1932

Abstract

Chromosome segregation during the cell cycle is an evolutionarily conserved, fundamental biological process. Dynamic interaction between spindle microtubules and the kinetochore complex that assembles on centromere DNA is required for faithful chromosome segregation. The first artificial minichromosome was constructed by cloning the centromere DNA of the budding yeast . Since then, centromeres have been identified in >60 fungal species. The DNA sequence and organization of the sequence elements are highly diverse across these fungal centromeres. In this article, we provide a comprehensive view of the evolution of fungal centromeres. Studies of this process facilitated the identification of factors influencing centromere specification, maintenance, and propagation through many generations. Additionally, we discuss the unique features and plasticity of centromeric chromatin and the involvement of centromeres in karyotype evolution. Finally, we discuss the implications of recurrent loss of RNA interference (RNAi) and/or heterochromatin components on the trajectory of the evolution of fungal centromeres and propose the centromere structure of the last common ancestor of three major fungal phyla—Ascomycota, Basidiomycota, and Mucoromycota.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-011720-122512
2020-09-08
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-011720-122512.html?itemId=/content/journals/10.1146/annurev-micro-011720-122512&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Akiyoshi B, Gull K. 2014. Discovery of unconventional kinetochores in kinetoplastids. Cell 156:1247–58
    [Google Scholar]
  2. 2. 
    Allshire RC, Javerzat JP, Redhead NJ, Cranston G 1994. Position effect variegation at fission yeast centromeres. Cell 76:157–69
    [Google Scholar]
  3. 3. 
    Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G 1995. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9:218–33
    [Google Scholar]
  4. 4. 
    Aparicio OM. 2013. Location, location, location: It's all in the timing for replication origins. Genes Dev 27:117–28
    [Google Scholar]
  5. 5. 
    Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO et al. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–24
    [Google Scholar]
  6. 6. 
    Baum M, Ngan VK, Clarke L 1994. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol. Biol. Cell 5:747–61
    [Google Scholar]
  7. 7. 
    Baum M, Sanyal K, Mishra PK, Thaler N, Carbon J 2006. Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. PNAS 103:4014877–82
    [Google Scholar]
  8. 8. 
    Bechert T, Heck S, Fleig U, Diekmann S, Hegemann JH 1999. All 16 centromere DNAs from Saccharomyces cerevisiae show DNA curvature. Nucleic Acids Res 27:1444–49
    [Google Scholar]
  9. 9. 
    Bensasson D, Zarowiecki M, Burt A, Koufopanou V 2008. Rapid evolution of yeast centromeres in the absence of drive. Genetics 178:2161–67
    [Google Scholar]
  10. 10. 
    Brown JD, O'Neill RJ. 2010. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu. Rev. Genom. Hum. Genet. 11:291–316
    [Google Scholar]
  11. 11. 
    Burrack LS, Hutton HF, Matter KJ, Clancey SA, Liachko I et al. 2016. Neocentromeres provide chromosome segregation accuracy and centromere clustering to multiple loci along a Candida albicans chromosome. PLOS Genet 12:e1006317
    [Google Scholar]
  12. 12. 
    Cambareri E, Singer M, Selker E 1991. Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics 127:699–710
    [Google Scholar]
  13. 13. 
    Cambareri EB, Aisner R, Carbon J 1998. Structure of the chromosome VII centromere region in Neurospora crassa: degenerate transposons and simple repeats. Mol. Cell. Biol. 18:5465–77
    [Google Scholar]
  14. 14. 
    Centola M, Carbon J. 1994. Cloning and characterization of centromeric DNA from Neurospora crassa. Mol. Cell. Biol 14:1510–19
    [Google Scholar]
  15. 15. 
    Chatterjee G, Sankaranarayanan SR, Guin K, Thattikota Y, Padmanabhan S et al. 2016. Repeat-associated fission yeast-like regional centromeres in the ascomycetous budding yeast Candida tropicalis. PLOS Genet 12:e1005839
    [Google Scholar]
  16. 16. 
    Chikashige Y, Kinoshita N, Nakaseko Y, Matsumoto T, Murakami S et al. 1989. Composite motifs and repeat symmetry in S. pombe centromeres—direct analysis by integration of Notl restriction sites. Cell 57:739–51
    [Google Scholar]
  17. 17. 
    Clarke L, Baum M, Marschall L, Ngan V, Steiner N 1993. Structure and function of Schizosaccharomyces pombe centromeres. Cold Spring Harb. Symp. Quant. Biol. 58:687–95
    [Google Scholar]
  18. 18. 
    Clarke L, Carbon J. 1980. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287:504–9
    [Google Scholar]
  19. 19. 
    Cook DM, Bennett M, Friedman B, Lawrimore J, Yeh E, Bloom K 2018. Fork pausing allows centromere DNA loop formation and kinetochore assembly. PNAS 115:11784–89
    [Google Scholar]
  20. 20. 
    Coughlan AY, Hanson SJ, Byrne KP, Wolfe KH 2016. Centromeres of the yeast Komagataella phaffii (Pichia pastoris) have a simple inverted-repeat structure. Genome Biol. Evol. 8:2482–92
    [Google Scholar]
  21. 21. 
    Drinnenberg IA, deYoung D, Henikoff S, Malik HS 2014. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife 3:e03676
    [Google Scholar]
  22. 22. 
    Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ et al. 2010. A three-dimensional model of the yeast genome. Nature 465:363–67
    [Google Scholar]
  23. 23. 
    Emms DM, Kelly S. 2015. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157
    [Google Scholar]
  24. 24. 
    Espelin CW, Simons KT, Harrison SC, Sorger PK 2003. Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII. Mol. Biol. Cell 14:4557–68
    [Google Scholar]
  25. 25. 
    Feng W, Bachant J, Collingwood D, Raghuraman MK, Brewer BJ 2009. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress. Genetics 183:1249–60
    [Google Scholar]
  26. 26. 
    Fishel B, Amstutz H, Baum M, Carbon J, Clarke L 1988. Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Mol. Cell. Biol 8:754–63
    [Google Scholar]
  27. 27. 
    Fitzgerald-Hayes M, Clarke L, Carbon J 1982. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235–44
    [Google Scholar]
  28. 28. 
    Flemming W. 1882. Zellsubstanz, Kern und Zelltheilung Leipzig, Ger.: Vogel
    [Google Scholar]
  29. 29. 
    Folco HD, Pidoux AL, Urano T, Allshire RC 2008. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319:94–97
    [Google Scholar]
  30. 30. 
    Fournier P, Abbas A, Chasles M, Kudla B, Ogrydziak DM et al. 1993. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. PNAS 90:4912–16
    [Google Scholar]
  31. 31. 
    Gaudet A, Fitzgerald-Hayes M. 1987. Alterations in the adenine-plus-thymine-rich region of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol. Cell. Biol 7:68–75
    [Google Scholar]
  32. 32. 
    Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B et al. 1996. Life with 6000 genes. Science 274:546–67
    [Google Scholar]
  33. 33. 
    Gordon JL, Byrne KP, Wolfe KH 2011. Mechanisms of chromosome number evolution in yeast. PLOS Genet 7:e1002190
    [Google Scholar]
  34. 34. 
    Greenfeder SA, Newlon CS. 1992. Replication forks pause at yeast centromeres. Mol. Cell. Biol. 12:4056–66
    [Google Scholar]
  35. 35. 
    Grewal SI, Klar AJ. 1996. Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell 86:95–101
    [Google Scholar]
  36. 35a. 
    Guin K, Chen Y, Mishra R, Muzaki SRB, Thimmappa BCet al 2020. Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres. eLife 9:e58556
    [Google Scholar]
  37. 36. 
    Haase J, Mishra PK, Stephens A, Haggerty R, Quammen C et al. 2013. A 3D map of the yeast kinetochore reveals the presence of core and accessory centromere-specific histone. Curr. Biol. 23:1939–44
    [Google Scholar]
  38. 37. 
    Hahnenberger KM, Baum MP, Polizzi CM, Carbon J, Clarke L 1989. Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. PNAS 86:577–81
    [Google Scholar]
  39. 38. 
    Hansen KR, Ibarra PT, Thon G 2006. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1. Nucleic Acids Res 34:78–88
    [Google Scholar]
  40. 39. 
    Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H 2009. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat. Cell Biol. 11:357–62
    [Google Scholar]
  41. 40. 
    Heitman J, Howlett BJ, Crous PW, Stukenbrock EH, James TY, Gow NAR 2017. The Fungal Kingdom Washington, DC: Am. Soc. Microbiol. Press
    [Google Scholar]
  42. 41. 
    Henikoff S, Ahmad K, Malik HS 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–102
    [Google Scholar]
  43. 42. 
    Heus JJ, Zonneveld BJ, de Steensma HY, van den Berg JA 1993. The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae. Mol. Gen. Genet 236:355–62
    [Google Scholar]
  44. 43. 
    Hickman MA, Froyd CA, Rusche LN 2011. Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage. Eukaryot. Cell 10:1183–92
    [Google Scholar]
  45. 44. 
    Hieter P, Pridmore D, Hegemann JH, Thomas M, Davis RW, Philippsen P 1985. Functional selection and analysis of yeast centromeric DNA. Cell 42:913–21
    [Google Scholar]
  46. 45. 
    Hou H, Zhou Z, Wang Y, Wang J, Kallgren SP et al. 2012. Csi1 links centromeres to the nuclear envelope for centromere clustering. J. Cell Biol. 199:735–44
    [Google Scholar]
  47. 46. 
    Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F et al. 2008. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321:1088–91
    [Google Scholar]
  48. 47. 
    Jager D, Philippsen P. 1989. Stabilization of dicentric chromosomes in Saccharomyces cerevisiae by telomere addition to broken ends or by centromere deletion. EMBO J 8:247–54
    [Google Scholar]
  49. 48. 
    Jin QW, Fuchs J, Loidl J 2000. Centromere clustering is a major determinant of yeast interphase nuclear organization. J. Cell Sci. 113:1903–12
    [Google Scholar]
  50. 49. 
    Kapoor S, Zhu L, Froyd C, Liu T, Rusche LN 2015. Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin. PNAS 112:12139–44
    [Google Scholar]
  51. 50. 
    Katoh K, Misawa K, Kuma K, Miyata T 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–66
    [Google Scholar]
  52. 51. 
    Ketel C, Wang HS, McClellan M, Bouchonville K, Selmecki A et al. 2009. Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLOS Genet 5:e1000400
    [Google Scholar]
  53. 52. 
    Kitamura E, Tanaka K, Kitamura Y, Tanaka TU 2007. Kinetochore microtubule interaction during S phase in Saccharomyces cerevisiae. Genes Dev 21:3319–30
    [Google Scholar]
  54. 53. 
    Kobayashi N, Suzuki Y, Schoenfeld LW, Muller CA, Nieduszynski C et al. 2015. Discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres. Curr. Biol. 25:2026–33
    [Google Scholar]
  55. 54. 
    Koren A, Tsai HJ, Tirosh I, Burrack LS, Barkai N, Berman J 2010. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLOS Genet 6:e1001068
    [Google Scholar]
  56. 55. 
    Kozubowski L, Yadav V, Chatterjee G, Sridhar S, Yamaguchi M et al. 2013. Ordered kinetochore assembly in the human-pathogenic basidiomycetous yeast Cryptococcus neoformans. mBio 4:e00614–13
    [Google Scholar]
  57. 56. 
    Kumar S, Stecher G, Suleski M, Hedges SB 2017. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34:1812–19
    [Google Scholar]
  58. 57. 
    Kunze G, Gaillardin C, Czernicka M, Durrens P, Martin T et al. 2014. The complete genome of Blastobotrys (Arxula) adeninivorans LS3—a yeast of biotechnological interest. Biotechnol. Biofuels 7:66
    [Google Scholar]
  59. 58. 
    Lazar-Stefanita L, Scolari VF, Mercy G, Muller H, Guerin TM et al. 2017. Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle. EMBO J 36:2684–97
    [Google Scholar]
  60. 59. 
    Marie-Nelly H, Marbouty M, Cournac A, Liti G, Fischer G et al. 2014. Filling annotation gaps in yeast genomes using genome-wide contact maps. Bioinformatics 30:2105–13
    [Google Scholar]
  61. 60. 
    Martienssen R, Moazed D. 2015. RNAi and heterochromatin assembly. Cold Spring Harb. Perspect. Biol. 7:a019323
    [Google Scholar]
  62. 61. 
    Meraldi P, McAinsh AD, Rheinbay E, Sorger PK 2006. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7:R23
    [Google Scholar]
  63. 62. 
    Misteli T. 2007. Beyond the sequence: cellular organization of genome function. Cell 128:787–800
    [Google Scholar]
  64. 63. 
    Mythreye K, Bloom KS. 2003. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J. Cell Biol 160:833–43
    [Google Scholar]
  65. 64. 
    Nakaseko Y, Adachi Y, Funahashi S, Niwa O, Yanagida M 1986. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J 5:1011–21
    [Google Scholar]
  66. 65. 
    Natsume T, Muller CA, Katou Y, Retkute R, Gierlinski M et al. 2013. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol. Cell 50:661–74
    [Google Scholar]
  67. 66. 
    Navarro-Mendoza MI, Perez-Arques C, Panchal S, Nicolas FE, Mondo SJ et al. 2019. Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr. Biol. 29:3791–802.e6
    [Google Scholar]
  68. 67. 
    Nicolas FE, Torres-Martinez S, Ruiz-Vazquez RM 2013. Loss and retention of RNA interference in fungi and parasites. PLOS Pathog 9:e1003089
    [Google Scholar]
  69. 68. 
    Padmanabhan S, Thakur J, Siddharthan R, Sanyal K 2008. Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. PNAS 105:19797–802
    [Google Scholar]
  70. 69. 
    Pietrasanta LI, Thrower D, Hsieh W, Rao S, Stemmann O et al. 1999. Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy. PNAS 96:3757–62
    [Google Scholar]
  71. 70. 
    Pohl TJ, Brewer BJ, Raghuraman MK 2012. Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae. PLOS Genet 8:e1002677
    [Google Scholar]
  72. 71. 
    Price MN, Dehal PS, Arkin AP 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. PLOS ONE 5:e9490
    [Google Scholar]
  73. 72. 
    Ravin NV, Eldarov MA, Kadnikov VV, Beletsky AV, Schneider J et al. 2013. Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genom 14:837
    [Google Scholar]
  74. 73. 
    Rhind N. 2006. DNA replication timing: random thoughts about origin firing. Nat. Cell Biol. 8:1313–16
    [Google Scholar]
  75. 74. 
    Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ et al. 2011. Comparative functional genomics of the fission yeasts. Science 332:930–36
    [Google Scholar]
  76. 75. 
    Richards TA, Leonard G, Wideman JG 2017. What defines the “kingdom” fungi?. The Fungal Kingdom J Heitman, BJ Howlett, PW Crous, EH Stukenbrock, TY James, NAR Gow 57–77 Washington, DC: Am. Soc. Microbiol. Press
    [Google Scholar]
  77. 76. 
    Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC et al. 2020. Loss of centromere function drives karyotype evolution in closely related Malassezia species. eLife 9:e53944
    [Google Scholar]
  78. 77. 
    Sanyal K, Baum M, Carbon J 2004. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. PNAS 101:11374–79
    [Google Scholar]
  79. 78. 
    Sanyal K, Carbon J. 2002. The CENP-A homolog CaCse4p in the pathogenic yeast Candida albicans is a centromere protein essential for chromosome transmission. PNAS 99:12969–74
    [Google Scholar]
  80. 79. 
    Sato H, Masuda F, Takayama Y, Takahashi K, Saitoh S 2012. Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr. Biol. 22:658–67
    [Google Scholar]
  81. 80. 
    Schotanus K, Soyer JL, Connolly LR, Grandaubert J, Happel P et al. 2015. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenet. Chromatin 8:41
    [Google Scholar]
  82. 81. 
    Scott KC, White CV, Willard HF 2007. An RNA polymerase III-dependent heterochromatin barrier at fission yeast centromere 1. PLOS ONE 2:e1099
    [Google Scholar]
  83. 82. 
    Selker EU. 1990. Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet 24:579–613
    [Google Scholar]
  84. 83. 
    Selmecki A, Forche A, Berman J 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313:367–70
    [Google Scholar]
  85. 84. 
    Smith KM, Galazka JM, Phatale PA, Connolly LR, Freitag M 2012. Centromeres of filamentous fungi. Chromosome Res 20:635–56
    [Google Scholar]
  86. 85. 
    Sreekumar L, Jaitly P, Chen Y, Thimmappa BC, Sanyal A, Sanyal K 2019. Cis- and trans-chromosomal interactions define pericentric boundaries in the absence of conventional heterochromatin. Genetics 212:1121–32
    [Google Scholar]
  87. 86. 
    Sreekumar L, Kumari K, Bakshi A, Varshney N, Thimmappa BC et al. 2019. Orc4 spatiotemporally stabilizes centromeric chromatin. bioRxiv 465880
  88. 87. 
    Steiner NC, Clarke L. 1994. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79:865–74
    [Google Scholar]
  89. 88. 
    Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH 2017. Phase separation drives heterochromatin domain formation. Nature 547:241–45
    [Google Scholar]
  90. 89. 
    Sun S, Yadav V, Billmyre RB, Cuomo CA, Nowrousian M et al. 2017. Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination. PLOS Biol 15:e2002527
    [Google Scholar]
  91. 90. 
    Takahashi K, Chen ES, Yanagida M 2000. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288:2215–19
    [Google Scholar]
  92. 91. 
    Thakur J, Sanyal K. 2012. A coordinated interdependent protein circuitry stabilizes the kinetochore ensemble to protect CENP-A in the human pathogenic yeast Candida albicans. PLOS Genet 8:e1002661
    [Google Scholar]
  93. 92. 
    Thakur J, Sanyal K. 2013. Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans. Genome Res 23:638–52
    [Google Scholar]
  94. 93. 
    Tong P, Pidoux AL, Toda NRT, Ard R, Berger H et al. 2019. Interspecies conservation of organisation and function between nonhomologous regional centromeres. Nat. Commun. 10:2343
    [Google Scholar]
  95. 94. 
    van Hooff JJ, Tromer E, van Wijk LM, Snel B, Kops GJ 2017. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep 18:1559–71
    [Google Scholar]
  96. 95. 
    Varoquaux N, Liachko I, Ay F, Burton JN, Shendure J et al. 2015. Accurate identification of centromere locations in yeast genomes using Hi-C. Nucleic Acids Res 43:5331–39
    [Google Scholar]
  97. 96. 
    Vernis L, Poljak L, Chasles M, Uchida K, Casaregola S et al. 2001. Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica. J. Mol. Biol 305:203–17
    [Google Scholar]
  98. 97. 
    White CL, Suto RK, Luger K 2001. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J 20:5207–18
    [Google Scholar]
  99. 98. 
    Yadav V, Sanyal K. 2018. Sad1 spatiotemporally regulates kinetochore clustering to ensure high-fidelity chromosome segregation in the human fungal pathogen Cryptococcus neoformans. mSphere 3:e00190–18
    [Google Scholar]
  100. 99. 
    Yadav V, Sreekumar L, Guin K, Sanyal K 2018. Five pillars of centromeric chromatin in fungal pathogens. PLOS Pathog 14:e1007150
    [Google Scholar]
  101. 100. 
    Yadav V, Sun S, Billmyre RB, Thimmappa BC, Shea T et al. 2018. RNAi is a critical determinant of centromere evolution in closely related fungi. PNAS 115:3108–13
    [Google Scholar]
  102. 101. 
    Yadav V, Yang F, Reza MH, Liu S, Valent B et al. 2019. Cellular dynamics and genomic identity of centromeres in cereal blast fungus. mBio 10:e01581–19
    [Google Scholar]
  103. 102. 
    Yao J, Liu X, Sakuno T, Li W, Xi Y et al. 2013. Plasticity and epigenetic inheritance of centromere-specific histone H3 (CENP-A)-containing nucleosome positioning in the fission yeast. J. Biol. Chem. 288:19184–96
    [Google Scholar]
/content/journals/10.1146/annurev-micro-011720-122512
Loading
/content/journals/10.1146/annurev-micro-011720-122512
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error