, Pastoret C, Sebille A 1995. Phenotype of dystrophinopathy in old MDX mice. Anat. Rec. 242:70–76
    [Google Scholar]
  53. 54.  Hakim CH, Grange RW, Duan D 2011. The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2- to 20-mo-old mdx mice. J. Appl. Physiol. 110:1656–63
    [Google Scholar]
  54. 55.  Stedman HH, Sweeney HL, Shrager JB et al. 1991. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–39
    [Google Scholar]
  55. 56.  Chapman VM, Miller DR, Armstrong D et al. 1989. Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. PNAS 86:1292–96
    [Google Scholar]
  56. 57.  Vulin A, Wein N, Simmons TR et al. 2015. The first exon duplication mouse model of Duchenne muscular dystrophy: a tool for therapeutic development. Neuromuscul. Disord. 25:827–34
    [Google Scholar]
  57. 58.  Kudoh H, Ikeda H, Kakitani M et al. 2005. A new model mouse for Duchenne muscular dystrophy produced by 2.4 Mb deletion of dystrophin gene using Cre-loxP recombination system. Biochem. Biophys. Res. Commun. 328:507–16
    [Google Scholar]
  58. 59.  Young CS, Mokhonova E, Quinonez M et al. 2017. Creation of a novel humanized dystrophic mouse model of Duchenne muscular dystrophy and application of a CRISPR/Cas9 gene editing therapy. J. Neuromuscul. Dis. 4:139–45
    [Google Scholar]
  59. 60.  Veltrop M, van Vliet L, Hulsker M et al. 2018. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides. PLOS ONE 13:e0193289
    [Google Scholar]
  60. 61.  Deconinck AE, Rafael JA, Skinner JA et al. 1997. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90:717–27
    [Google Scholar]
  61. 62.  Rooney JE, Welser JV, Dechert MA et al. 2006. Severe muscular dystrophy in mice that lack dystrophin and α7 integrin. J. Cell Sci. 119:2185–95
    [Google Scholar]
  62. 63.  Guo C, Willem M, Werner A et al. 2006. Absence of α7 integrin in dystrophin-deficient mice causes a myopathy similar to Duchenne muscular dystrophy. Hum. Mol. Genet. 15:989–98
    [Google Scholar]
  63. 64.  Grady RM, Teng H, Nichol MC et al. 1997. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90:729–38
    [Google Scholar]
  64. 65.  Sacco A, Mourkioti F, Tran R et al. 2010. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 143:1059–71
    [Google Scholar]
  65. 66.  Mourkioti F, Kustan J, Kraft P et al. 2013. Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nat. Cell Biol. 15:895–904
    [Google Scholar]
  66. 67.  Valentine BA, Cooper BJ, Cummings JF et al. 1986. Progressive muscular dystrophy in a golden retriever dog: light microscope and ultrastructural features at 4 and 8 months. Acta Neuropathol 71:301–10
    [Google Scholar]
  67. 68.  Funkquist B, Haraldsson I, Stahre L 1980. Primary progressive muscular dystrophy in the dog. Vet Rec 106:341–43
    [Google Scholar]
  68. 69.  Sharp NJH, Kornegay J, Van Camp SD et al. 1992. An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics 13:115–21
    [Google Scholar]
  69. 70.  Walmsley GL, Arechavala-Gomeza V, Fernandez-Fuente M et al. 2010. A Duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier King Charles spaniels is amenable to exon 51 skipping. PLOS ONE 5:e8647
    [Google Scholar]
  70. 71.  Smith BF, Yue Y, Woods PR et al. 2011. An intronic LINE-1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchenne-like muscular dystrophy in the corgi breed. Lab. Investig. J. Tech. Methods Pathol. 91:216–31
    [Google Scholar]
  71. 72.  Valentine BA, Cooper BJ, de Lahunta A et al. 1988. Canine X-linked muscular dystrophy: an animal model of Duchenne muscular dystrophy: clinical studies. J. Neurol. Sci. 88:69–81
    [Google Scholar]
  72. 73.  Long C, Amoasii L, Mireault AA et al. 2016. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–3
    [Google Scholar]
  73. 74.  Bengtsson NE, Hall JK, Odom GL et al. 2017. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat. Commun. 8:14454–62
    [Google Scholar]
  74. 75.  Nelson CE, Hakim CH, Ousterout DG et al. 2016. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–7
    [Google Scholar]
  75. 76.  Tabebordbar M, Zhu K, Cheng JKW et al. 2016. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–11
    [Google Scholar]
  76. 77.  Ryu S-M, Koo T, Kim K et al. 2018. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36:536–39
    [Google Scholar]
  77. 79.  Bladen CL, Salgado D, Monges S et al. 2015. The TREAT‐NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 36:395–402
    [Google Scholar]
  78. 80.  Aartsma‐Rus A, Van Deutekom JCT, Fokkema Ivo F et al. 2006. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading‐frame rule. Muscle Nerve 34:135–44
    [Google Scholar]
  79. 81.  Maggio I, Liu J, Janssen JM et al. 2016. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Sci. Rep. 6:37051–62
    [Google Scholar]
  80. 82.  Kole R, Krieg AM 2015. Exon skipping therapy for Duchenne muscular dystrophy. Adv. Drug Del. Rev. 87:104–7
    [Google Scholar]
  81. 23.  Amoasii L, Hildyard JCW, Li H et al. 2018. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362:86–91
    [Google Scholar]
  82. 83.  Suzuki K, Tsunekawa Y, Hernandez-Benitez R et al. 2016. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–49
    [Google Scholar]
  83. 84.  Komor AC, Kim YB, Packer MS et al. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–37
    [Google Scholar]
  84. 85.  Nishida K, Arazoe T, Yachie N et al. 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353:aaf8729
    [Google Scholar]
  85. 86.  Gaudelli NM, Komor AC, Rees HA et al. 2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551:464–71
    [Google Scholar]
  86. 78.  Gapinske M, Luu A, Winter J, et al. 2018. CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biol 19:107–18
    [Google Scholar]
  87. 87.  Chavez A, Scheiman J, Vora S et al. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12:326–28
    [Google Scholar]
  88. 88.  Perez-Pinera P, Kocak DD, Vockley CM et al. 2013. RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat. Methods 10:973–76
    [Google Scholar]
  89. 89.  Wojtal D, Kemaladewi Dwi U, Malam Z et al. 2016. Spell checking nature: versatility of CRISPR/Cas9 for developing treatments for inherited disorders. Am. J. Hum. Genet. 98:90–101
    [Google Scholar]
  90. 90.  Wang J-Z, Wu P, Shi Z-M et al. 2017. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev 39:547–56
    [Google Scholar]
  91. 91.  Mendell JR, Al-Zaidy S, Shell R et al. 2017. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377:1713–22
    [Google Scholar]
  92. 92.  Yang Y, Wang L, Bell P et al. 2016. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34:334–38
    [Google Scholar]
  93. 93.  Lau C-H, Suh Y 2017. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Research 6:2153–73
    [Google Scholar]
  94. 94.  Xu L, Park KH, Zhao L et al. 2016. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol. Ther. 24:564–69
    [Google Scholar]
  95. 95.  Miller JB, Zhang S, Kos P et al. 2016. Non‐viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co‐delivery of Cas9 mRNA and sgRNA. Angew. Chemie Int. Ed. 56:1059–63
    [Google Scholar]
  96. 96.  Zuris JA, Thompson DB, Shu Y et al. 2014. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33:73–80
    [Google Scholar]
  97. 97.  Kim S, Kim D, Cho SW et al. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–19
    [Google Scholar]
  98. 98.  Lee K, Conboy M, Park HM et al. 2017. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1:889–901
    [Google Scholar]
  99. 99.  Arnett ALH, Konieczny P, Ramos JN et al. 2014. Adeno-associated viral vectors do not efficiently target muscle satellite cells. Mol. Ther. Methods Clin. Dev. 1:14038
    [Google Scholar]
  100. 100.  Kessler PD, Podsakoff GM, Chen X et al. 1996. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeuticprotein. PNAS 93:14082–87
    [Google Scholar]
  101. 101.  Himeda CL, Jones TI, Jones PL 2016. CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Mol. Ther. 24:527–35
    [Google Scholar]
  102. 102.  van Agtmaal EL, André LM, Willemse M et al. 2017. CRISPR/Cas9-induced (CTGċCAG)n repeat instability in the myotonic dystrophy type 1 locus: implications for therapeutic genome editing. Mol. Ther. 25:24–43
    [Google Scholar]
/content/journals/10.1146/annurev-med-081117-010451
Loading
/content/journals/10.1146/annurev-med-081117-010451
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error