HIV-1 poses immense immunological challenges to the humoral immune response because of its ability to shield itself and replicate and evolve rapidly. Although most currently licensed vaccines provide protection via the induction of antibodies (Abs) that can directly block infection (1), 30 years of HIV-1 vaccine research has failed to successfully elicit such Abs against globally relevant HIV strains. However, mounting evidence suggests that these broadly neutralizing antibodies (bNAbs) do emerge naturally in a significant fraction of infected subjects, albeit after years of infection, indicating that these responses can be selected naturally by the immune response but take long periods of time to evolve. We review the basic structural characteristics of broadly neutralizing antibodies and how they recognize the virus, and we discuss new vaccination strategies that aim to mimic natural evolution to guide B cells to produce protective Abs against HIV-1.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Siegrist CA. 1.  2008. Vaccine immunology. Vaccines SA Plotkin, WA Orenstein, PA Offit 17–36 Philadelphia: Elsevier Saunders, 5th ed.. [Google Scholar]
  2. Frost SDW, Wrin T, Smith DM. 2.  et al. 2005. Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. PNAS 102:5118514–19 [Google Scholar]
  3. Mascola JR, Haynes BF. 3.  2013. HIV-1 neutralizing antibodies: understanding nature's pathways. Immunol. Rev. 254:1225–44 [Google Scholar]
  4. Nimmerjahn F, Ravetch J. 4.  2007. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8:34–47 [Google Scholar]
  5. Checkley MA, Luttge BG, Freed EO. 5.  2011. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J. Mol. Biol. 410:4582–608 [Google Scholar]
  6. Perelson AS, Essunger P, Ho DD. 6.  1997. Dynamics of HIV-1 and CD4+ lymphocytes in vivo. AIDS 11:Suppl. AS17–S24 [Google Scholar]
  7. Perelson AS, Neumann AU, Markowitz M. 7.  et al. 1996. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:52551582–86 [Google Scholar]
  8. Sattentau QJ. 8.  2014. Immunogen design to focus the B-cell repertoire. Curr. Opin. HIV AIDS 9:3217–23 [Google Scholar]
  9. Eroshkin AM, LeBlanc A, Weekes D. 9.  et al. 2014. BNAber: database of broadly neutralizing HIV antibodies. Nucleic Acids Res. 42:Database issueD1133–39 [Google Scholar]
  10. Scharf L, Scheid JF, Lee JH. 10.  et al. 2014. Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike. Cell Rep. 7:3785–95 [Google Scholar]
  11. Huang J, Kang BH, Pancera M. 11.  et al. 2014. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface. Nature 515:7525138–42 [Google Scholar]
  12. Klein F, Diskin R, Scheid JF. 12.  et al. 2013. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell 153:1126–38 [Google Scholar]
  13. Mouquet H, Scheid JF, Zoller MJ. 13.  et al. 2010. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467:7315591–95 [Google Scholar]
  14. Wu X, Zhang Z, Schramm CA. 14.  et al. 2015. Maturation and diversity of the VRC01-antibody lineage over 15 years of chronic HIV-1 infection. Cell 161:3470–85 [Google Scholar]
  15. Lingwood D, McTamney PM, Yassine HM. 15.  et al. 2012. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature 489:7417566–70 [Google Scholar]
  16. Scheepers C, Shrestha RK, Lambson BE. 16.  et al. 2015. Ability to develop broadly neutralizing HIV-1 antibodies is not restricted by the germline Ig gene repertoire. J. Immunol. 194:4371–78 [Google Scholar]
  17. Pavri R, Nussenzweig MC. 17.  2011. AID targeting in antibody diversity. Adv. Immunol. 110:1–26 [Google Scholar]
  18. Sok D, Laserson U, Laserson J. 18.  et al. 2013. The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies. PLoS Pathog. 9:11e1003754 [Google Scholar]
  19. van Montfort T, Eggink D, Boot M. 19.  et al. 2011. HIV-1 N-glycan composition governs a balance between dendritic cell-mediated viral transmission and antigen presentation. J. Immunol. 187:94676–85 [Google Scholar]
  20. Breden F, Lepik C, Longo NS. 20.  et al. 2011. Comparison of antibody repertoires produced by HIV-1 infection, other chronic and acute infections, and systemic autoimmune disease. PLoS ONE 6:3e16857 [Google Scholar]
  21. Horiya S, MacPherson IS, Krauss IJ. 21.  2014. Recent strategies targeting HIV glycans in vaccine design. Nat. Chem. Biol. 10:12990–99 [Google Scholar]
  22. Georgiev IS, Rudicell RS, Saunders KO. 22.  et al. 2014. Antibodies VRC01 and 10E8 neutralize HIV-1 with high breadth and potency even with Ig-framework regions substantially reverted to germline. J. Immunol. 192:31100–6 [Google Scholar]
  23. Wu TT, Johnson G, Kabat EA. 23.  1993. Length distribution of CDRH3 in antibodies. Proteins 16:11–7 [Google Scholar]
  24. Icenogle J, Shiwen H, Duke G. 24.  et al. 1983. Neutralization of poliovirus by a monoclonal antibody: kinetics and stoichiometry. Virology 127:2412–25 [Google Scholar]
  25. Wang F, Ekiert DC, Ahmad I. 25.  et al. 2013. Reshaping antibody diversity. Cell 153:61379–93 [Google Scholar]
  26. Schofield DJ, Stephenson JR, Dimmock NJ. 26.  1997. Variations in the neutralizing and haemagglutination-inhibiting activities of five influenza A virus-specific IgGs and their antibody fragments. J. Gen. Virol. 78:Pt 102431–39 [Google Scholar]
  27. Galimidi RP, Klein JS, Politzer MS. 27.  et al. 2015. Intra-spike crosslinking overcomes antibody evasion by HIV-1. Cell 160:3433–46 [Google Scholar]
  28. Lynch RM, Tran L, Louder MK. 28.  et al. 2012. The development of CD4 binding site antibodies during HIV-1 infection. J. Virol. 86:147588–95 [Google Scholar]
  29. Briney BS, Willis JR, Crowe JE. 29.  2012. Human peripheral blood antibodies with long HCDR3s are established primarily at original recombination using a limited subset of germline genes. PLoS ONE 7:5e36750 [Google Scholar]
  30. Doria-Rose NA, Klein RM, Manion MM. 30.  et al. 2009. Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J. Virol. 83:1188–99 [Google Scholar]
  31. Sather DN, Armann J, Ching LK. 31.  et al. 2009. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J. Virol. 83:2757–69 [Google Scholar]
  32. Montezuma-Rusca JM, Moir S, Kardava L. 32.  et al. 2015. Bone marrow plasma cells are a primary source of serum HIV-1-specific antibodies in chronically infected individuals. J. Immunol. 194:62561–68 [Google Scholar]
  33. Pejchal R, Walker LM, Stanfield RL. 33.  et al. 2010. Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1. PNAS 107:2511483–88 [Google Scholar]
  34. Fairfax KA, Kallies A, Nutt SL. 34.  et al. 2008. Plasma cell development: from B-cell subsets to long-term survival niches. Semin. Immunol. 20:149–58 [Google Scholar]
  35. Scheid JF, Mouquet H, Feldhahn N. 35.  et al. 2009. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458:7238636–40 [Google Scholar]
  36. Haynes BF, Fleming J, St Clair EW. 36.  et al. 2005. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308:57301906–8 [Google Scholar]
  37. Scheid JF, Mouquet H, Ueberheide B. 37.  et al. 2011. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333:60491633–37 [Google Scholar]
  38. Walker LM, Phogat SK, Chan-Hui P-Y. 38.  et al. 2009. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326:5950285–89 [Google Scholar]
  39. Liu M, Yang G, Wiehe K. 39.  et al. 2015. Polyreactivity and autoreactivity among HIV-1 antibodies. J. Virol. 89:1784–98 [Google Scholar]
  40. Huang J, Doria-Rose NA, Longo NS. 40.  et al. 2013. Isolation of human monoclonal antibodies from peripheral blood B cells. Nat. Protoc. 8:101907–15 [Google Scholar]
  41. Shlomchik MJ, Weisel F. 41.  2012. Germinal center selection and the development of memory B and plasma cells. Immunol. Rev. 247:152–63 [Google Scholar]
  42. Verkoczy L, Diaz M, Holl TM. 42.  et al. 2010. Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. PNAS 107:1181–86 [Google Scholar]
  43. Verkoczy L, Chen Y, Bouton-Verville H. 43.  et al. 2011. Rescue of HIV-1 broad neutralizing antibody-expressing B cells in 2F5 VH×VL knockin mice reveals multiple tolerance controls. J. Immunol. 187:73785–97 [Google Scholar]
  44. Chen Y, Zhang J, Hwang K-K. 44.  et al. 2013. Common tolerance mechanisms, but distinct cross-reactivities associated with gp41 and lipids, limit production of HIV-1 broad neutralizing antibodies 2F5 and 4E10. J. Immunol. 191:31260–75 [Google Scholar]
  45. Allen CDC, Cyster JG. 45.  2008. Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin. Immunol. 20:114–25 [Google Scholar]
  46. Trama AM, Moody MA, Alam SM. 46.  et al. 2014. HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that share cross-reactivity with commensal bacteria. Cell Host Microbe 16:2215–26 [Google Scholar]
  47. Khalil AM, Cambier JC, Shlomchik MJ. 47.  2012. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336:60851178–81 [Google Scholar]
  48. Myszka DG, Sweet RW, Hensley P. 48.  et al. 2000. Energetics of the HIV gp120-CD4 binding reaction. PNAS 97:169026–31 [Google Scholar]
  49. Gitlin AD, Shulman Z, Nussenzweig MC. 49.  2014. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509:7502637–40 [Google Scholar]
  50. Kwong PD, Doyle ML, Casper DJ. 50.  et al. 2002. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420:6916678–82 [Google Scholar]
  51. Chen L, Kwon YD, Zhou T. 51.  et al. 2009. Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science 326:59561123–27 [Google Scholar]
  52. Crotty S. 52.  2011. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29:621–63 [Google Scholar]
  53. Liao H-X, Lynch R, Zhou T. 53.  et al. 2013. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496:7446469–76 [Google Scholar]
  54. Tangye SG, Ma CS, Brink R. 54.  et al. 2013. The good, the bad and the ugly—TFH cells in human health and disease. Nat. Rev. Immunol. 13:6412–26 [Google Scholar]
  55. Crotty S. 55.  2014. T follicular helper cell differentiation, function, and roles in disease. Immunity 41:4529–42 [Google Scholar]
  56. Dugast A-S, Stamatatos L, Tonelli A. 56.  et al. 2014. Independent evolution of Fc- and Fab-mediated HIV-1-specific antiviral antibody activity following acute infection. Eur. J. Immunol. 44:2925–37 [Google Scholar]
  57. Sather DN, Carbonetti S, Malherbe DC. 57.  et al. 2014. Emergence of broadly neutralizing antibodies and viral coevolution in two subjects during the early stages of infection with human immunodeficiency virus type 1. J. Virol. 88:2212968–81 [Google Scholar]
  58. McLellan JS, Pancera M, Carrico C. 58.  et al. 2011. Structure of HIV-1 gp120 V1·V2 domain with broadly neutralizing antibody PG9. Nature 480:7377336–43 [Google Scholar]
  59. Chun T-W, Murray D, Justement JS. 59.  et al. 2014. Broadly neutralizing antibodies suppress HIV in the persistent viral reservoir. PNAS 111:3613151–56 [Google Scholar]
  60. Lynch RM, Wong P, Tran L. 60.  et al. 2015. HIV-1 fitness cost associated with escape from the VRC01 class of CD4 binding site neutralizing antibodies. J. Virol. 89:4201–13 [Google Scholar]
  61. Fera D, Schmidt AG, Haynes BF. 61.  et al. 2014. Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. PNAS 111:2810275–80 [Google Scholar]
  62. Doria-Rose NA, Schramm CA, Gorman J. 62.  et al. 2014. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509:749855–62 [Google Scholar]
  63. McGuire AT, Glenn JA, Lippy A. 63.  et al. 2014. Diverse recombinant HIV-1 Envs fail to activate B cells expressing the germline B cell receptors of the broadly neutralizing anti-HIV-1 antibodies PG9 and 447-52D. J. Virol. 88:52645–57 [Google Scholar]
  64. Scheid JF, Mouquet H, Feldhahn N. 64.  et al. 2009. A method for identification of HIV gp140 binding memory B cells in human blood. J. Immunol. Methods 343:265–67 [Google Scholar]
  65. McGuire AT, Hoot S, Dreyer AM. 65.  et al. 2013. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. J. Exp. Med. 210:4655–63 [Google Scholar]
  66. Garces F, Sok D, Kong L. 66.  et al. 2014. Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell 159:169–79 [Google Scholar]
  67. McGuire AT, Dreyer AM, Carbonetti S. 67.  et al. 2014. Antigen modification regulates competition of broad and narrow neutralizing HIV antibodies. Science 346:62151380–83 [Google Scholar]
  68. Sanders RW, Vesanen M, Schuelke N. 68.  et al. 2002. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 76:178875–89 [Google Scholar]
  69. Harris A, Borgnia MJ, Shi D. 69.  et al. 2011. Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures. PNAS 108:2811440–45 [Google Scholar]
  70. Beddows S, Schulke N, Kirschner M. 70.  et al. 2005. Evaluating the immunogenicity of a disulfide-stabilized, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 79:148812–27 [Google Scholar]
  71. Sanders RW, Derking R, Cupo A. 71.  et al. 2013. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog. 9:9e1003618 [Google Scholar]
  72. Sharma SK, de Val N, Bale S. 72.  et al. 2015. Cleavage-independent HIV-1 Env trimers engineered as soluble native spike mimetics for vaccine design. Cell Rep. 11:4539–50 [Google Scholar]
  73. Crooks ET, Moore PL, Franti M. 73.  et al. 2007. A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing no envelope and soluble monomeric gp120. Virology 366:2245–62 [Google Scholar]
  74. Crooks ET, Tong T, Osawa K. 74.  et al. 2011. Enzyme digests eliminate nonfunctional Env from HIV-1 particle surfaces, leaving native Env trimers intact and viral infectivity unaffected. J. Virol. 85:125825–39 [Google Scholar]
  75. Verkoczy L, Kelsoe G, Haynes BF. 75.  2014. HIV-1 envelope gp41 broadly neutralizing antibodies: hurdles for vaccine development. PLoS Pathog. 10:5e1004073 [Google Scholar]
  76. Pappas L, Foglierini M, Piccoli L. 76.  et al. 2014. Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature 516:7531418–22 [Google Scholar]
  77. Jardine J, Julien J-P, Menis S. 77.  et al. 2013. Rational HIV immunogen design to target specific germline B cell receptors. Science 340:6133711–16 [Google Scholar]
  78. Lindqvist M, van Lunzen J, Soghoian DZ. 78.  et al. 2012. Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J. Clin. Invest. 122:93271–80 [Google Scholar]
  79. Perreau M, Savoye A-L, De Crignis E. 79.  et al. 2013. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J. Exp. Med. 210:1143–56 [Google Scholar]
  80. Locci M, Havenar-Daughton C, Landais E. 80.  et al. 2013. Human circulating PD-1+CXCR3-CXCR5+memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39:4758–69 [Google Scholar]
  81. Cohen K, Altfeld M, Alter G. 81.  et al. 2014. Early preservation of CXCR5+ PD-1+ helper T cells and B cell activation predict the breadth of neutralizing antibody responses in chronic HIV-1 infection. J. Virol. 88:2213310–21 [Google Scholar]
  82. Herati RS, Reuter MA, Dolfi DV. 82.  et al. 2014. Circulating CXCR5+PD-1+ response predicts influenza vaccine antibody responses in young adults but not elderly adults. J. Immunol. 193:73528–37 [Google Scholar]
  83. Zotos D, Coquet JM, Zhang Y. 83.  et al. 2010. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207:2365–78 [Google Scholar]
  84. Ma CS, Suryani S, Avery DT. 84.  et al. 2009. Early commitment of naïve human CD4+ T cells to the T follicular helper (TFH) cell lineage is induced by IL-12. Immunol. Cell Biol. 87:8590–600 [Google Scholar]
  85. Schneider P. 85.  2005. The role of APRIL and BAFF in lymphocyte activation. Curr. Opin. Immunol. 17:3282–89 [Google Scholar]
  86. Goenka R, Matthews AH, Zhang B. 86.  et al. 2014. Local BLyS production by T follicular cells mediates retention of high affinity B cells during affinity maturation. J. Exp. Med. 211:145–56 [Google Scholar]
  87. Isik G, Chung NPY, van Montfort T. 87.  et al. 2013. An HIV-1 envelope glycoprotein trimer with an embedded IL-21 domain activates human B cells. PLoS ONE 8:6e67309 [Google Scholar]
  88. Gupta S, Clark ES, Termini JM. 88.  et al. 2015. DNA vaccine molecular adjuvants SP-D-BAFF and SP-D-APRIL enhance anti-gp120 immune response and increase HIV-1 neutralizing antibody titers. J. Virol. 89:84158–69 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error