1932

Abstract

Biofilms are the dominant bacterial lifestyle. The regulation of the formation and dispersal of bacterial biofilms has been the subject of study in many organisms. Over the last two decades, the mechanisms of biofilm formation and regulation have emerged as among the best understood of any bacterial biofilm system. Biofilm formation by occurs through the localization of an adhesin, LapA, to the outer membrane via a variant of the classical type I secretion system. The decision between biofilm formation and dispersal is mediated by LapD, a c-di-GMP receptor, and LapG, a periplasmic protease, which together control whether LapA is retained or released from the cell surface. LapA localization is also controlled by a complex network of c-di-GMP-metabolizing enzymes. This review describes the current understanding of LapA-mediated biofilm formation by and discusses several emerging models for the regulation and function of this adhesin.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-011520-094214
2020-09-08
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-011520-094214.html?itemId=/content/journals/10.1146/annurev-micro-011520-094214&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abel S, Bucher T, Nicollier M, Hug I, Kaever V et al. 2013. Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the Caulobacter cell cycle. PLOS Genet 9:9e1003744
    [Google Scholar]
  2. 2. 
    Abel S, Chien P, Wassmann P, Schirmer T, Kaever V et al. 2011. Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. Mol. Cell 43:4550–60
    [Google Scholar]
  3. 3. 
    Ahmad I, Cimdins A, Beske T, Römling U 2017. Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. . BMC Microbiol 17:127
    [Google Scholar]
  4. 4. 
    Ainelo H, Lahesaare A, Teppo A, Kivisaar M, Teras R 2017. The promoter region of lapA and its transcriptional regulation by Fis in Pseudomonas putida. . PLOS ONE 12:9e0185482
    [Google Scholar]
  5. 5. 
    Ambrosis N, Boyd CD, Toole GAO, Fernández J, Sisti F 2016. Homologs of the LapD-LapG c-di-GMP effector system control biofilm formation by Bordetella bronchiseptica. . PLOS ONE 11:7e0158752
    [Google Scholar]
  6. 6. 
    Anantharaman V, Balaji S, Aravind L 2006. The signaling helix: a common functional theme in diverse signaling proteins. Biol. Direct. 1:125
    [Google Scholar]
  7. 7. 
    Baker AE, Diepold A, Kuchma SL, Scott JE, Ha D-G et al. 2016. PilZ domain protein FlgZ mediates cyclic di-GMP-dependent swarming motility control in Pseudomonas aeruginosa. J. Bacteriol 198:131837–46
    [Google Scholar]
  8. 8. 
    Baker AE, Webster SS, Diepold A, Kuchma SL, Bordeleau E et al. 2019. Flagellar stators stimulate c-di-GMP production by Pseudomonas aeruginosa. J. Bacteriol 201:18e00741–18
    [Google Scholar]
  9. 9. 
    Baraquet C, Harwood CS. 2013. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. PNAS 110:4618478–83
    [Google Scholar]
  10. 10. 
    Baraquet C, Harwood CS. 2015. FleQ DNA binding consensus sequence revealed by studies of FleQ-dependent regulation of biofilm gene expression in Pseudomonas aeruginosa. J. Bacteriol 198:1178–86
    [Google Scholar]
  11. 11. 
    Baraquet C, Murakami K, Parsek MR, Harwood CS 2012. The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the Pel operon promoter in response to c-di-GMP. Nucleic Acids Res 40:157207–18
    [Google Scholar]
  12. 12. 
    Basu Roy A, Sauer K 2014. Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol. . Microbiol 94:4771–93
    [Google Scholar]
  13. 13. 
    Bense S, Bruchmann S, Steffen A, Stradal TEB, Häussler S, Düvel J 2019. Spatiotemporal control of FlgZ activity impacts Pseudomonas aeruginosa flagellar motility. Mol. Microbiol. 111:61544–57
    [Google Scholar]
  14. 14. 
    Beyhan S, Bilecen K, Salama SR, Casper-Lindley C, Yildiz FH 2007. Regulation of rugosity and biofilm formation in Vibrio cholerae: comparison of VpsT and VpsR regulons and epistasis analysis of VpsT, VpsR, and HapR. . J. Bacteriol 189:2388–402
    [Google Scholar]
  15. 15. 
    Bielecki P, Jensen V, Schulze W, Gödeke J, Strehmel J et al. 2015. Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa. . Nucleic Acids Res 43:136413–25
    [Google Scholar]
  16. 16. 
    Blanco-Romero E, Redondo-Nieto M, Martínez-Granero F, Garrido-Sanz D, Ramos-González MI et al. 2018. Genome-wide analysis of the FleQ direct regulon in Pseudomonas fluorescens F113 and Pseudomonas putida KT2440. Sci. Rep. 8:13145
    [Google Scholar]
  17. 17. 
    Bojanovič K, D'Arrigo I, Long KS, Parales RE 2017. Global transcriptional responses to osmotic, oxidative, and imipenem stress conditions in Pseudomonas putida. Appl. Environ. . Microbiol 83:7e03236–16
    [Google Scholar]
  18. 18. 
    Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR 2010. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75:4827–42
    [Google Scholar]
  19. 19. 
    Boyd CD, Chatterjee D, Sondermann H, O'Toole GA 2012. LapG, required for modulating biofilm formation by Pseudomonas fluorescens Pf0-1, is a calcium-dependent protease. J. Bacteriol. 194:164406–14
    [Google Scholar]
  20. 20. 
    Boyd CD, Smith TJ, El-Kirat-Chatel S, Newell PD, Dufrêne YF, O'Toole GA 2014. Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization. J. Bacteriol. 196:152775–88
    [Google Scholar]
  21. 21. 
    Bumba L, Masin J, Macek P, Wald T, Motlova L et al. 2016. Calcium-driven folding of RTX domain β-rolls ratchets translocation of RTX proteins through Type I secretion ducts. Mol. Cell 62:147–62
    [Google Scholar]
  22. 22. 
    Cabot G, Bruchmann S, Mulet X, Zamorano L, Moyà B et al. 2014. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob. Agents Chemother. 58:63091–99
    [Google Scholar]
  23. 23. 
    Cazalet C, Rusniok C, Brüggemann H, Zidane N, Magnier A et al. 2004. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat. Genet. 36:111165–73
    [Google Scholar]
  24. 24. 
    Ceyssens PJ, Minakhin L, Van den Bossche A, Yakunina M, Klimuk E et al. 2014. Development of giant bacteriophage ϕKZ is independent of the host transcription apparatus. J. Virol. 88:1810501–10
    [Google Scholar]
  25. 25. 
    Chatterjee D, Boyd CD, O'Toole GA, Sondermann H 2012. Structural characterization of a conserved, calcium-dependent periplasmic protease from Legionella pneumophila. J. Bacteriol 194:164415–25
    [Google Scholar]
  26. 26. 
    Chatterjee D, Cooley RB, Boyd CD, Mehl RA, O'Toole GA, Sondermann H 2014. Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP. eLife 3:e03650
    [Google Scholar]
  27. 27. 
    Chenal A, Guijarro JI, Raynal B, Delepierre M, Ladant D 2009. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J. Biol. Chem. 284:31781–89
    [Google Scholar]
  28. 28. 
    Christen M, Christen B, Allan MG, Folcher M, Jeno P et al. 2007. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. . PNAS 104:104112–17
    [Google Scholar]
  29. 29. 
    Christen M, Christen B, Folcher M, Schauerte A, Jenal U 2005. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem. 280:3530829–37
    [Google Scholar]
  30. 30. 
    Cooley RB, O'Donnell JP, Sondermann H 2016. Coincidence detection and bi-directional transmembrane signaling control a bacterial second messenger receptor. eLife 5:e21848
    [Google Scholar]
  31. 31. 
    Cooley RB, Smith TJ, Leung W, Tierney V, Borlee BR et al. 2015. Cyclic di-GMP-regulated periplasmic proteolysis of a Pseudomonas aeruginosa Type Vb secretion system substrate. J. Bacteriol. 198:166–76
    [Google Scholar]
  32. 32. 
    Dahlstrom KM, Collins AJ, Doing G, Taroni JN, Gauvin TJ et al. 2018. A multimodal strategy used by a large c-di-GMP network. J. Bacteriol. 200:8e00703–17
    [Google Scholar]
  33. 33. 
    Dahlstrom KM, Giglio KM, Collins AJ, Sondermann H, O'Toole GA 2015. Contribution of physical interactions to signaling specificity between a diguanylate cyclase and its effector. mBio 6:6e01978–15
    [Google Scholar]
  34. 34. 
    Dahlstrom KM, Giglio KM, Sondermann H, O'Toole GA 2016. The inhibitory site of a diguanylate cyclase is a necessary element for interaction and signaling with an effector protein. J. Bacteriol. 198:111595–603
    [Google Scholar]
  35. 35. 
    D'Auria G, Jiménez N, Peris-Bondia F, Pelaz C, Latorre A, Moya A 2008. Virulence factor RTX in Legionella pneumophila, evidence suggesting it is a modular multifunctional protein. BMC Genom 9:114
    [Google Scholar]
  36. 36. 
    de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N et al. 2002. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant Microbe Interact 15:111173–80
    [Google Scholar]
  37. 37. 
    Dekkers LC, Bloemendaal CJ, de Weger LA, Wijffelman CA, Spaink HP, Lugtenberg BJ 1998. A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol. Plant Microbe Interact. 11:145–56
    [Google Scholar]
  38. 38. 
    Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg BJ 1998. A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. PNAS 95:127051–56
    [Google Scholar]
  39. 39. 
    Duerig A, Abel S, Folcher M, Nicollier M, Schwede T et al. 2009. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23:193–104
    [Google Scholar]
  40. 40. 
    El-Kirat-Chatel S, Beaussart A, Boyd CD, O'Toole GA, Dufrêne YF 2014. Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm adhesin LapA. ACS Chem. Biol. 9:2485–94
    [Google Scholar]
  41. 41. 
    El-Kirat-Chatel S, Boyd CD, O'Toole GA, Dufrêne YF 2014. Single-molecule analysis of Pseudomonas fluorescens footprints. ACS Nano 8:21690–98
    [Google Scholar]
  42. 42. 
    Espinosa-Urgel M, Salido A, Ramos JL 2000. Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J. Bacteriol. 182:92363–69
    [Google Scholar]
  43. 43. 
    Falke JJ, Hazelbauer GL. 2001. Transmembrane signaling in bacterial chemoreceptors. Trends Biochem. Sci. 26:4257–65
    [Google Scholar]
  44. 44. 
    Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A et al. 2014. GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol. Microbiol. 93:3439–52
    [Google Scholar]
  45. 45. 
    Fang Y, Al-Assaf S, Phillips GO, Nishinari K, Funami T et al. 2007. Multiple steps and critical behaviors of the binding of calcium to alginate. J. Phys. Chem. B 111:102456–62
    [Google Scholar]
  46. 46. 
    Flemming H-C, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17:4247–60
    [Google Scholar]
  47. 47. 
    Foster TJ, Geoghegan JA, Ganesh VK, Höök M 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. . Microbiol 12:149–62
    [Google Scholar]
  48. 48. 
    Frank S, Schmidt F, Klockgether J, Davenport CF, Gesell Salazar M et al. 2011. Functional genomics of the initial phase of cold adaptation of Pseudomonas putida KT2440. FEMS Microbiol. Lett. 318:147–54
    [Google Scholar]
  49. 49. 
    Fu J, Sharma P, Spicer V, Krokhin OV, Zhang X et al. 2015. Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46. Appl. Microbiol. Biotechnol. 99:135583–92
    [Google Scholar]
  50. 50. 
    Fuqua C. 2010. Passing the baton between laps: adhesion and cohesion in Pseudomonas putida biofilms. Mol. Microbiol. 77:3533–36
    [Google Scholar]
  51. 51. 
    Gerlach RG, Cláudio N, Rohde M, Jäckel D, Wagner C, Hensel M 2008. Cooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers. Cell Microbiol 10:112364–76
    [Google Scholar]
  52. 52. 
    Giacalone D, Smith TJ, Collins AJ, Sondermann H, Koziol LJ, O'Toole GA 2018. Ligand-mediated biofilm formation via enhanced physical interaction between a diguanylate cyclase and its receptor. mBio 9:4e01254–18
    [Google Scholar]
  53. 53. 
    Ginalski K, Kinch L, Rychlewski L, Grishin NV 2004. BTLCP proteins: a novel family of bacterial transglutaminase-like cysteine proteinases. Trends Biochem. Sci. 29:8392–95
    [Google Scholar]
  54. 54. 
    Gjermansen M, Nilsson M, Yang L, Nielsen TT 2010. Characterization of starvation‐induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol. Microbiol. 75:4815–26
    [Google Scholar]
  55. 55. 
    Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T 2005. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol. 7:6894–904
    [Google Scholar]
  56. 56. 
    Guo S, Garnham CP, Whitney JC, Graham LA, Davies PL 2012. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity. PLOS ONE 7:11e48805
    [Google Scholar]
  57. 57. 
    Guo S, Langelaan DN, Phippen SW, Smith SP, Voets IK, Davies PL 2018. Conserved structural features anchor biofilm‐associated RTX-adhesins to the outer membrane of bacteria. FEBS J 285:101812–26
    [Google Scholar]
  58. 58. 
    Guo S, Stevens CA, Vance TDR, Olijve LLC, Graham LA et al. 2017. Structure of a 1.5-MDa adhesin that binds its Antarctic bacterium to diatoms and ice. Sci. Adv. 3:8e1701440
    [Google Scholar]
  59. 59. 
    Guo S, Vance TDR, Stevens CA, Voets I, Davies PL 2019. RTX adhesins are key bacterial surface megaproteins in the formation of biofilms. Trends Microbiol 27:5453–67
    [Google Scholar]
  60. 60. 
    Guzzo CR, Salinas RK, Andrade MO, Farah CS 2009. PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis. J. Mol. Biol. 393:4848–66
    [Google Scholar]
  61. 61. 
    Ha D-G, Richman ME, O'Toole GA, Kelly RM 2014. Deletion mutant library for investigation of functional outputs of cyclic diguanylate metabolism in Pseudomonas aeruginosa PA14. Appl. Environ. Microbiol. 80:113384–93
    [Google Scholar]
  62. 62. 
    Haas D, Défago G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:4307–19
    [Google Scholar]
  63. 63. 
    Hickman JW, Harwood CS. 2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69:2376–89
    [Google Scholar]
  64. 64. 
    Hinsa SM, Espinosa-Urgel M, Ramos JL, O'Toole GA 2003. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol. Microbiol. 49:4905–18
    [Google Scholar]
  65. 65. 
    Hinsa SM, O'Toole GA. 2006. Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD. Microbiology 152:51375–83
    [Google Scholar]
  66. 66. 
    Holland IB. 2019. Rise and rise of the ABC transporter families. Res. Microbiol. 170:8304–20
    [Google Scholar]
  67. 67. 
    Holland IB, Benabdelhak H, Young J, De Lima Pimenta A, Schmitt L, Blight MA 2003. Bacterial ABC transporters involved in protein translocation. ABC Proteins: From Bacteria to Man BI Holland, S Cole, K Kuchler, C Higgins 209–41 London: Elsevier, 1st ed..
    [Google Scholar]
  68. 68. 
    Holland IB, Schmitt L, Young J 2005. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol. Membr. Biol. 22:1–229–39
    [Google Scholar]
  69. 69. 
    Ivanov IE, Boyd CD, Newell PD, Schwartz ME, Turnbull L et al. 2012. Atomic force and super-resolution microscopy support a role for LapA as a cell-surface biofilm adhesin of Pseudomonas fluorescens. Res. . Microbiol 163:9–10685–91
    [Google Scholar]
  70. 70. 
    Jones DL. 1998. Organic acids in the rhizosphere–a critical review. Plant Soil 205:125–44
    [Google Scholar]
  71. 71. 
    Jones HE, Holland IB, Baker HL, Campbell AK 1999. Slow changes in cytosolic free Ca2+ in Escherichia coli highlight two putative influx mechanisms in response to changes in extracellular calcium. Cell Calcium 25:3265–74
    [Google Scholar]
  72. 72. 
    Jones HE, Holland IB, Campbell AK 2002. Direct measurement of free Ca2+ shows different regulation of Ca2+ between the periplasm and the cytosol of Escherichia coli. . Cell Calcium 32:4183–92
    [Google Scholar]
  73. 73. 
    Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B 2006. Organic acids, sugars, and l-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 19:3250–56
    [Google Scholar]
  74. 74. 
    Kanonenberg K, Schwarz CKW, Schmitt L 2013. Type I secretion systems—a story of appendices. Res. Microbiol. 164:6596–604
    [Google Scholar]
  75. 75. 
    Kemner KM, Kelly SD, Lai B, Maser J, O'Loughlin EJ et al. 2004. Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science 306:5696686–87
    [Google Scholar]
  76. 76. 
    Kim J, Oliveros JC, Nikel PI, de Lorenzo V, Silva-Rocha R 2013. Transcriptomic fingerprinting of Pseudomonas putida under alternative physiological regimes. Environ. Microbiol. Rep. 5:6883–91
    [Google Scholar]
  77. 77. 
    Kitts G, Giglio KM, Zamorano Sanchez D, Park JH, Townsley L et al. 2019. A conserved regulatory circuit controls large adhesins in Vibrio cholerae. . mBio 10:6e02822–19
    [Google Scholar]
  78. 78. 
    Krasteva PV, Fong JCN, Shikuma NJ, Beyhan S, Navarro MVAS et al. 2010. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327:5967866–68
    [Google Scholar]
  79. 79. 
    Kulesekara H, Lee V, Brencic A, Liberati N, Urbach J et al. 2006. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. PNAS 103:82839–44
    [Google Scholar]
  80. 80. 
    Lahesaare A, Ainelo H, Teppo A, Kivisaar M, Heipieper HJ, Teras R 2016. LapF and its regulation by Fis affect the cell surface hydrophobicity of Pseudomonas putida. . PLOS ONE 11:11e0166078
    [Google Scholar]
  81. 81. 
    Lecher J, Schwarz CKW, Stoldt M, Smits SHJ, Willbold D, Schmitt L 2012. An RTX transporter tethers its unfolded substrate during secretion via a unique N-terminal domain. Structure 20:101778–87
    [Google Scholar]
  82. 82. 
    Leduc JL, Roberts GP. 2009. Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J. Bacteriol. 191:227121–22
    [Google Scholar]
  83. 83. 
    Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65:61474–84
    [Google Scholar]
  84. 84. 
    Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N 2013. NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J. Bacteriol. 195:163531–42
    [Google Scholar]
  85. 85. 
    Liang ZX. 2015. The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat. Prod. Rep. 32:5663–83
    [Google Scholar]
  86. 86. 
    Lilie H, Haehnel W, Rudolph R, Baumann U 2000. Folding of a synthetic parallel β-roll protein. Microbes Infect 470:2173–77
    [Google Scholar]
  87. 87. 
    Lindenberg S, Hengge R, Klauck G, Pesavento C, Klauck E 2013. The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control. EMBO J 32:142001–14
    [Google Scholar]
  88. 88. 
    Liu H, Yan H, Xiao Y, Nie H, Huang Q, Chen W 2019. The exopolysaccharide gene cluster Pea is transcriptionally controlled by RpoS and repressed by AmrZ in Pseudomonas putida KT2440. Microbiol. Res. 218:1–11
    [Google Scholar]
  89. 89. 
    Liu X, Xu J, Zhu J, Du P, Sun A 2019. Combined transcriptome and proteome analysis of RpoS regulon reveals its role in spoilage potential of Pseudomonas fluorescens. Front. . Microbiol 10:94
    [Google Scholar]
  90. 90. 
    Luo Y, Zhao K, Baker AE, Kuchma SL, Coggan KA et al. 2015. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. mBio 6:1e02456–14
    [Google Scholar]
  91. 91. 
    Martínez-Gil M, Quesada JM, Ramos-González MI, Soriano MI, de Cristóbal RE, Espinosa-Urgel M 2013. Interplay between extracellular matrix components of Pseudomonas putida biofilms. Res. Microbiol. 164:5382–89
    [Google Scholar]
  92. 92. 
    Martínez-Gil M, Ramos-González MI, Espinosa-Urgel M 2014. Roles of cyclic di-GMP and the Gac system in transcriptional control of the genes coding for the Pseudomonas putida adhesins LapA and LapF. J. Bacteriol. 196:81484–95
    [Google Scholar]
  93. 93. 
    Martínez-Gil M, Romero D, Kolter R, Espinosa-Urgel M 2012. Calcium causes multimerization of the large adhesin LapF and modulates biofilm formation by Pseudomonas putida. J. Bacteriol 194:246782–89
    [Google Scholar]
  94. 94. 
    Martínez-Gil M, Yousef-Coronado F, Espinosa-Urgel M 2010. LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol. Microbiol. 77:3549–61
    [Google Scholar]
  95. 95. 
    Martínez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, de Heredia EG et al. 2014. Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. . PLOS ONE 9:2e87608
    [Google Scholar]
  96. 96. 
    Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S 2007. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol 65:4876–95
    [Google Scholar]
  97. 97. 
    Metzger LC, Stutzmann S, Scrignari T, Van der Henst C, Matthey N, Blokesch M 2016. Independent regulation of Type VI secretion in Vibrio cholerae by TfoX and TfoY. Cell Rep 15:5951–58
    [Google Scholar]
  98. 98. 
    Molina-Henares MA, Ramos-González MI, Daddaoua A, Fernández-Escamilla AM, Espinosa-Urgel M 2017. FleQ of Pseudomonas putida KT2440 is a multimeric cyclic diguanylate binding protein that differentially regulates expression of biofilm matrix components. Res. Microbiol. 168:136–45
    [Google Scholar]
  99. 99. 
    Molina-Santiago C, Daddaoua A, Gómez-Lozano M, Udaondo Z, Molin S, Ramos J-L 2015. Differential transcriptional response to antibiotics by Pseudomonas putidaDOT-T1E. Environ. Microbiol. 17:93251–62
    [Google Scholar]
  100. 100. 
    Monds RD, Newell PD, Gross RH, O'Toole GA 2007. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol. Microbiol. 63:3656–79
    [Google Scholar]
  101. 101. 
    Monds RD, Newell PD, Wagner JC, Schwartzman JA, Lu W et al. 2010. Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways. J. Bacteriol. 192:123011–23
    [Google Scholar]
  102. 102. 
    Mulcahy H, Charron-Mazenod L, Lewenza S 2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLOS Pathog 4:11e1000213
    [Google Scholar]
  103. 103. 
    Navarro MVAS, Newell PD, Krasteva PV, Chatterjee D, Madden DR et al. 2011. Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLOS Biol 9:2e1000588
    [Google Scholar]
  104. 104. 
    Newell PD, Boyd CD, Sondermann H, O'Toole GA 2011. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLOS Biol 9:2e1000587
    [Google Scholar]
  105. 105. 
    Newell PD, Monds RD, O'Toole GA 2009. LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. PNAS 106:93461–66
    [Google Scholar]
  106. 106. 
    Newell PD, Yoshioka S, Hvorecny KL, Monds RD, O'Toole GA 2011. Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0-1. J. Bacteriol. 193:184685–98
    [Google Scholar]
  107. 107. 
    Nilsson M, Chiang WC, Fazli M, Gjermansen M, Givskov M, Tolker-Nielsen T 2011. Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability. Environ. Microbiol. 13:51357–69
    [Google Scholar]
  108. 108. 
    O'Toole GA, Kolter R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28:3449–61
    [Google Scholar]
  109. 109. 
    O'Toole GA, Wong GC. 2016. Sensational biofilms: surface sensing in bacteria. Curr. Opin. Microbiol. 30:139–46
    [Google Scholar]
  110. 110. 
    Ozaki S, Moser AS, Zumthor L, Manfredi P, Ebbensgaard A et al. 2014. Activation and polar sequestration of PopA, a c‐di‐GMP effector protein involved in Caulobacter crescentus cell cycle control. Mol. Microbiol. 94:3580–94
    [Google Scholar]
  111. 111. 
    Paul EA, Clark FE. 1989. Occurrences and distribution of soil organics. Soil Microbiology and Biochemistry81–84 San Diego, CA: Academic
    [Google Scholar]
  112. 112. 
    Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM 2010. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol. Cell 38:1128–39
    [Google Scholar]
  113. 113. 
    Paul R, Weiser S, Amiot NC, Chan C, Schirmer T et al. 2004. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18:6715–27
    [Google Scholar]
  114. 114. 
    Pei X-Y, Hinchliffe P, Symmons MF, Koronakis E, Benz R et al. 2011. Structures of sequential open states in a symmetrical opening transition of the TolC exit duct. PNAS 108:52112–17
    [Google Scholar]
  115. 115. 
    Pérez-Mendoza D, Coulthurst SJ, Humphris S, Campbell E, Welch M et al. 2011. A multi-repeat adhesin of the phytopathogen, Pectobacterium atrosepticum, is secreted by a Type I pathway and is subject to complex regulation involving a non-canonical diguanylate cyclase. Mol. Microbiol. 82:3719–33
    [Google Scholar]
  116. 116. 
    Pérez-Mendoza D, Coulthurst SJ, Sanjuan J, Salmond GPC 2011. N-Acetylglucosamine-dependent biofilm formation in Pectobacterium atrosepticum is cryptic and activated by elevated c-di-GMP levels. Microbiology 157:123340–48
    [Google Scholar]
  117. 117. 
    Picot L, Abdelmoula SM, Merieau A, Leroux P, Cazin L et al. 2001. Pseudomonas fluorescens as a potential pathogen: adherence to nerve cells. Microbes Infect 3:12985–95
    [Google Scholar]
  118. 118. 
    Picot L, Mezghani-Abdelmoula S, Chevalier S, Merieau A, Lesouhaitier O et al. 2004. Regulation of the cytotoxic effects of Pseudomonas fluorescens by growth temperature. J. Mol. Biol. 155:139–46
    [Google Scholar]
  119. 119. 
    Pratt JT, Tamayo R, Tischler AD, Camilli A 2007. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J. Biol. Chem 282:1712860–70
    [Google Scholar]
  120. 120. 
    Prigent-Combaret C, Vidal O, Dorel C, Lejeune P 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J. Bacteriol 181:195993–6002
    [Google Scholar]
  121. 121. 
    Pustelny C, Komor U, Pawar V, Lorenz A, Bielecka A et al. 2014. Contribution of Veillonella parvula to Pseudomonas aeruginosa-mediated pathogenicity in a murine tumor model system. Infect. Immun. 83:1417–29
    [Google Scholar]
  122. 122. 
    Ramos-González MI, Travieso ML, Soriano MI, Matilla MA, Huertas-Rosales Ó et al. 2016. Genetic dissection of the regulatory network associated with high c-di-GMP levels in Pseudomonas putida KT2440. Front. Microbiol. 7:1093
    [Google Scholar]
  123. 123. 
    Roelofs KG, Jones CJ, Helman SR, Shang X, Orr MW et al. 2015. Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with Type II secretion systems. PLOS Pathog 11:10e1005232–29
    [Google Scholar]
  124. 124. 
    Römling U, Galperin MY, Gomelsky M 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77:11–52
    [Google Scholar]
  125. 125. 
    Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S et al. 2006. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. PNAS 103:176712–17
    [Google Scholar]
  126. 126. 
    Rybtke M, Berthelsen J, Yang L, Høiby N, Givskov M, Nielsen TT 2015. The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface. MicrobiologyOpen 4:6917–30
    [Google Scholar]
  127. 127. 
    Ryjenkov DA, Simm R, Römling U, Gomelsky M 2006. The PilZ domain is a receptor for the second messenger c-di-GMP: The PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281:4130310–14
    [Google Scholar]
  128. 128. 
    Sarwar Z, Lundgren BR, Grassa MT, Wang MX, Gribble M et al. 2016. GcsR, a TyrR-like enhancer-binding protein, regulates expression of the glycine cleavage system in Pseudomonas aeruginosa PAO1. mSphere 1:2e00020–16
    [Google Scholar]
  129. 129. 
    Sauer K, Cullen MC, Rickard AH, Zeef LAH, Davies DG, Gilbert P 2004. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186:217312–26
    [Google Scholar]
  130. 130. 
    Scales BS, Dickson RP, LiPuma JJ, Huffnagle GB 2014. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin. Microbiol. Rev. 27:4927–48
    [Google Scholar]
  131. 131. 
    Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJ 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant Microbe Interact. 9:7600–7
    [Google Scholar]
  132. 132. 
    Smith TJ, Font ME, Kelly CM, Sondermann H, O'Toole GA 2018. An N-terminal retention module anchors the giant adhesin LapA of Pseudomonas fluorescens at the cell surface: a novel subfamily of Type I secretion systems. J. Bacteriol. 200:8e00734–17
    [Google Scholar]
  133. 133. 
    Smith TJ, Sondermann H, O'Toole GA 2018. Co-opting the Lap system of Pseudomonas fluorescens to reversibly customize bacterial cell surfaces. ACS Synth. Biol. 7:112612–17
    [Google Scholar]
  134. 134. 
    Smith TJ, Sondermann H, O'Toole GA 2018. Type 1 does the two-step: type 1 secretion substrates with a functional periplasmic intermediate. J. Bacteriol. 200:18e00168–18
    [Google Scholar]
  135. 135. 
    Spark AJ, Law DW, Ward LP, Cole IS, Best AS 2017. The effect of Pseudomonas fluorescens on buried steel pipeline corrosion. Environ. Sci. Technol. 51:158501–9
    [Google Scholar]
  136. 136. 
    Spitz O, Erenburg IN, Beer T, Kanonenberg K, Holland IB, Schmitt L 2019. Type I secretion systems—one mechanism for all. Microbiol Spectr 7:2PSIB–0003-2018
    [Google Scholar]
  137. 137. 
    Stewart V, Chen LL. 2010. The S helix mediates signal transmission as a HAMP domain coiled-coil extension in the NarX nitrate sensor from Escherichia coli K-12. J. Bacteriol. 192:3734–45
    [Google Scholar]
  138. 138. 
    Taylor RC, Webb Robertson B-JM, Markillie LM, Serres MH, Linggi BE et al. 2013. Changes in translational efficiency is a dominant regulatory mechanism in the environmental response of bacteria. Integr. Biol. 5:111393–406
    [Google Scholar]
  139. 139. 
    Teschler JK, Zamorano Sanchez D, Utada AS, Warner CJA, Wong GCL et al. 2015. Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat. Rev. Microbiol. 13:5255–68
    [Google Scholar]
  140. 140. 
    Tuckerman JR, Gonzalez G, Gilles-Gonzalez M-A 2011. Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J. Mol. Biol. 407:5633–39
    [Google Scholar]
  141. 141. 
    Upadhyay AA, Fleetwood AD, Adebali O, Finn RD, Zhulin IB 2016. Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes. PLOS Comput. Biol. 12:4e1004862
    [Google Scholar]
  142. 142. 
    Vance TDR, Graham LA, Davies PL 2017. An ice‐binding and tandem beta‐sandwich domain‐containing protein in Shewanella frigidimarina is a potential new type of ice adhesin. FEBS J 285:81511–27
    [Google Scholar]
  143. 143. 
    Vance TDR, Olijve LLC, Campbell RL, Voets IK, Davies PL, Guo S 2014. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice. Biosci. Rep. 34:4357–68
    [Google Scholar]
  144. 144. 
    Wang T, Cai Z, Shao X, Zhang W, Xie Y et al. 2019. The pleiotropic effects of c-di-GMP content in Pseudomonas syringae. Appl. Environ. Microbiol 85:10e00152–19
    [Google Scholar]
  145. 145. 
    Weinhouse H, Sapir S, Amikam D, Shilo Y, Volman G et al. 1997. c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. . FEBS Lett 416:2207–11
    [Google Scholar]
  146. 146. 
    Weissenmayer BA, Prendergast JGD, Lohan AJ, Loftus BJ 2011. Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLOS ONE 6:3e17570
    [Google Scholar]
  147. 147. 
    Welch RA. 1991. Pore-forming cytolysins of Gram-negative bacteria. Mol. Microbiol. 5:3521–28
    [Google Scholar]
  148. 148. 
    Xiao Y, Nie H, Liu H, Luo X, Chen W, Huang Q 2016. c-di-GMP regulates the expression of lapA and bcs operons via FleQ in Pseudomonas putida KT2440. Environ. Microbiol. Rep. 8:5659–66
    [Google Scholar]
  149. 149. 
    Xu L, Xin L, Zeng Y, Yam JKH, Ding Y et al. 2016. A cyclic di-GMP-binding adaptor protein interacts with a chemotaxis methyltransferase to control flagellar motor switching. Sci. Signal. 9:450ra102
    [Google Scholar]
  150. 150. 
    Yang C-Y, Chin K-H, Chuah MLC, Liang ZX, Wang AHJ, Chou S-H 2011. The structure and inhibition of a GGDEF diguanylate cyclase complexed with (c-di-GMP)2 at the active site. Acta Cryst. D 67:12997–1008
    [Google Scholar]
  151. 151. 
    Zähringer F, Lacanna E, Jenal U, Schirmer T, Boehm A 2013. Structure and signaling mechanism of a zinc-sensory diguanylate cyclase. Structure 21:71149–57
    [Google Scholar]
  152. 152. 
    Zhang J-J, Chen T, Yang Y, Du J, Li H et al. 2018. Positive and negative regulation of glycerol utilization by the c-di-GMP binding protein PlzA in Borrelia burgdorferi. J. Bacteriol 200:22e00243–18
    [Google Scholar]
  153. 153. 
    Zhou G, Yuan J, Gao H 2015. Regulation of biofilm formation by BpfA, BpfD, and BpfG in Shewanella oneidensis. Front. . Microbiol 6:790
    [Google Scholar]
  154. 154. 
    Zhu Y, Yuan Z, Gu L 2017. Structural basis for the regulation of chemotaxis by MapZ in the presence of c-di-GMP. Acta Cryst. D 73:8683–91
    [Google Scholar]
  155. 155. 
    Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39:61452–63
    [Google Scholar]
/content/journals/10.1146/annurev-micro-011520-094214
Loading
/content/journals/10.1146/annurev-micro-011520-094214
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error