Treatment with antiretroviral therapy dramatically increases the survival of HIV-infected individuals. However, treatment has to be continued for life because it does not lead to the full eradication of infection. HIV persists in resting CD4+ T cells, and possibly other cell types, and can reemerge from these cells when therapy is interrupted. Here, we review molecular mechanisms that have been proposed to contribute to HIV latency, as well as the relative roles of - and -acting mechanisms. We also discuss existing and future therapeutic opportunities regarding HIV latency that might lead to a future cure for HIV infection.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Lohse N, Hansen AB. 1.  2007. Survival of persons with and without HIV infection in Denmark. Ann. Intern. Med. 146:287–95 [Google Scholar]
  2. Torres RA, Lewis W. 2.  2013. Aging and HIV AIDS: pathogenetic role of therapeutic side effects. Lab. Invest. 94:2120–28 [Google Scholar]
  3. Cory TJ, Schacker TW, Stevenson M. 3.  et al. 2013. Overcoming pharmacologic sanctuaries. Curr. Opin. HIV AIDS 8:3190–95 [Google Scholar]
  4. Deeks SG.4.  2012. HIV: shock and kill. Nature 487:7408439–40 [Google Scholar]
  5. Donahue DA, Wainberg MA. 5.  2013. Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 10:11 [Google Scholar]
  6. Ruelas DS, Greene WC. 6.  2013. An integrated overview of HIV-1 latency. Cell 155:3519–29 [Google Scholar]
  7. Van Lint C, Bouchat S, Marcello A. 7.  2013. HIV-1 transcription and latency: an update. Retrovirology 10:67 [Google Scholar]
  8. Sherrill-Mix S, Lewinski MK, Famiglietti M. 8.  et al. 2013. HIV latency and integration site placement in five cell-based models. Retrovirology 10:90 [Google Scholar]
  9. Spina CA, Anderson J, Archin NM. 9.  et al. 2013. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog. 9:12e1003834 [Google Scholar]
  10. Ho Y-C, Shan L, Hosmane NN. 10.  et al. 2013. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155:3540–51 [Google Scholar]
  11. Hakre S, Chavez L, Shirakawa K. 11.  et al. 2012. HIV latency: experimental systems and molecular models. FEMS Microbiol. Rev. 36:706–16 [Google Scholar]
  12. Wang GP, Ciuffi A, Leipzig J. 12.  et al. 2007. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 17:81186–94 [Google Scholar]
  13. Brady T, Agosto LM, Malani N. 13.  et al. 2009. HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 23:121461–71 [Google Scholar]
  14. Ciuffi A, Llano M, Poeschla E. 14.  et al. 2005. A role for LEDGF p75 in targeting HIV DNA integration. Nat. Med. 11:121287–89 [Google Scholar]
  15. Schrijvers R, De Rijck J, Demeulemeester J. 15.  et al. 2012. LEDGF p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog. 8:3e1002558 [Google Scholar]
  16. Jordan A, Defechereux P, Verdin E. 16.  2001. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J. 20:71726–38 [Google Scholar]
  17. Jordan A, Bisgrove D, Verdin E. 17.  2003. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22:81868–77 [Google Scholar]
  18. Lewinski MK, Bisgrove D, Shinn P. 18.  et al. 2005. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 79:116610–19 [Google Scholar]
  19. Singh A, Razooky B, Cox CD. 19.  et al. 2010. Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression. Biophys. J. 98:8L32–L34 [Google Scholar]
  20. Dar RD, Razooky BS, Singh A. 20.  et al. 2012. Transcriptional burst frequency and burst size are equally modulated across the human genome. Proc. Natl. Acad. Sci. USA 109:4317454–59 [Google Scholar]
  21. Han Y, Lin YB, An W. 21.  et al. 2008. Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 4:2134–46 [Google Scholar]
  22. Shan L, Yang HC, Rabi SA. 22.  et al. 2011. Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J. Virol. 85:115384–93 [Google Scholar]
  23. Lenasi T, Contreras X, Peterlin BM. 23.  2008. Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe 4:2123–33 [Google Scholar]
  24. Gallastegui E, Millan-Zambrano G, Terme JM. 24.  et al. 2011. Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J. Virol. 85:73187–202 [Google Scholar]
  25. Han Y, Lassen K, Monie D. 25.  et al. 2004. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78:126122–33 [Google Scholar]
  26. Dahabieh MS, Ooms M, Brumme C. 26.  et al. 2014. Direct non-productive HIV-1 infection in a T-cell line is driven by cellular activation state and NFκB. Retrovirology 11:11–17 [Google Scholar]
  27. Miller-Jensen K, Dey SS, Pham N. 27.  et al. 2012. Chromatin accessibility at the HIV LTR promoter sets a threshold for NF-κB mediated viral gene expression. Integr. Biol. Quant. Biosci. Nano Macro 4:6661–71 [Google Scholar]
  28. Politz JCR, Scalzo D, Groudine M. 28.  2013. Something silent this way forms: the functional organization of the repressive nuclear compartment. Annu. Rev. Cell Dev. Biol. 29:1241–70 [Google Scholar]
  29. Luperchio TR, Wong X, Reddy KL. 29.  2014. ScienceDirectGenome regulation at the peripheral zone: lamina associated domains in development and disease. Curr. Opin. Genet. Dev. 25:50–61 [Google Scholar]
  30. Morimoto M, Boerkoel C. 30.  2013. The role of nuclear bodies in gene expression and disease. Biology 2:3976–1033 [Google Scholar]
  31. Albanese A, Arosio D, Terreni M. 31.  et al. 2008. HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery. PLoS ONE 3:6e2413 [Google Scholar]
  32. Dieudonne M, Maiuri P, Biancotto C. 32.  et al. 2009. Transcriptional competence of the integrated HIV-1 provirus at the nuclear periphery. EMBO J. 28:152231–43 [Google Scholar]
  33. Lusic M, Marini B, Ali H. 33.  et al. 2013. Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+T cells. Cell Host Microbe 13:6665–77 [Google Scholar]
  34. Marcello A, Ferrari A, Pellegrini V. 34.  et al. 2003. Recruitment of human cyclin T1 to nuclear bodies through direct interaction with the PML protein. EMBO J. 22:2156–66 [Google Scholar]
  35. Weinberger LS, Burnett JC, Toettcher JE. 35.  et al. 2005. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:2169–82 [Google Scholar]
  36. Kutsch O, Benveniste ENN, Shaw GMM. 36.  et al. 2002. Direct and quantitative single-cell analysis of human immunodeficiency virus type 1 reactivation from latency. J. Virol. 76:178776–86 [Google Scholar]
  37. Sahu GK, Lee K, Ji J. 37.  et al. 2006. A novel in vitro system to generate and study latently HIV-infected long-lived normal CD4+ T-lymphocytes. Virology 355:2127–37 [Google Scholar]
  38. Tyagi M, Pearson RJ, Karn J. 38.  2010. Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J. Virol. 84:136425–37 [Google Scholar]
  39. Marini A, Harper JM, Romerio F. 39.  2008. An in vitro system to model the establishment and reactivation of HIV-1 latency. J. Immunol. 181:117713–20 [Google Scholar]
  40. Bosque A, Planelles V. 40.  2009. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 113:158–65 [Google Scholar]
  41. Yang H-CC, Xing S, Shan L. 41.  et al. 2009. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J. Clin. Invest. 119:113473–86 [Google Scholar]
  42. Lassen KG, Hebbeler AM, Bhattacharyya D. 42.  et al. 2012. A flexible model of HIV-1 latency permitting evaluation of many primary CD4 T-cell reservoirs. PLoS ONE 7:1e30176 [Google Scholar]
  43. van der Sluis RM, van Montfort T, Pollakis G. 43.  et al. 2013. Dendritic cell-induced activation of latent HIV-1 provirus in actively proliferating primary T lymphocytes. PLoS Pathog. 9:3e1003259 [Google Scholar]
  44. van der Sluis RM, Derking R, Breidel S. 44.  et al. 2014. The interplay between the viral Tat protein and the c-Jun transcription factor in controlling the activity of the LTR promoter in the different human immunodeficiency virus type I subtypes. J. Gen. Virol. 5:4968–79 [Google Scholar]
  45. Dahabieh MS, Ooms M, Simon V. 45.  et al. 2013. A doubly fluorescent HIV-1 reporter shows that the majority of integrated HIV-1 is latent shortly after infection. J. Virol. 87:84716–27 [Google Scholar]
  46. Calvanese V, Chavez L, Laurent T. 46.  et al. 2013. Dual-color HIV reporters trace a population of latently infected cells and enable their purification. Virology 446:1–2283–92 [Google Scholar]
  47. Farber DL, Yudanin NA, Restifo NP. 47.  2014. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14:124–35 [Google Scholar]
  48. Chomont N, El-Far M, Ancuta P. 48.  et al. 2009. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15:8893–900 [Google Scholar]
  49. Gattinoni L, Lugli E, Ji Y. 49.  et al. 2011. A human memory T cell subset with stem cell–like properties. Nat. Med. 17:101290–97 [Google Scholar]
  50. Buzon MJ, Sun H, Li C. 50.  et al. 2014. HIV-1 persistence in CD4+ T cells with stem cell–like properties. Nat. Med. 20:2139–42 [Google Scholar]
  51. Delon J, Bercovici N, Raposo G. 51.  et al. 1998. Antigen-dependent and -independent Ca2+ responses triggered in T cells by dendritic cells compared with B cells. J. Exp. Med. 188:81473–84 [Google Scholar]
  52. Revy P, Sospedra M, Barbour B. 52.  et al. 2001. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat. Immunol. 2:10925–31 [Google Scholar]
  53. Geijtenbeek TB, Kwon DS, Torensma R. 53.  et al. 2000. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:5587–97 [Google Scholar]
  54. Yu HJ, Reuter MA, McDonald D. 54.  2008. HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog. 4:8e1000134 [Google Scholar]
  55. Stadeli KM, Richman DD. 55.  2012. Rates of emergence of HIV drug resistance in resource-limited settings: a systematic review. Antivir. Ther. 18:1115–23 [Google Scholar]
  56. Evans VA, Kumar N, Filali A. 56.  et al. 2013. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells. PLoS Pathog. 9:12e1003799 [Google Scholar]
  57. Rodriguez-Plata MT, Puigdomenech I, Izquierdo-Useros N. 57.  et al. 2013. The infectious synapse formed between mature dendritic cells and CD4+ T cells is independent of the presence of the HIV-1 envelope glycoprotein. Retrovirology 10:42 [Google Scholar]
  58. Kwon DS, Angin M, Hongo T. 58.  et al. 2012. CD4+ CD25+ regulatory T cells impair HIV-1-specific CD4 T cell responses by upregulating interleukin-10 production in monocytes. J. Virol. 86:126586–94 [Google Scholar]
  59. Said EA, Dupuy FP, Trautmann L. 59.  et al. 2010. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat. Med. 16:4452–59 [Google Scholar]
  60. Elrefaei M, Burke CM, Baker CA. 60.  et al. 2010. HIV-specific TGF-beta-positive CD4+ T cells do not express regulatory surface markers and are regulated by CTLA-4. AIDS Res. Hum. Retrovir. 26:3329–37 [Google Scholar]
  61. Li MO, Sanjabi S, Flavell RA. 61.  2006. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25:3455–71 [Google Scholar]
  62. Baldauf HM, Pan X, Erikson E. 62.  et al. 2012. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nat. Med. 18:111682–87 [Google Scholar]
  63. Cameron PU, Saleh S, Sallmann G. 63.  et al. 2010. Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 107:3916934–39 [Google Scholar]
  64. Saleh S, Solomon A, Wightman F. 64.  et al. 2007. CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 110:134161–64 [Google Scholar]
  65. Ducrey-Rundquist O, Guyader M, Trono D. 65.  2002. Modalities of interleukin-7-induced human immunodeficiency virus permissiveness in quiescent T lymphocytes. J. Virol. 76:189103–11 [Google Scholar]
  66. Unutmaz D, Kewalramani VN, Marmon S. 66.  et al. 1999. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J. Exp. Med. 189:111735–46 [Google Scholar]
  67. Chun TW, Engel D, Mizell SB. 67.  et al. 1998. Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J. Exp. Med. 188:183–91 [Google Scholar]
  68. Iannello A, Boulassel MR, Samarani S. 68.  et al. 2010. HIV-1 causes an imbalance in the production of interleukin-18 and its natural antagonist in HIV-infected individuals: implications for enhanced viral replication. J. Infect. Dis. 201:4608–17 [Google Scholar]
  69. Riou C, Yassine-Diab B, Van Grevenynghe J. 69.  et al. 2007. Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J. Exp. Med. 204:179–91 [Google Scholar]
  70. Chetoui N, Boisvert M, Gendron S. 70.  et al. 2010. Interleukin-7 promotes the survival of human CD4+effector memory T cells by up-regulating Bcl-2 proteins and activating the JAK STAT signalling pathway. Immunology 130:3418–26 [Google Scholar]
  71. Larsson M, Shankar EM, Che KF. 71.  et al. 2013. Molecular signatures of T-cell inhibition in HIV-1 infection. Retrovirology 10:31 [Google Scholar]
  72. Day CL, Kaufmann DE, Kiepiela P. 72.  et al. 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:7109350–54 [Google Scholar]
  73. Hatano H.73.  2013. Immune activation and HIV persistence: considerations for novel therapeutic interventions. Curr. Opin. HIV AIDS 8:3211–16 [Google Scholar]
  74. DaFonseca S, Chomont N, El Far M. 74.  et al. 2010. Purging the HIV-1 reservoir through the disruption of the PD-1 pathway. J. Int. AIDS Soc. 13:Suppl. 3O15 [Google Scholar]
  75. Parry RV, Chemnitz JM, Frauwirth KA. 75.  et al. 2005. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25:219543–53 [Google Scholar]
  76. Kaufmann DE, Walker BD. 76.  2009. PD-1 and CTLA-4 inhibitory cosignaling pathways in HIV infection and the potential for therapeutic intervention. J. Immunol. 182:105891–97 [Google Scholar]
  77. Leng Q, Bentwich Z, Magen E. 77.  et al. 2002. CTLA-4 upregulation during HIV infection: association with anergy and possible target for therapeutic intervention. AIDS 16:4519–29 [Google Scholar]
  78. Wherry EJ, Ha SJ, Kaech SM. 78.  et al. 2007. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27:4670–84 [Google Scholar]
  79. Williams KL, Nanda I, Lyons GE. 79.  et al. 2001. Characterization of murine BATF: a negative regulator of activator protein-1 activity in the thymus. Eur. J. Immunol. 31:51620–27 [Google Scholar]
  80. Duverger A, Wolschendorf F, Zhang M. 80.  et al. 2013. An AP-1 binding site in the enhancer core element of the HIV-1 promoter controls the ability of HIV-1 to establish latent infection. J. Virol. 87:42264–77 [Google Scholar]
  81. Juffroy O, Bugault F, Lambotte O. 81.  et al. 2010. Dual mechanism of impairment of interleukin-7 (IL-7) responses in human immunodeficiency virus infection: decreased IL-7 binding and abnormal activation of the JAK STAT5 pathway. J. Virol. 84:196–108 [Google Scholar]
  82. Tzachanis D, Lafuente EM, Li L. 82.  et al. 2004. Intrinsic and extrinsic regulation of T lymphocyte quiescence. Leuk. Lymphoma 45:101959–67 [Google Scholar]
  83. Van Der Heide LP, Hoekman MF, Smidt MP. 83.  2004. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem. J. 380:Pt. 2297–309 [Google Scholar]
  84. Swiggard WJ, Baytop C, Yu JJ. 84.  et al. 2005. Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli. J. Virol. 79:2214179–88 [Google Scholar]
  85. Shalek AK, Satija R, Adiconis X. 85.  et al. 2013. Single-cell transcriptomics reveals bimodality inexpression and splicing in immune cells. Nature 498:7453236–40 [Google Scholar]
  86. Feinerman O, Jentsch G, Tkach KE. 86.  et al. 2010. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol. 6:1–16 [Google Scholar]
  87. Van Lint C, Emiliani S, Ott M. 87.  et al. 1996. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J. 15:51112–20 [Google Scholar]
  88. Siliciano JD, Lai J, Callender M. 88.  et al. 2007. Stability of the latent reservoir for HIV-1 in patients receiving valproic acid. J. Infect. Dis. 195:833–36 [Google Scholar]
  89. Sagot-Lerolle N, Lamine A, Chaix ML. 89.  et al. 2008. Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir. AIDS 22:1125–29 [Google Scholar]
  90. Archin NM, Eron JJ, Palmer S. 90.  et al. 2008. Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells. AIDS 22:1131–35 [Google Scholar]
  91. Archin NM, Liberty AL, Kashuba AD. 91.  et al. 2012. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487:7408482–85 [Google Scholar]
  92. Xing S, Siliciano RF. 92.  2013. Targeting HIV latency: pharmacologic strategies toward eradication. Drug Discov. Today 18:11–12541–51 [Google Scholar]
  93. Bullen CK, Laird GM, Durand CM. 93.  et al. 2014. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat. Med. 20:4425–29 [Google Scholar]
  94. Cillo AR, Sobolewski MD, Bosch RJ. 94.  et al. 2014. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc. Natl. Acad. Sci. USA 111:197078–83 [Google Scholar]
  95. Shan L, Deng K, Shroff NS. 95.  et al. 2012. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36:3491–501 [Google Scholar]
  96. Jern P, Coffin JM. 96.  2008. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42:1709–32 [Google Scholar]
  97. Mancebo HS, Lee G, Flygare J. 97.  et al. 1997. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev. 11:202633–44 [Google Scholar]
  98. Biglione S, Byers SA, Price JP. 98.  et al. 2007. Inhibition of HIV-1 replication by P-TEFb inhibitors DRB, seliciclib and flavopiridol correlates with release of free P-TEFb from the large, inactive form of the complex. Retrovirology 4:47 [Google Scholar]
  99. Duverger A, Wolschendorf F, Anderson JC. 99.  et al. 2013. Kinase control of latent HIV-1 infection: PIM-1 kinase as a major contributor to HIV-1 reactivation. J. Virol. 88:1364–76 [Google Scholar]
  100. Anderson I, Low JS, Weston S. 100.  et al. 2014. Heat shock protein 90 controls HIV-1 reactivation from latency. Proc. Natl. Acad. Sci. USA 111:151528–37 [Google Scholar]
  101. Hu W, Kaminski R, Yang F. 101.  et al. 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl. Acad. Sci. USA 111:3111461–66 [Google Scholar]
  102. Ebina H, Misawa N, Kanemura Y. 102.  et al. 2013. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 3:2510 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error