1932

Abstract

Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-012120-063427
2020-09-08
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-012120-063427.html?itemId=/content/journals/10.1146/annurev-micro-012120-063427&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abel S, Bucher T, Nicollier M, Hug I, Kaever V et al. 2013. Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the Caulobacter cell cycle. PLOS Genet 9:95–11
    [Google Scholar]
  2. 2. 
    Abel S, Chien P, Wassmann P, Schirmer T, Kaever V et al. 2011. Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. Mol. Cell 43:4550–60
    [Google Scholar]
  3. 3. 
    Adams DW, Stutzmann S, Stoudmann C, Blokesch M 2019. DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction. Nat. Microbiol. 4:91545–57
    [Google Scholar]
  4. 4. 
    An D, Parsek MR. 2007. The promise and peril of transcriptional profiling in biofilm communities. Curr. Opin. Microbiol. 10:3292–96
    [Google Scholar]
  5. 5. 
    Baker AE, Diepold A, Kuchma SL, Scott JE, Ha DG et al. 2016. PilZ domain protein FlgZ mediates cyclic di-GMP-dependent swarming motility control in Pseudomonas aeruginosa. J. Bacteriol 198:131837–46
    [Google Scholar]
  6. 6. 
    Bavi N, Cortes DM, Cox CD, Rohde PR, Liu W et al. 2016. The role of MscL amphipathic N terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels. Nat. Commun. 7:May11984
    [Google Scholar]
  7. 7. 
    Bavi N, Martinac AD, Cortes DM, Bavi O, Ridone P et al. 2017. Structural dynamics of the MscL C-terminal domain. Sci. Rep. 7:117229
    [Google Scholar]
  8. 8. 
    Beaussart A, Baker AE, Kuchma SL, El-Kirat-Chatel S, O'Toole GA, Dufrêne YF 2014. Nanoscale adhesion forces of Pseudomonas aeruginosa type IV pili. ACS Nano 8:1010723–33
    [Google Scholar]
  9. 9. 
    Belas R. 2013. When the swimming gets tough, the tough form a biofilm. Mol. Microbiol. 90:11–5
    [Google Scholar]
  10. 10. 
    Belas R. 2014. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 22:9517–27
    [Google Scholar]
  11. 11. 
    Belas R, Simon M, Silverman M 1986. Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J. Bacteriol 167:1210–18
    [Google Scholar]
  12. 12. 
    Berg HC. 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72:19–54
    [Google Scholar]
  13. 13. 
    Berne C, Ellison CK, Ducret A, Brun YV 2018. Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol. 16:10616–27
    [Google Scholar]
  14. 14. 
    Bertrand JJ, West JT, Engel JN 2010. Genetic analysis of the regulation of type IV pilus function by the Chp chemosensory system of Pseudomonas aeruginosa.. J. Bacteriol 192:4994–1010
    [Google Scholar]
  15. 15. 
    Besharova O, Suchanek VM, Hartmann R, Drescher K, Sourjik V 2016. Diversification of gene expression during formation of static submerged biofilms by Escherichia coli. Front. Microbiol 7:1568
    [Google Scholar]
  16. 16. 
    Beyhan S, Tischler AD, Camilli A, Yildiz FH 2006. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J. Bacteriol. 188:103600–13
    [Google Scholar]
  17. 17. 
    Biais N, Higashi DL, Bruji J, So M, Sheetz MP 2010. Force-dependent polymorphism in type IV pili reveals hidden epitopes. 1072511358–63
  18. 18. 
    Boehm A, Kaiser M, Li H, Spangler C, Alex C et al. 2010. Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141:1107–16
    [Google Scholar]
  19. 19. 
    Bordeleau E, Purcell EB, Lafontaine DA, Fortier LC, Tamayo R, Burrus V 2015. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J. Bacteriol 197:5819–32
    [Google Scholar]
  20. 20. 
    Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR 2010. Pseudomonas aeru-ginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75:4827–42
    [Google Scholar]
  21. 21. 
    Brissette JL, Russel M, Weiner L, Model P 1990. Phage shock protein, a stress protein of Escherichia coli. PNAS 87:3862–66
    [Google Scholar]
  22. 22. 
    Bruzaud J, Tarrade J, Coudreuse A, Canette A, Herry JM et al. 2015. Flagella but not type IV pili are involved in the initial adhesion of Pseudomonas aeruginosa PAO1 to hydrophobic or superhydrophobic surfaces. Colloids Surf. B. Biointerfaces 131:59–66
    [Google Scholar]
  23. 23. 
    Burrows LL. 2012. Twitching motility: type IV pili in action. Annu. Rev. Microbiol. 66:493–520
    [Google Scholar]
  24. 24. 
    Busscher HJ, van der Mei HC 2012. How do bacteria know they are on a surface and regulate their response to an adhering state. PLOS Pathog 8:11–3
    [Google Scholar]
  25. 25. 
    Cairns LS, Marlow VL, Bissett E, Ostrowski A, Stanley-Wall NR 2013. A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis. Mol. Microbiol 90:16–21
    [Google Scholar]
  26. 26. 
    Carniello V, Peterson BW, van der Mei HC, Busscher HJ 2018. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv. Colloid Interface Sci. 261:1–14
    [Google Scholar]
  27. 27. 
    Chang YW, Rettberg LA, Treuner-Lange A, Iwasa J, Søgaard-Andersen L, Jensen GJ 2016. Architecture of the type IVa pilus machine. Science 351:6278 aad2001. Erratum. 2016 Science 52:6282aaf7977
    [Google Scholar]
  28. 28. 
    Chawla R, Ford KM, Lele PP 2017. Torque, but not FliL, regulates mechanosensitive flagellar motor-function. Sci. Rep. 7:11–9
    [Google Scholar]
  29. 29. 
    Chawla R, Gupta R, Lele TP, Lele PP 2019. A skeptic's guide to bacterial mechanosensing. J. Mol. Biol. 432:2523–33
    [Google Scholar]
  30. 30. 
    Chen Y, Harapanahalli AK, Busscher HJ, Norde W, van der Mei HC 2014. Nanoscale cell wall deformation impacts long-range bacterial adhesion forces on surfaces. Appl. Environ. Microbiol. 80:2637–43
    [Google Scholar]
  31. 31. 
    Chiang P, Burrows LL. 2003. Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa. J. Bacteriol 185:72374–78
    [Google Scholar]
  32. 32. 
    Cho S-H, Szewczyk J, Pesavento C, Zietek M, Banzhaf M et al. 2014. Detecting envelope stress by monitoring β-barrel assembly. Cell 159:71652–64
    [Google Scholar]
  33. 33. 
    Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J et al. 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:54301061–66
    [Google Scholar]
  34. 34. 
    Christen M, Christen B, Allan MG, Folcher M, Jenö P et al. 2007. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. PNAS 104:104112–17
    [Google Scholar]
  35. 35. 
    Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI 2010. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328:59831295–97
    [Google Scholar]
  36. 36. 
    Chure G, Lee HJ, Rasmussen A, Phillips R 2018. Connecting the dots between mechanosensitive channel abundance, osmotic shock, and survival at single-cell resolution. J. Bacteriol. 200:23e00460–18
    [Google Scholar]
  37. 37. 
    Clausen M, Jakovljevic V, Søgaard-Andersen L, Maier B 2009. High-force generation is a conserved property of type IV pilus systems. J. Bacteriol. 191:144633–38
    [Google Scholar]
  38. 38. 
    Coggan KA, Wolfgang MC. 2012. Global regulatory pathways and cross-talk control Pseudomonas aeru-ginosa environmental lifestyle and virulence phenotype. Curr. Issues Mol. Biol. 14:247–70
    [Google Scholar]
  39. 39. 
    Conrad JC. 2012. Physics of bacterial near-surface motility using flagella and type IV pili: implications for biofilm formation. Res. Microbiol. 163:9–10619–29
    [Google Scholar]
  40. 40. 
    Conrad JC, Gibiansky ML, Jin F, Gordon VD, Motto DA et al. 2011. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa.. Biophys. J 100:71608–16
    [Google Scholar]
  41. 41. 
    Cooley RB, Smith TJ, Leung W, Tierney V, Borlee BR et al. 2016. Cyclic di-GMP-regulated periplasmic proteolysis of a Pseudomonas aeruginosa type Vb secretion system substrate. J. Bacteriol. 198:166–76
    [Google Scholar]
  42. 42. 
    Cowles KN, Gitai Z. 2010. Surface association and the MreB cytoskeleton regulate pilus production, localization and function in Pseudomonas aeruginosa. Mol. Microbiol 76:61411–26
    [Google Scholar]
  43. 43. 
    Cox CD, Bavi N, Martinac B 2018. Bacterial mechanosensors. Annu. Rev. Physiol. 80:71–93
    [Google Scholar]
  44. 44. 
    Craig L, Li J. 2008. Type IV pili: paradoxes in form and function. Curr. Opin. Struct. Biol. 18:2267–77
    [Google Scholar]
  45. 45. 
    Danese PN, Silhavy TJ. 1998. CpxP, a stress-combative member of the Cpx regulon. J. Bacteriol. 180:4831–39
    [Google Scholar]
  46. 46. 
    Delhaye A, Laloux G, Collet JF 2019. The lipoprotein NlpE is a cpx sensor that serves as a sentinel for protein sorting and folding defects in the Escherichia coli envelope. J. Bacteriol. 209:101–12
    [Google Scholar]
  47. 47. 
    DiGiuseppe PA, Silhavy TJ. 2003. Signal detection and target gene induction by the CpxRA two-component system. J. Bacteriol. 185:82432–40
    [Google Scholar]
  48. 48. 
    Drescher K, Dunkel J, Cisneros LH, Ganguly S, Goldstein RE 2011. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. PNAS 108:2710940–45
    [Google Scholar]
  49. 49. 
    Dunger G, Llontop E, Guzzo CR, Farah CS 2016. The Xanthomonas type IV pilus. Curr. Opin. Microbiol. 30:88–97
    [Google Scholar]
  50. 50. 
    Ellison CK, Kan J, Dillard RS, Kysela DT, Ducret A et al. 2017. Obstruction of pilus retraction stimulates bacterial surface sensing. Science 358:6362535–38
    [Google Scholar]
  51. 51. 
    Fang X, Gomelsky M. 2010. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol. Microbiol. 76:51295–305
    [Google Scholar]
  52. 52. 
    Feng H, Zhang N, Du W, Zhang H, Liu Y et al. 2018. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol. Plant-Microbe Interact. 31:10995–1005
    [Google Scholar]
  53. 53. 
    Ferrières L, Clarke DJ. 2003. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol. Microbiol. 50:51665–82
    [Google Scholar]
  54. 54. 
    Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14:9563–75
    [Google Scholar]
  55. 55. 
    Flemming HC, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17:4247–60
    [Google Scholar]
  56. 56. 
    Friedlander RS, Vlamakis H, Kim P, Khan M, Kolter R, Aizenberg J 2013. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. PNAS 110:145624–29
    [Google Scholar]
  57. 57. 
    Friedlander RS, Vogel N, Aizenberg J 2015. Role of flagella in adhesion of Escherichia coli to abiotic surfaces. Langmuir 31:226137–44
    [Google Scholar]
  58. 58. 
    Fuchs EL, Brutinel ED, Jones AK, Fulcher NB, Urbanowski ML et al. 2010. The Pseudomonas aeruginosa Vfr regulator controls global virulence factor expression through cyclic AMP-dependent and -independent mechanisms. J. Bacteriol. 192:143553–64
    [Google Scholar]
  59. 59. 
    Fuchs EL, Brutinel ED, Klem ER, Fehr AR, Yahr TL, Wolfgang MC 2010. In vitro and in vivo characterization of the Pseudomonas aeruginosa cyclic AMP (cAMP) phosphodiesterase CpdA, required for cAMP homeostasis and virulence factor regulation. J. Bacteriol. 192:112779–90
    [Google Scholar]
  60. 60. 
    Fulcher NB, Holliday PM, Klem E, Cann MJ, Wolfgang MC 2010. The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity. Mol. Microbiol. 76:4889–904
    [Google Scholar]
  61. 61. 
    Geoghegan JA, Monk IR, O'Gara JP, Foster TJ 2013. Subdomains N2N3 of fibronectin binding protein a mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. J. Bacteriol. 195:112675–83
    [Google Scholar]
  62. 62. 
    Gu J, Valdevit A, Chou T-M, Libera M 2017. Substrate effects on cell-envelope deformation during early-stage Staphylococcus aureus biofilm formation. Soft Matter 13:162967–76
    [Google Scholar]
  63. 63. 
    Guttenplan SB, Blair KM, Kearns DB 2010. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLOS Genet 6:12e1001243
    [Google Scholar]
  64. 64. 
    Güvener ZT, Harwood CS. 2007. Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. Mol. Microbiol. 66:61459–73
    [Google Scholar]
  65. 65. 
    Guzzo CR, Dunger G, Salinas RK, Farah CS 2013. Structure of the PilZ-FimXEAL-c-di-GMP complex responsible for the regulation of bacterial type IV pilus biogenesis. J. Mol. Biol. 425:122174–97
    [Google Scholar]
  66. 66. 
    Guzzo CR, Salinas RK, Andrade MO, Farah CS 2009. PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis. J. Mol. Biol. 393:4848–66
    [Google Scholar]
  67. 67. 
    Harapanahalli AK, Younes JA, Allan E, van der Mei HC, Busscher HJ 2015. Chemical signals and mechanosensing in bacterial responses to their environment. PLOS Pathog 11:8e1005057
    [Google Scholar]
  68. 68. 
    Heiniger RW, Winther-Larsen HC, Pickles RJ, Koomey M, Wolfgang MC 2010. Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus-associated adhesin. Cell. Microbiol. 12:81158–73
    [Google Scholar]
  69. 69. 
    Hendrick WA, Orr MW, Murray SR, Lee VT, Melville SB 2017. Cyclic di-GMP binding by an assembly ATPase (PilB2) and control of type IV pilin polymerization in the Gram-positive pathogen Clostridium perfringens. J. Bacteriol 199:10e00034–17
    [Google Scholar]
  70. 70. 
    Hickman JW, Harwood CS. 2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69:2376–89
    [Google Scholar]
  71. 71. 
    Hoffman MD, Zucker LI, Brown PJ, Kysela DT, Brun YV, Jacobson SC 2015. Timescales and frequencies of reversible and irreversible adhesion events of single bacterial cells. Anal. Chem. 87:2412032–39
    [Google Scholar]
  72. 72. 
    Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35:4322–32
    [Google Scholar]
  73. 73. 
    Hong Y, Brown DG. 2010. Alteration of bacterial surface electrostatic potential and pH upon adhesion to a solid surface and impacts to cellular bioenergetics. Biotechnol. Bioeng. 105:5965–72
    [Google Scholar]
  74. 74. 
    Hospenthal MK, Waksman G. 2019. The remarkable biomechanical properties of the type 1 chaperone-usher pilus: a structural and molecular perspective. Protein Secretion in Bacteria M Sandkvist, E Cascales, PJ Christie 137–48 Washington, DC: ASM
    [Google Scholar]
  75. 75. 
    Hou Y-J, Yang W-S, Hong Y, Zhang Y, Wang D-C, Li D-F 2020. Structural insights into the mechanism of c-di-GMP-bound YcgR regulating flagellar motility in Escherichia coli. J. Biol. Chem 295:3808–21
    [Google Scholar]
  76. 76. 
    Huang B, Whitchurch CB, Mattick JS 2003. FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J. Bacteriol 185:247068–76
    [Google Scholar]
  77. 77. 
    Hug I, Deshpande S, Sprecher KS, Pfohl T, Jenal U 2017. Second messenger-mediated tactile response by a bacterial rotary motor. Science 358:6362531–34
    [Google Scholar]
  78. 78. 
    Inclan YF, Persat A, Greninger A, Von Dollen J, Johnson J et al. 2016. A scaffold protein connects type IV pili with the Chp chemosensory system to mediate activation of virulence signaling in Pseudomonas aeruginosa. Mol. Microbiol 101:4590–605
    [Google Scholar]
  79. 79. 
    Jain R, Behrens A-J, Kaever V, Kazmierczak BI 2012. Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic di-GMP concentrations. J. Bacteriol. 194:164285–94
    [Google Scholar]
  80. 80. 
    Jain R, Sliusarenko O, Kazmierczak BI 2017. Interaction of the cyclic-di-GMP binding protein FimX and the type 4 pilus assembly ATPase promotes pilus assembly. PLOS Pathog 13:8e1006594
    [Google Scholar]
  81. 81. 
    Jenal U. 2000. Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control. FEMS Microbiol. Rev. 24:2177–91
    [Google Scholar]
  82. 82. 
    Jenal U, Reinders A, Lori C 2017. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15:5271–84
    [Google Scholar]
  83. 83. 
    Johnson MDL, Garrett CK, Bond JE, Coggan KA, Wolfgang MC, Redinbo MR 2011. Pseudomonas aeruginosa PilY1 binds integrin in an RGD- and calcium-dependent manner. PLOS ONE 6:12e29629
    [Google Scholar]
  84. 84. 
    Joly N, Engl C, Jovanovic G, Huvet M, Toni T et al. 2010. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol. Rev. 34:5797–827
    [Google Scholar]
  85. 85. 
    Jones CJ, Utada A, Davis KR, Thongsomboon W, Zamorano Sanchez D et al. 2015. c-di-GMP regulates motile to sessile transition by modulating MshA pili biogenesis and near-surface motility behavior in Vibrio cholerae. PLOS Pathog 11:10e1005068
    [Google Scholar]
  86. 86. 
    Kariisa AT, Weeks K, Tamayo R 2016. The RNA domain Vc1 regulates downstream gene expression in response to cyclic diguanylate in Vibrio cholerae. PLOS ONE 11:21–17
    [Google Scholar]
  87. 87. 
    Kawagishi I, Imagawa M, Imae Y, McCarter L, Homma M 1996. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol. Microbiol. 20:4693–99
    [Google Scholar]
  88. 88. 
    Kazmierczak BI, Lebron MB, Murray TS 2006. Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol. Microbiol 60:41026–43
    [Google Scholar]
  89. 89. 
    Kimkes TEP, Heinemann M. 2018. Reassessing the role of the Escherichia coli CpxAR system in sensing surface contact. PLOS ONE 13:11e0207181
    [Google Scholar]
  90. 90. 
    Kimkes TEP, Heinemann M. 2019. How bacteria recognise and respond to surface contact. FEMS Microbiol. Rev. 44:1106–22
    [Google Scholar]
  91. 91. 
    Kimura KR, Nakata M, Sumitomo T, Kreikemeyer B, Podbielski A et al. 2012. Involvement of T6 pili in biofilm formation by serotype M6 Streptococcus pyogenes. J. Bacteriol 194:4804–12
    [Google Scholar]
  92. 92. 
    Klauck G, Serra DO, Possling A, Hengge R 2018. Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm. Open Biol 8:8180066
    [Google Scholar]
  93. 93. 
    Kojima S, Yoneda T, Morimoto W, Homma M 2019. Effect of PlzD, a YcgR homologue of c-di-GMP-binding protein, on polar flagellar motility in Vibrio alginolyticus. J. Biochem 166:177–88
    [Google Scholar]
  94. 94. 
    Kolappan S, Coureuil M, Yu X, Nassif X, Egelman EH, Craig L 2016. Structure of the Neisseria meningitidis type IV pilus. Nat. Commun. 7:1–12
    [Google Scholar]
  95. 95. 
    Kolter R, Greenberg EP. 2006. Microbial sciences: the superficial life of microbes. Nature 441:7091300–2
    [Google Scholar]
  96. 96. 
    Konovalova A, Kahne DE, Silhavy TJ 2017. Outer membrane biogenesis. Annu. Rev. Microbiol. 71:1539–56
    [Google Scholar]
  97. 97. 
    Konovalova A, Mitchell AM, Silhavy TJ 2016. A lipoprotein/β-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane. eLife 5:e15276
    [Google Scholar]
  98. 98. 
    Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV et al. 2010. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327:5967866–68
    [Google Scholar]
  99. 99. 
    Kuchma SL, Ballok AE, Merritt JH, Hammond JH, Lu W et al. 2010. Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: the pilY1 gene and its impact on surface-associated behaviors. J. Bacteriol. 192:122950–64
    [Google Scholar]
  100. 100. 
    Kuchma SL, Delalez NJ, Filkins LM, Snavely EA, Armitage JP, O'Toole GA 2015. Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator. J. Bacteriol. 197:3420–30
    [Google Scholar]
  101. 101. 
    Kulasekara BR, Kamischke C, Kulasekara HD, Christen M, Wiggins PA, Miller SI 2013. c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. eLife 2:e01402
    [Google Scholar]
  102. 102. 
    Kumamoto CA. 2008. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat. Rev. Microbiol. 6:9667–73
    [Google Scholar]
  103. 103. 
    Laventie B-J, Sangermani M, Estermann F, Manfredi P, Planes R et al. 2019. A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe 25:1140–52.e6
    [Google Scholar]
  104. 104. 
    Le KY, Otto M. 2015. Quorum-sensing regulation in staphylococci—an overview. Front. Microbiol. 6:1174
    [Google Scholar]
  105. 105. 
    Le Trong I, Aprikian P, Kidd BA, Forero-Shelton M, Tchesnokova V et al. 2010. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like β sheet twisting. Cell 141:4645–55
    [Google Scholar]
  106. 106. 
    Lee CK, de Anda J, Baker AE, Bennett RR, Luo Y et al. 2018. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. PNAS 115:174471–76
    [Google Scholar]
  107. 107. 
    Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65:61474–84
    [Google Scholar]
  108. 108. 
    Lele PP, Hosu BG, Berg HC 2013. Dynamics of mechanosensing in the bacterial flagellar motor. PNAS 110:2911839–44
    [Google Scholar]
  109. 109. 
    Li G, Brown PJ, Tang JX, Xu J, Quardokus EM et al. 2012. Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol. Microbiol. 83:141–51
    [Google Scholar]
  110. 110. 
    Li X, Roseman S. 2004. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. PNAS 101:2627–31
    [Google Scholar]
  111. 111. 
    Lima S, Guo MS, Chaba R, Gross CA, Sauer RT 2013. Dual molecular signals mediate the bacterial response to outer-membrane stress. Science 340:6134837–41
    [Google Scholar]
  112. 112. 
    Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S 2019. Force-induced conformational changes in PIEZO1. Nature 573:7773230–34
    [Google Scholar]
  113. 113. 
    Lower SK, Yongsunthon R, Casillas-Ituarte NN, Taylor ES, DiBartola AC et al. 2010. A tactile response in Staphylococcus aureus. Biophys. J 99:92803–11
    [Google Scholar]
  114. 114. 
    Luo Y, Zhao K, Baker AE, Kuchma SL, Coggan KA et al. 2015. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. mBio 6:1e02456–14
    [Google Scholar]
  115. 115. 
    Ma Q, Wood TK. 2009. OmpA influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA two-component system. Environ. Microbiol. 11:102735–46
    [Google Scholar]
  116. 116. 
    Maier B, Potter L, So M, Seifert HS, Sheetz MP 2002. Single pilus motor forces exceed 100 pN. PNAS 99:2516012–17
    [Google Scholar]
  117. 117. 
    Makarchuk S, Braz VC, Araújo NAM, Ciric L, Volpe G 2019. Enhanced propagation of motile bacteria on surfaces due to forward scattering. Nat. Commun. 10:14110
    [Google Scholar]
  118. 118. 
    Maldarelli GA, Piepenbrink KH, Scott AJ, Freiberg JA, Song Y et al. 2016. Type IV pili promote early biofilm formation by Clostridium difficile. Pathog. Dis 74:61–10
    [Google Scholar]
  119. 119. 
    Maltz MA, Weiss BL, O'neill M, Wu Y, Aksoy S 2012. OmpA-mediated biofilm formation is essential for the commensal bacterium Sodalis glossinidius to colonize the tsetse fly gut. Appl. Environ. Microbiol. 78:217760–68
    [Google Scholar]
  120. 120. 
    Matsuyama BY, Krasteva PV, Baraquet C, Harwood CS, Sondermann H, Navarro MV 2016. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. PNAS 113:2E209–18
    [Google Scholar]
  121. 121. 
    McCarter L, Hilmen M, Silverman M 1988. Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54:3345–51
    [Google Scholar]
  122. 122. 
    McDonald C, Jovanovic G, Ces O, Buck M 2015. Membrane stored curvature elastic stress modulates recruitment of maintenance proteins pspa and vipp1. mBio 6:5e01188–15
    [Google Scholar]
  123. 123. 
    McDonough KA, Rodriguez A. 2012. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat. Rev. Microbiol. 10:127–38
    [Google Scholar]
  124. 124. 
    Meibom KL, Li XB, Nielsen AT, Wu C-Y, Roseman S, Schoolnik GK 2004. The Vibrio cholerae chitin utilization program. PNAS 101:82524–29
    [Google Scholar]
  125. 125. 
    Merz AJ, So M, Sheetz MP 2000. Pilus retraction powers bacterial twitching motility. Nature 407:680098–102
    [Google Scholar]
  126. 126. 
    Mikkelsen H, Ball G, Giraud C, Filloux A 2009. Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. PLOS ONE 4:6e6018
    [Google Scholar]
  127. 127. 
    Monds RD, Newell PD, Gross RH, O'Toole GA 2007. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0–1 biofilm formation by controlling secretion of the adhesin LapA. Mol. Microbiol. 63:3656–79
    [Google Scholar]
  128. 128. 
    Morgan JLW, McNamara JT, Zimmer J 2014. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat. Struct. Mol. Biol. 21:5489–96
    [Google Scholar]
  129. 129. 
    Morgenstein RM, Rather PN. 2012. Role of the Umo proteins and the Rcs phosphorelay in the swarming motility of the wild type and an O-antigen (waaL) mutant of Proteus mirabilis. J. Bacteriol 194:3669–76
    [Google Scholar]
  130. 130. 
    Mukherjee S, Bassler BL. 2019. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17:6371–82
    [Google Scholar]
  131. 131. 
    Nadell CD, Drescher K, Foster KR 2016. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14:9589–600
    [Google Scholar]
  132. 132. 
    Nakamura S, Minamino T. 2019. Flagella-driven motility of bacteria. Biomolecules 9:7279
    [Google Scholar]
  133. 133. 
    Nakayama SI, Watanabe H. 1995. Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene. J. Bacteriol. 177:175062–69
    [Google Scholar]
  134. 134. 
    Nesper J, Hug I, Kato S, Hee C-S, Habazettl JM et al. 2017. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. eLife 6:e28842
    [Google Scholar]
  135. 135. 
    Nevesinjac AZ, Raivio TL. 2005. The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenic Escherichia coli. J. Bacteriol 187:2672–86
    [Google Scholar]
  136. 136. 
    Nguyen Y, Sugiman-Marangos S, Harvey H, Bell SD, Charlton CL et al. 2014. Pseudomonas aeruginosa minor pilins prime type IVa pilus assembly and promote surface display of the PilY1 adhesin. J. Biol. Chem. 290:1601–11
    [Google Scholar]
  137. 137. 
    Nirody JA, Sun Y-R, Lo C-J 2017. The biophysicist's guide to the bacterial flagellar motor. Adv. Phys. X 2:2324–43
    [Google Scholar]
  138. 138. 
    Nord AL, Gachon E, Perez-Carrasco R, Nirody JA, Barducci A et al. 2017. Catch bond drives stator mechanosensitivity in the bacterial flagellar motor. PNAS 114:4912952–57
    [Google Scholar]
  139. 139. 
    Oh JK, Yegin Y, Yang F, Zhang M, Li J et al. 2018. The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion. Sci. Rep. 8:11–13
    [Google Scholar]
  140. 140. 
    Okumus B, Landgraf D, Lai GC, Bakshi S, Arias-Castro JC et al. 2016. Mechanical slowing-down of cytoplasmic diffusion allows in vivo counting of proteins in individual cells. Nat. Commun. 7:111641
    [Google Scholar]
  141. 141. 
    Olsen I. 2015. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 34:5877–86
    [Google Scholar]
  142. 142. 
    O'Neal L, Akhter S, Alexandre G 2019. A PilZ-containing chemotaxis receptor mediates oxygen and wheat root sensing in Azospirillum brasilense. Front. Microbiol 10:312
    [Google Scholar]
  143. 143. 
    O'Toole GA, Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30:2295–304
    [Google Scholar]
  144. 144. 
    Otto K, Silhavy TJ. 2002. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. PNAS 99:42287–92
    [Google Scholar]
  145. 145. 
    Park JH, Jo Y, Jang SY, Kwon H, Irie Y et al. 2015. The cabABC operon essential for biofilm and rugose colony development in Vibrio vulnificus. PLOS Pathog 11:9e1005192 Correction. 2015. PLOS Patho g. 11:10e1005252
    [Google Scholar]
  146. 146. 
    Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM 2010. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol. Cell 38:1128–39
    [Google Scholar]
  147. 147. 
    Pelicic V. 2008. Type IV pili: e pluribus unum. Mol. Microbiol. 68:4827–37
    [Google Scholar]
  148. 148. 
    Perez JC, Groisman EA. 2007. Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol. Microbiol 63:1283–93
    [Google Scholar]
  149. 149. 
    Perlman RL, De Crombrugghe B, Pastan I 1969. Cyclic AMP regulates catabolite and transient repression in E. coli. Nature 223:5208810–12
    [Google Scholar]
  150. 150. 
    Perozo E, Kloda A, Cortes DM, Martinac B 2002. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol. 9:9696–703
    [Google Scholar]
  151. 151. 
    Persat A. 2017. Bacterial mechanotransduction. Curr. Opin. Microbiol. 36:1–6
    [Google Scholar]
  152. 152. 
    Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z 2015. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. PNAS 112:247563–68
    [Google Scholar]
  153. 153. 
    Persat A, Nadell CD, Kim MK, Ingremeau F, Siryaporn A et al. 2015. The mechanical world of bacteria. Cell 161:5988–97
    [Google Scholar]
  154. 154. 
    Pilizota T, Brown MT, Leake MC, Branch RW, Berry RM, Armitage JP 2009. A molecular brake, not a clutch, stops the Rhodobacter sphaeroides flagellar motor. PNAS 106:2811582–87
    [Google Scholar]
  155. 155. 
    Pintelon TRR, Picioreanu C, van Loosdrecht MCM, Johns ML 2012. The effect of biofilm permeability on bio-clogging of porous media. Biotechnol. Bioeng. 109:41031–42
    [Google Scholar]
  156. 156. 
    Ponsonnet L, Boureanu M, Jaffrezic N, Othmane A, Dorel C, Lejeune P 2008. Local pH variation as an initial step in bacterial surface-sensing and biofilm formation. Mater. Sci. Eng. C 28:5–6896–900
    [Google Scholar]
  157. 157. 
    Poolman B, Spitzer JJ, Wood JM 2004. Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biochim. Biophys. Acta Biomembr. 1666. 1–2:88–104
    [Google Scholar]
  158. 158. 
    Porter SL, Wadhams GH, Armitage JP 2011. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9:3153–65
    [Google Scholar]
  159. 159. 
    Pratt LA, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30:2285–93
    [Google Scholar]
  160. 160. 
    Pruzzo C, Vezzulli L, Colwell RR 2008. Global impact of Vibrio cholerae interactions with chitin. Environ. Microbiol. 10:61400–10
    [Google Scholar]
  161. 161. 
    Qi Y, Chuah ML, Dong X, Xie K, Luo Z et al. 2011. Binding of cyclic diguanylate in the non-catalytic EAL domain of FimX induces a long-range conformational change. J. Biol. Chem. 286:42910–17
    [Google Scholar]
  162. 162. 
    Qu Y, Daley AJ, Istivan TS, Rouch DA, Deighton MA 2010. Densely adherent growth mode, rather than extracellular polymer substance matrix build-up ability, contributes to high resistance of Staphylococcus epidermidis biofilms to antibiotics. J. Antimicrob. Chemother. 65:71405–11
    [Google Scholar]
  163. 163. 
    Raivio TL. 2005. Envelope stress responses and Gram-negative bacterial pathogenesis. Mol. Microbiol. 56:51119–28
    [Google Scholar]
  164. 164. 
    Reichhardt C, Wong C, Passos da Silva D, Wozniak DJ, Parsek MR 2018. CdrA interactions within the Pseudomonas aeruginosa biofilm matrix safeguard it from proteolysis and promote cellular packing. mBio 9:5e01376–18
    [Google Scholar]
  165. 165. 
    Rodesney CA, Roman B, Dhamani N, Cooley BJ, Touhami A, Gordon VD 2017. Mechanosensing of shear by Pseudomonas aeruginosa leads to increased levels of the cyclic-di-GMP signal initiating biofilm development. PNAS 114:235906–11
    [Google Scholar]
  166. 166. 
    Roelofs KG, Wang J, Sintim HO, Lee VT 2011. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. PNAS 108:3715528–33
    [Google Scholar]
  167. 167. 
    Roilides E, Walsh TJ, Simitsopoulou M, Katragkou A 2015. How biofilms evade host defenses. Microbial Biofilms M Ghannoum, M Parsek, M Whiteley, PK Mukherjee 287–300 Washington, DC: ASM
    [Google Scholar]
  168. 168. 
    Russell MH, Bible AN, Fang X, Gooding JR, Campagna SR et al. 2013. Integration of the second messenger c-di-GMP into the chemotactic signaling pathway. mBio 4:2e00001–13
    [Google Scholar]
  169. 169. 
    Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T 2015. Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J. Mol. Biol. 427:233628–45
    [Google Scholar]
  170. 170. 
    Ryjenkov DA, Simm R, Romling U, Gomelsky M 2006. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281:4130310–14
    [Google Scholar]
  171. 171. 
    Sanfilippo JE, Lorestani A, Koch MD, Bratton BP, Siryaporn A et al. 2019. Microfluidic-based transcriptomics reveal force-independent bacterial rheosensing. Nat. Microbiol. 4:81274–81
    [Google Scholar]
  172. 172. 
    Sangermani M, Hug I, Sauter N, Pfohl T, Jenal U 2019. Tad pili play a dynamic role in Caulobacter crescentus surface colonization. mBio 10:31–18
    [Google Scholar]
  173. 173. 
    Sauer MM, Jakob RP, Eras J, Baday S, Eriş D et al. 2016. Catch-bond mechanism of the bacterial adhesin FimH. Nat. Commun. 7:10738
    [Google Scholar]
  174. 174. 
    Saur T, Morin E, Habouzit F, Bernet N, Escudié R 2017. Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor. PLOS ONE 12:21–19
    [Google Scholar]
  175. 175. 
    Schniederberend M, Williams JF, Shine E, Shen C, Jain R et al. 2019. Modulation of flagellar rotation in surface-attached bacteria: A pathway for rapid surface-sensing after flagellar attachment. PLOS Pathog 15:11e1008149
    [Google Scholar]
  176. 176. 
    Schwan WR, Lee JL, Lenard FA, Matthews BT, Beck MT 2002. Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infect. Immun 70:31391–402
    [Google Scholar]
  177. 177. 
    Semmler AB, Whitchurch CB, Leech AJ, Mattick JS 2000. Identification of a novel gene, fimV, involved in twitching motility in Pseudomonas aeruginosa. Microbiology 146:Part 61321–32
    [Google Scholar]
  178. 178. 
    Serra DO, Klauck G, Hengge R 2015. Vertical stratification of matrix production is essential for physical integrity and architecture of macrocolony biofilms of Escherichia coli. Environ. Microbiol 17:125073–88
    [Google Scholar]
  179. 179. 
    Siryaporn A, Kuchma SL, O'Toole GA, Gitai Z 2014. Surface attachment induces Pseudomonas aeruginosa virulence. PNAS 111:4716860–65
    [Google Scholar]
  180. 180. 
    Sokurenko EV, Vogel V, Thomas WE 2008. Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but … widespread. Cell Host Microbe 4:4314–23
    [Google Scholar]
  181. 181. 
    Sowa Y, Berry RM. 2008. Bacterial flagellar motor. Q. Rev. Biophys. 41:2103–32
    [Google Scholar]
  182. 182. 
    Steiner S, Lori C, Boehm A, Jenal U 2013. Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32:3354–68
    [Google Scholar]
  183. 183. 
    Stocker R, Seymour JR. 2012. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol. Mol. Biol. Rev. 76:4792–812
    [Google Scholar]
  184. 184. 
    Subramanian S, Gao X, Dann CE, Kearns DB, Berg HC 2017. MotI (DgrA) acts as a molecular clutch on the flagellar stator protein MotA in Bacillus subtilis. PNAS 114:5113537–42
    [Google Scholar]
  185. 185. 
    Subramanian S, Kearns DB. 2019. Functional regulators of bacterial flagella. Annu. Rev. Microbiol. 73:1225–46
    [Google Scholar]
  186. 186. 
    Suchanek VM, Esteban‐López M, Colin R, Besharova O, Fritz K, Sourjik V 2019. Chemotaxis and cyclic‐di‐GMP signalling control surface attachment of Escherichia coli. Mol. Microbiol 113:4728–39
    [Google Scholar]
  187. 187. 
    Sukharev S, Sachs F. 2012. Molecular force transduction by ion channels—diversity and unifying principles. J. Cell Sci. 125:133075–83
    [Google Scholar]
  188. 188. 
    Sun Y, Xie Z, Sui F, Liu X, Cheng W 2019. Identification of Cbp1, a c-di-GMP binding chemoreceptor in Azorhizobium caulinodans ORS571 involved in chemotaxis and nodulation of the host plant. Front. Microbiol. 10:638
    [Google Scholar]
  189. 189. 
    Talà L, Fineberg A, Kukura P, Persat A 2019. Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements. Nat. Microbiol. 4:5774–80
    [Google Scholar]
  190. 190. 
    Terahara N, Noguchi Y, Nakamura S, Kami-ike N, Ito M et al. 2017. Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillus subtilis flagellar motor. Sci. Rep. 7:146081
    [Google Scholar]
  191. 191. 
    Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV 2002. Bacterial adhesion to target cells enhanced by shear force. Cell 109:7913–23
    [Google Scholar]
  192. 192. 
    Thongsomboon W, Serra DO, Possling A, Hadjineophytou C, Hengge R, Cegelski L 2018. Phosphoethanolamine cellulose: a naturally produced chemically modified cellulose. Science 359:6373334–38
    [Google Scholar]
  193. 193. 
    Tipping MJ, Delalez NJ, Lim R, Berry RM, Armitage JP 2013. Load-dependent assembly of the bacterial flagellar motor. mBio 4:4e00551–13
    [Google Scholar]
  194. 194. 
    Touhami A, Jericho MH, Boyd JM, Beveridge TJ 2006. Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy. J. Bacteriol. 188:2370–77
    [Google Scholar]
  195. 195. 
    Toutain CM, Caizza NC, Zegans ME, O'Toole GA 2007. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Res. Microbiol 158:5471–77
    [Google Scholar]
  196. 196. 
    Toutain CM, Zegans ME, O'Toole GA 2005. Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J. Bacteriol 187:2771–77
    [Google Scholar]
  197. 197. 
    Tuson HH, Weibel DB. 2013. Bacteria-surface interactions. Soft Matter 9:184368–80
    [Google Scholar]
  198. 198. 
    Utada AS, Bennett RR, Fong JCN, Gibiansky ML, Yildiz FH et al. 2014. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat. Commun. 5:4913
    [Google Scholar]
  199. 199. 
    Valentini M, Filloux A. 2016. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem. 291:2412547–55
    [Google Scholar]
  200. 200. 
    Valentini M, Filloux A. 2019. Multiple roles of c-di-GMP signaling in bacterial pathogenesis. Annu. Rev. Microbiol. 73:1387–406
    [Google Scholar]
  201. 201. 
    Van Dellen KL, Houot L, Watnick PI 2008. Genetic analysis of Vibrio cholerae monolayer formation reveals a key role for ΔΨ in the transition to permanent attachment. J. Bacteriol. 190:248185–96
    [Google Scholar]
  202. 202. 
    Van Oene MM, Dickinson LE, Cross B, Pedaci F, Lipfert J, Dekker NH 2017. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers. Sci. Rep. 7:1–12
    [Google Scholar]
  203. 203. 
    Vogt S, Acosta N, Wong J, Wang J 2012. The CpxAR two-component system regulates a complex envelope stress response in gram-negative bacteria 12. Two-Component Systems in Bacteria R Gross, B Dagmar 231–67 Norfolk, UK: Caister Acad.
    [Google Scholar]
  204. 204. 
    Wadhwa N, Phillips R, Berg HC 2019. Torque-dependent remodeling of the bacterial flagellar motor. PNAS 116:2411764–69
    [Google Scholar]
  205. 205. 
    Wall E, Majdalani N, Gottesman S 2018. The complex Rcs regulatory cascade. Annu. Rev. Microbiol. 72:1111–39
    [Google Scholar]
  206. 206. 
    Wang F, Coureuil M, Osinski T, Orlova A, Altindal T et al. 2017. Cryoelectron microscopy reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae type IV pili at sub-nanometer resolution. Structure 25:91423–35.e4
    [Google Scholar]
  207. 207. 
    Wang L, Zhou H, Zhang M, Liu W, Deng T et al. 2019. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 573:7773225–29
    [Google Scholar]
  208. 208. 
    Wang LC, Morgan LK, Godakumbura P, Kenney LJ, Anand GS 2012. The inner membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the cytoplasm. EMBO J 31:112648–59
    [Google Scholar]
  209. 209. 
    Wang Y, Liu Y, Deberg HA, Nomura T, Hoffman MT et al. 2014. Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. eLife 3:e01834
    [Google Scholar]
  210. 210. 
    Waters CM. 2013. Bacterial wheel locks: extracellular polysaccharide inhibits flagellar rotation. J. Bacteriol. 195:3409–10
    [Google Scholar]
  211. 211. 
    Wehbi H, Portillo E, Harvey H, Shimkoff AE, Scheurwater EM et al. 2011. The peptidoglycan-binding protein FimV promotes assembly of the Pseudomonas aeruginosa type IV pilus secretin. J. Bacteriol. 193:2540–50
    [Google Scholar]
  212. 212. 
    Whitman WB, Coleman DC, Wiebe WJ 1998. Prokaryotes: the unseen majority. PNAS 95:126578–83
    [Google Scholar]
  213. 213. 
    Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR et al. 2011. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLOS Pathog 7:8e1002204
    [Google Scholar]
  214. 214. 
    Wyres KL, Holt KE. 2016. Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends Microbiol 24:12944–56
    [Google Scholar]
  215. 215. 
    Xu L, Xin L, Zeng Y, Yam JK, Ding Y et al. 2016. A cyclic di-GMP-binding adaptor protein interacts with a chemotaxis methyltransferase to control flagellar motor switching. Sci. Signal. 9:450ra102
    [Google Scholar]
  216. 216. 
    Xu Z, Zhang H, Zhang X, Jiang H, Liu C et al. 2019. Interplay between the bacterial protein deacetylase CobB and the second messenger c‐di‐GMP. EMBO J 38:18e100948
    [Google Scholar]
  217. 217. 
    You C, Okano H, Hui S, Zhang Z, Kim M et al. 2013. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500:7462301–6
    [Google Scholar]
  218. 218. 
    Zorraquino V, García B, Latasa C, Echeverz M, Toledo-Arana A et al. 2013. Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. J. Bacteriol. 195:3417–28
    [Google Scholar]
/content/journals/10.1146/annurev-micro-012120-063427
Loading
/content/journals/10.1146/annurev-micro-012120-063427
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error