1932

Abstract

Recent advances in the treatment of tuberculosis (TB) have led to improvements unprecedented in our lifetime. Decades of research in developing new drugs, especially for multidrug-resistant TB, have created not only multiple new antituberculous agents but also a new approach to development and treatment, with a focus on maximizing the benefit to the individual patient. Prevention of TB disease has also been improved and recognized as a critical component of global TB control. While the momentum is positive, it will take continued investment at all levels, especially training of new dedicated TB researchers and advocates around the world, to maintain this progress.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-100622-024848
2024-01-29
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/med/75/1/annurev-med-100622-024848.html?itemId=/content/journals/10.1146/annurev-med-100622-024848&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Br. Med. J. 1948. Streptomycin treatment of pulmonary tuberculosis. Br. Med. J. 2:76982
    [Google Scholar]
  2. 2.
    Fox W, Mitchison DA. 1975. Short-course chemotherapy for pulmonary tuberculosis. Am. Rev. Respir. Dis. 111:32553
    [Google Scholar]
  3. 3.
    Bonnett LJ, Ken-Dror G, Koh G, Davies GR. 2017. Comparing the efficacy of drug regimens for pulmonary tuberculosis: meta-analysis of endpoints in early-phase clinical trials. Clin. Infect. Dis. 65:4654
    [Google Scholar]
  4. 4.
    Alipanah N, Jarlsberg L, Miller C et al. 2018. Adherence interventions and outcomes of tuberculosis treatment: a systematic review and meta-analysis of trials and observational studies. PLOS Med. 15:e1002595
    [Google Scholar]
  5. 5.
    Dorman SE, Nahid P, Kurbatova EV et al. 2021. Four-month rifapentine regimens with or without moxifloxacin for tuberculosis. N. Engl. J. Med. 384:170518
    [Google Scholar]
  6. 6.
    WHO 2022. Module 4: treatment—drug-susceptible tuberculosis treatment. WHO Consolidated Guidelines on Tuberculosis Geneva: World Health Organ.
    [Google Scholar]
  7. 7.
    Carr W, Kurbatova E, Starks A et al. 2022. Interim guidance: 4-month rifapentine-moxifloxacin regimen for the treatment of drug-susceptible pulmonary tuberculosis—United States, 2022. Morb. Mortal. Wkly. Rep. 71:28589
    [Google Scholar]
  8. 8.
    Merle CS, Fielding K, Sow OB et al. 2014. A four-month gatifloxacin-containing regimen for treating tuberculosis. N. Engl. J. Med. 371:158898
    [Google Scholar]
  9. 9.
    Gillespie SH, Crook AM, McHugh TD et al. 2014. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med. 371:157787
    [Google Scholar]
  10. 10.
    Jindani A, Harrison TS, Nunn AJ et al. 2014. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N. Engl. J. Med. 371:1599608
    [Google Scholar]
  11. 11.
    Lienhardt C, Nunn A, Chaisson R et al. 2020. Advances in clinical trial design: weaving tomorrow's TB treatments. PLOS Med. 17:e1003059
    [Google Scholar]
  12. 12.
    Paton NI, Cousins C, Suresh C et al. 2023. Treatment strategy for rifampin-susceptible tuberculosis. N. Engl. J. Med. 388:87387
    [Google Scholar]
  13. 13.
    Johnson JL, Hadad DJ, Dietze R et al. 2009. Shortening treatment in adults with noncavitary tuberculosis and 2-month culture conversion. Am. J. Respir. Crit. Care Med. 180:55863
    [Google Scholar]
  14. 14.
    Turkova A, Wills GH, Wobudeya E et al. 2022. Shorter treatment for nonsevere tuberculosis in African and Indian children. N. Engl. J. Med. 386:91122
    [Google Scholar]
  15. 15.
    Imperial MZ, Phillips PPJ, Nahid P, Savic RM. 2021. Precision-enhancing risk stratification tools for selecting optimal treatment durations in tuberculosis clinical trials. Am. J. Respir. Crit. Care Med. 204:108696
    [Google Scholar]
  16. 16.
    UCSF Cent. Tuberc 2023. Therapeutic trials and pharmacokinetics: stratified medicine strategy trials. Center for Tuberculosis, University of California San Francisco https://tb.ucsf.edu/therapeutics-trials-pharmacokinetics
    [Google Scholar]
  17. 17.
    Dheda K, Lange C. 2022. A revolution in the management of multidrug-resistant tuberculosis. Lancet 400:182325
    [Google Scholar]
  18. 18.
    WHO 2022. Global Tuberculosis Report 2022 Geneva: World Health Organ.
    [Google Scholar]
  19. 19.
    Gegia M, Cohen T, Kalandadze I et al. 2012. Outcomes among tuberculosis patients with isoniazid resistance in Georgia, 2007–2009. Int. J. Tuberc. Lung Dis. 16:81216
    [Google Scholar]
  20. 20.
    WHO 2018. WHO Treatment Guidelines for Isoniazid-Resistant Tuberculosis: Supplement to the WHO Treatment Guidelines for Drug-Resistant Tuberculosis Geneva: World Health Organ.
    [Google Scholar]
  21. 21.
    Seung KJ, Joseph K, Hurtado R et al. 2004. Number of drugs to treat multidrug-resistant tuberculosis. Am. J. Respir. Crit. Care Med. 169:133637
    [Google Scholar]
  22. 22.
    Borisov SE, Dheda K, Enwerem M et al. 2017. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur. Respir. J. 49:1700387
    [Google Scholar]
  23. 23.
    WHO 2017. Report of the Guideline Development Group Meeting on the Use of Bedaquiline in the Treatment of Multidrug-Resistant Tuberculosis, a Review of Available Evidence 2016 Geneva: World Health Organ.
    [Google Scholar]
  24. 24.
    Skripconoka V, Danilovits M, Pehme L et al. 2013. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur. Respir. J. 41:1393400
    [Google Scholar]
  25. 25.
    Gler MT, Skripconoka V, Sanchez-Garavito E et al. 2012. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med. 366:215160
    [Google Scholar]
  26. 26.
    WHO 2018. WHO Position Statement on the Use of Delamanid for MDR-TB Geneva: World Health Organ.
    [Google Scholar]
  27. 27.
    Hewison C, Khan U, Bastard M et al. 2022. Safety of treatment regimens containing bedaquiline and delamanid in the endTB cohort. Clin. Infect. Dis. 75:100613
    [Google Scholar]
  28. 28.
    Occhineri S, Matucci T, Rindi L et al. 2022. Pretomanid for tuberculosis treatment: an update for clinical purposes. Curr. Res. Pharmacol. Drug Discov. 3:100128
    [Google Scholar]
  29. 29.
    Lee M, Lee J, Carroll MW et al. 2012. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N. Engl. J. Med. 367:150818
    [Google Scholar]
  30. 30.
    Tang S, Yao L, Hao X et al. 2015. Clofazimine for the treatment of multidrug-resistant tuberculosis: prospective, multicenter, randomized controlled study in China. Clin. Infect. Dis. 60:136167
    [Google Scholar]
  31. 31.
    Jaganath D, Lamichhane G, Shah M. 2016. Carbapenems against Mycobacterium tuberculosis: a review of the evidence. Int. J. Tuberc. Lung Dis. 20:143647
    [Google Scholar]
  32. 32.
    Ahmad N, Ahuja SD, Akkerman OW et al. 2018. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet 392:82134
    [Google Scholar]
  33. 33.
    Nunn AJ, Phillips PPJ, Meredith SK et al. 2019. A trial of a shorter regimen for rifampin-resistant tuberculosis. N. Engl. J. Med. 380:120113
    [Google Scholar]
  34. 34.
    Goodall RL, Meredith SK, Nunn AJ et al. 2022. Evaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trial. Lancet 400:185868
    [Google Scholar]
  35. 35.
    Mok J, Lee M, Kim DK et al. 2022. 9 months of delamanid, linezolid, levofloxacin, and pyrazinamide versus conventional therapy for treatment of fluoroquinolone-sensitive multidrug-resistant tuberculosis (MDR-END): a multicentre, randomised, open-label phase 2/3 non-inferiority trial in South Korea. Lancet 400:152230
    [Google Scholar]
  36. 36.
    Nyang'wa BT, Berry C, Kazounis E et al. 2022. A 24-week, all-oral regimen for rifampin-resistant tuberculosis. N. Engl. J. Med. 387:233143
    [Google Scholar]
  37. 37.
    Conradie F, Diacon AH, Ngubane N et al. 2020. Treatment of highly drug-resistant pulmonary tuberculosis. N. Engl. J. Med. 382:893902
    [Google Scholar]
  38. 38.
    Conradie F, Bagdasaryan TR, Borisov S et al. 2022. Bedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosis. N. Engl. J. Med. 387:81023
    [Google Scholar]
  39. 39.
    Padmapriyadarsini C, Vohra V, Bhatnagar A et al. 2022. Bedaquiline, delamanid, linezolid and clofazimine for treatment of pre-extensively drug-resistant tuberculosis. Clin. Infect. Dis. 76:e93846
    [Google Scholar]
  40. 40.
    Guglielmetti L, Ardizzoni E, Atger M et al. 2021. Evaluating newly approved drugs for multidrug-resistant tuberculosis (endTB): study protocol for an adaptive, multi-country randomized controlled trial. Trials 22:651
    [Google Scholar]
  41. 41.
    McKenna L. 2022. Tuberculosis Treatment Pipeline Report New York: Treatment Action Group
    [Google Scholar]
  42. 42.
    Horter S, Daftary A, Keam T et al. 2021. Person-centred care in TB. Int. J. Tuberc. Lung Dis. 25:78487
    [Google Scholar]
  43. 43.
    Wallis RS, Hafner R. 2015. Advancing host-directed therapy for tuberculosis. Nat. Rev. Immunol. 15:25563
    [Google Scholar]
  44. 44.
    Young C, Walzl G, Du Plessis N. 2020. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol. 13:190204
    [Google Scholar]
  45. 45.
    Critchley JA, Young F, Orton L, Garner P. 2013. Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. Lancet Infect. Dis. 13:22337
    [Google Scholar]
  46. 46.
    Thwaites GE, Nguyen DB, Nguyen HD et al. 2004. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N. Engl. J. Med. 351:174151
    [Google Scholar]
  47. 47.
    Meintjes G, Lawn SD, Scano F et al. 2008. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect. Dis. 8:51623
    [Google Scholar]
  48. 48.
    Wallis RS, Ginindza S, Beattie T et al. 2021. Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respir. Med. 9:897908
    [Google Scholar]
  49. 49.
    Johnson JL, Ssekasanvu E, Okwera A et al. 2003. Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 168:18591
    [Google Scholar]
  50. 50.
    Dawson R, Condos R, Tse D et al. 2009. Immunomodulation with recombinant interferon-γ1b in pulmonary tuberculosis. PLOS ONE 4:e6984
    [Google Scholar]
  51. 51.
    Barber DL, Sakai S, Kudchadkar RR et al. 2019. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci. Transl. Med. 11:eaat2702
    [Google Scholar]
  52. 52.
    Keane J, Gershon S, Wise RP et al. 2001. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med. 345:1098104
    [Google Scholar]
  53. 53.
    WHO 2015. The End TB Strategy Geneva: World Health Organ.
    [Google Scholar]
  54. 54.
    WHO 2020. WHO Operational Handbook on Tuberculosis. Module 1: Prevention—Tuberculosis Preventive Treatment Geneva: World Health Org.
    [Google Scholar]
  55. 55.
    Sterling TR, Villarino ME, Borisov AS et al. 2011. Three months of rifapentine and isoniazid for latent tuberculosis infection. N. Engl. J. Med. 365:215566
    [Google Scholar]
  56. 56.
    Sterling TR, Njie G, Zenner D et al. 2020. Guidelines for the treatment of latent tuberculosis infection: recommendations from the National Tuberculosis Controllers Association and CDC, 2020. MMWR Recomm. Rep. 69:111
    [Google Scholar]
  57. 57.
    Swindells S, Ramchandani R, Gupta A et al. 2019. One month of rifapentine plus isoniazid to prevent HIV-related tuberculosis. N. Engl. J. Med. 380:100111
    [Google Scholar]
/content/journals/10.1146/annurev-med-100622-024848
Loading
/content/journals/10.1146/annurev-med-100622-024848
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error