1932

Abstract

The type VII protein secretion system (T7SS) of is encoded at the locus. T7 substrate recognition and protein transport are mediated by EssC, a membrane-bound multidomain ATPase. Four EssC sequence variants have been identified across strains, each accompanied by a specific suite of substrate proteins. The genes are upregulated during persistent infection, and the secretion system contributes to virulence in disease models. It also plays a key role in intraspecies competition, secreting nuclease and membrane-depolarizing toxins that inhibit the growth of strains lacking neutralizing immunity proteins. A genomic survey indicates that the T7SS is widely conserved across staphylococci and is encoded in clusters that contain diverse arrays of toxin and immunity genes. The presence of genomic islands encoding multiple immunity proteins in species such as that lack the T7SS points to a major role for the secretion system in bacterial antagonism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-012721-123600
2021-10-08
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-012721-123600.html?itemId=/content/journals/10.1146/annurev-micro-012721-123600&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J et al. 2007. Type VII secretion—mycobacteria show the way. Nat. Rev. Microbiol. 5:883–91
    [Google Scholar]
  2. 2. 
    Abdallah AM, Verboom T, Hannes F, Safi M, Strong M et al. 2006. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol. Microbiol. 62:667–79
    [Google Scholar]
  3. 3. 
    Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius NC, Mahasha PW et al. 2009. PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol. Microbiol. 73:329–40
    [Google Scholar]
  4. 4. 
    Adhikari RP, Novick RP. 2008. Regulatory organization of the staphylococcal sae locus. Microbiology 154:949–59
    [Google Scholar]
  5. 5. 
    Akpe San Roman S, Facey PD, Fernandez-Martinez L, Rodriguez C, Vallin C et al. 2010. A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. Microbiology 156:1719–29
    [Google Scholar]
  6. 6. 
    Alhajjar N, Chatterjee A, Spencer BL, Burcham LR, Willett JLE et al. 2020. Genome-wide mutagenesis identifies factors involved in Enterococcus faecalis vaginal adherence and persistence. Infect. Immun. 88:10e00270-20
    [Google Scholar]
  7. 7. 
    Aly KA, Anderson M, Ohr RJ, Missiakas D. 2017. Isolation of a membrane protein complex for type VII secretion in Staphylococcus aureus. J. Bacteriol. 199:e00482-17
    [Google Scholar]
  8. 8. 
    Anderson M, Aly KA, Chen YH, Missiakas D. 2013. Secretion of atypical protein substrates by the ESAT-6 secretion system of Staphylococcus aureus. Mol. Microbiol. 90:734–43
    [Google Scholar]
  9. 9. 
    Anderson M, Chen YH, Butler EK, Missiakas DM. 2011. EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J. Bacteriol. 193:1583–89
    [Google Scholar]
  10. 10. 
    Anderson M, Ohr RJ, Aly KA, Nocadello S, Kim HK et al. 2017. EssE promotes Staphylococcus aureus ESS-dependent protein secretion to modify host immune responses during infection. J. Bacteriol. 199:e00527-16
    [Google Scholar]
  11. 11. 
    Anderson MS, Garcia EC, Cotter PA. 2014. Kind discrimination and competitive exclusion mediated by contact-dependent growth inhibition systems shape biofilm community structure. PLOS Pathog 10:e1004076
    [Google Scholar]
  12. 12. 
    Anne J, Economou A, Bernaerts K. 2017. Protein secretion in Gram-positive bacteria: from multiple pathways to biotechnology. Curr. Top. Microbiol. Immunol. 404:267–308
    [Google Scholar]
  13. 13. 
    Ates LS. 2020. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol. Microbiol. 113:4–21
    [Google Scholar]
  14. 14. 
    Baek KT, Frees D, Renzoni A, Barras C, Rodriguez N et al. 2013. Genetic variation in the Staphylococcus aureus 8325 strain lineage revealed by whole-genome sequencing. PLOS ONE 8:e77122
    [Google Scholar]
  15. 15. 
    Baptista C, Barreto HC, São-José C. 2013. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis. PLOS ONE 8:e67840
    [Google Scholar]
  16. 16. 
    Beckham KS, Ciccarelli L, Bunduc CM, Mertens HD, Ummels R et al. 2017. Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis. Nat. Microbiol. 2:17047
    [Google Scholar]
  17. 17. 
    Beckham KS, Ritter C, Chojnowski G, Mullapudi E, Rettel M et al. 2020. Structure of the mycobacterial ESX-5 Type VII Secretion System hexameric pore complex. bioRxiv 2020.11.17.387225
  18. 18. 
    Bensing BA, Sullam PM. 2002. An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol. Microbiol. 44:1081–94
    [Google Scholar]
  19. 19. 
    Bischoff M, Entenza JM, Giachino P. 2001. Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. J. Bacteriol. 183:5171–79
    [Google Scholar]
  20. 20. 
    Bobrovskyy M, Willing SE, Schneewind O, Missiakas D. 2018. EssH peptidoglycan hydrolase enables Staphylococcus aureus type VII secretion across the bacterial cell wall envelope. J. Bacteriol. 200:e00268-18
    [Google Scholar]
  21. 21. 
    Bowran K, Palmer T. 2021. Extreme genetic diversity in the type VII secretion system of Listeria monocytogenes suggests a role in bacterial antagonism. Microbiology 167:3001034
    [Google Scholar]
  22. 22. 
    Braunstein M, Bensing BA, Sullam PM. 2019. The two distinct types of SecA2-dependent export systems. Protein Secretion in Bacteria M Sandkvist, E Cascales, P Christie 29–41 Washington, DC: ASM https://doi.org/10.1128/microbiolspec.PSIB-0025-2018
    [Crossref] [Google Scholar]
  23. 23. 
    Brodin P, de Jonge MI, Majlessi L, Leclerc C, Nilges M et al. 2005. Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity. J. Biol. Chem. 280:33953–59
    [Google Scholar]
  24. 24. 
    Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R. 2004. ESAT-6 proteins: protective antigens and virulence factors?. Trends Microbiol 12:500–8
    [Google Scholar]
  25. 25. 
    Bronesky D, Desgranges E, Corvaglia A, Francois P, Caballero CJ et al. 2019. A multifaceted small RNA modulates gene expression upon glucose limitation in Staphylococcus aureus. EMBO J 38:e99363
    [Google Scholar]
  26. 26. 
    Bunduc CM, Bitter W, Houben ENG. 2020. Structure and function of the mycobacterial type VII secretion systems. Annu. Rev. Microbiol. 74:315–35
    [Google Scholar]
  27. 27. 
    Bunduc CM, Fahrenkamp D, Wald J, Ummels R, Bitter W et al. 2020. Structure and dynamics of the ESX-5 type VII secretion system of Mycobacterium tuberculosis. bioRxiv 2020.12.02.408906
  28. 28. 
    Bunduc CM, Ummels R, Bitter W, Houben ENG. 2020. Species-specific secretion of ESX-5 type VII substrates is determined by the linker 2 of EccC5. Mol. Microbiol. 114:66–76
    [Google Scholar]
  29. 29. 
    Burts ML, DeDent AC, Missiakas DM. 2008. EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol. Microbiol. 69:736–46
    [Google Scholar]
  30. 30. 
    Burts ML, Williams WA, DeBord K, Missiakas DM 2005. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. PNAS 102:1169–74
    [Google Scholar]
  31. 31. 
    Callahan B, Nguyen K, Collins A, Valdes K, Caplow M et al. 2010. Conservation of structure and protein-protein interactions mediated by the secreted mycobacterial proteins EsxA, EsxB, and EspA. J. Bacteriol. 192:326–35
    [Google Scholar]
  32. 32. 
    Cao Z. 2017. Characterisation of the Type VII secretion system of Staphylococcus aureus. PhD Thesis University of Dundee, U. K.
    [Google Scholar]
  33. 33. 
    Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. 2016. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat. Microbiol. 2:16183
    [Google Scholar]
  34. 34. 
    Casabona MG, Buchanan G, Zoltner M, Harkins CP, Holden MTG, Palmer T. 2017. Functional analysis of the EsaB component of the Staphylococcus aureus type VII secretion system. Microbiology 163:1851–63
    [Google Scholar]
  35. 35. 
    Casabona MG, Kneuper H, Alferes de Lima D, Harkins CP, Zoltner M et al. 2017. Haem-iron plays a key role in the regulation of the Ess/type VII secretion system of Staphylococcus aureus RN6390. Microbiology 163:1839–50
    [Google Scholar]
  36. 36. 
    Champion PA, Stanley SA, Champion MM, Brown EJ, Cox JS. 2006. C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313:1632–36
    [Google Scholar]
  37. 37. 
    Chatterjee A, Willett JLE, Dunny GM, Duerkop BA. 2021. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLOS Genet 17:1e1009204
    [Google Scholar]
  38. 38. 
    Chatterjee A, Willett JLE, Nguyen UT, Monogue B, Palmer KL et al. 2020. Parallel genomics uncover novel enterococcal-bacteriophage interactions. mBio 11:e03120-19
    [Google Scholar]
  39. 39. 
    Chen X, Cheng HF, Zhou J, Chan CY, Lau KF et al. 2017. Structural basis of the PE-PPE protein interaction in Mycobacterium tuberculosis. J. Biol. Chem. 292:16880–90
    [Google Scholar]
  40. 40. 
    Cheng AG, Kim HK, Burts ML, Krausz T, Schneewind O, Missiakas DM. 2009. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J 23:3393–404
    [Google Scholar]
  41. 41. 
    Christensen GJ, Scholz CF, Enghild J, Rohde H, Kilian M et al. 2016. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genom 17:152
    [Google Scholar]
  42. 42. 
    Christie PJ. 2019. The rich tapestry of bacterial protein translocation systems. Protein J 38:389–408
    [Google Scholar]
  43. 43. 
    Converse SE, Cox JS. 2005. A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis. J. Bacteriol. 187:1238–45
    [Google Scholar]
  44. 44. 
    Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A et al. 2015. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13:343–59
    [Google Scholar]
  45. 45. 
    Crosby HA, Tiwari N, Kwiecinski JM, Xu Z, Dykstra A et al. 2020. The Staphylococcus aureus ArlRS two-component system regulates virulence factor expression through MgrA. Mol. Microbiol. 113:103–22
    [Google Scholar]
  46. 46. 
    Daffe M, Marrakchi H. 2019. Unraveling the structure of the mycobacterial envelope. Microbiol. Spectr. 7:4 https://doi.org/10.1128/microbiolspec.GPP3-0027-2018
    [Crossref] [Google Scholar]
  47. 47. 
    Dai Y, Wang Y, Liu Q, Gao Q, Lu H et al. 2017. A novel ESAT-6 secretion system-secreted protein EsxX of community-associated Staphylococcus aureus LINEAGE ST398 contributes to immune evasion and virulence. Front. Microbiol. 8:819
    [Google Scholar]
  48. 48. 
    Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CM et al. 2012. General secretion signal for the mycobacterial type VII secretion pathway. PNAS 109:11342–47
    [Google Scholar]
  49. 49. 
    Daleke MH, van der Woude AD, Parret AH, Ummels R, de Groot AM et al. 2012. Specific chaperones for the type VII protein secretion pathway. J. Biol. Chem. 287:31939–47
    [Google Scholar]
  50. 50. 
    de Jong NWM, van Kessel KPM, van Strijp JAG. 2019. Immune evasion by Staphylococcus aureus. Microbiol. Spectr. 7:2 https://doi.org/10.1128/microbiolspec.GPP3-0061-2019
    [Crossref] [Google Scholar]
  51. 51. 
    Deng L, Schilcher K, Burcham LR, Kwiecinski JM, Johnson PM et al. 2019. Identification of key determinants of Staphylococcus aureus vaginal colonization. mBio 10:e02321-19
    [Google Scholar]
  52. 52. 
    Desvaux M, Hebraud M, Talon R, Henderson IR. 2009. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17:139–45
    [Google Scholar]
  53. 53. 
    DiGiuseppe Champion PA, Champion MM, Manzanillo P, Cox JS 2009. ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Mol. Microbiol. 73:950–62
    [Google Scholar]
  54. 54. 
    do Vale A, Cabanes D, Sousa S. 2016. Bacterial toxins as pathogen weapons against phagocytes. Front. Microbiol. 7:42
    [Google Scholar]
  55. 55. 
    Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G et al. 2001. Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J. Bacteriol. 183:7341–53
    [Google Scholar]
  56. 56. 
    Ekiert DC, Cox JS 2014. Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. PNAS 111:14758–63
    [Google Scholar]
  57. 57. 
    Espadinha D, Sobral RG, Mendes CI, Meric G, Sheppard SK et al. 2019. Distinct phenotypic and genomic signatures underlie contrasting pathogenic potential of Staphylococcus epidermidis clonal lineages. Front. Microbiol. 10:1971
    [Google Scholar]
  58. 58. 
    Famelis N, Rivera-Calzada A, Degliesposti G, Wingender M, Mietrach N et al. 2019. Architecture of the mycobacterial type VII secretion system. Nature 576:321–25
    [Google Scholar]
  59. 59. 
    Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM et al. 2005. Mutually dependent secretion of proteins required for mycobacterial virulence. PNAS 102:10676–81
    [Google Scholar]
  60. 60. 
    Fyans JK, Bignell D, Loria R, Toth I, Palmer T. 2013. The ESX/type VII secretion system modulates development, but not virulence, of the plant pathogen Streptomyces scabies. Mol. Plant Pathol. 14:119–30
    [Google Scholar]
  61. 61. 
    Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT et al. 2005. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 187:2426–38
    [Google Scholar]
  62. 62. 
    Gomes MC, Mostowy S. 2020. The case for modeling human infection in zebrafish. Trends Microbiol 28:10–18
    [Google Scholar]
  63. 63. 
    Goosens VJ, van Dijl JM. 2017. Twin-arginine protein translocation. Curr. Top. Microbiol. Immunol. 404:69–94
    [Google Scholar]
  64. 64. 
    Houben EN, Bestebroer J, Ummels R, Wilson L, Piersma SR et al. 2012. Composition of the type VII secretion system membrane complex. Mol. Microbiol. 86:472–84
    [Google Scholar]
  65. 65. 
    Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ et al. 2003. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. PNAS 100:12420–25
    [Google Scholar]
  66. 66. 
    Huppert LA, Ramsdell TL, Chase MR, Sarracino DA, Fortune SM, Burton BM. 2014. The ESX system in Bacillus subtilis mediates protein secretion. PLOS ONE 9:e96267
    [Google Scholar]
  67. 67. 
    Ibberson CB, Stacy A, Fleming D, Dees JL, Rumbaugh K et al. 2017. Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection. Nat. Microbiol. 2:17079
    [Google Scholar]
  68. 68. 
    Ibberson CB, Whiteley M. 2020. The social life of microbes in chronic infection. Curr. Opin. Microbiol. 53:44–50
    [Google Scholar]
  69. 69. 
    Ishii K, Adachi T, Yasukawa J, Suzuki Y, Hamamoto H, Sekimizu K. 2014. Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant. Infect. Immun. 82:1500–10
    [Google Scholar]
  70. 70. 
    Iwase T, Uehara Y, Shinji H, Tajima A, Seo H et al. 2010. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–49
    [Google Scholar]
  71. 71. 
    Jäger F, Kneuper H, Palmer T. 2018. EssC is a specificity determinant for Staphylococcus aureus type VII secretion. Microbiology 164:816–20
    [Google Scholar]
  72. 72. 
    Jäger F, Zoltner M, Kneuper H, Hunter WN, Palmer T. 2016. Membrane interactions and self-association of components of the Ess/Type VII secretion system of Staphylococcus aureus. FEBS Lett 590:349–57
    [Google Scholar]
  73. 73. 
    Jenul C, Horswill AR. 2018. Regulation of Staphylococcus aureus virulence. Microbiol. Spectr. 7:2 https://doi.org/10.1128/microbiolspec.GPP3-0031-2018
    [Crossref] [Google Scholar]
  74. 74. 
    Karlsson A, Arvidson S. 2002. Variation in extracellular protease production among clinical isolates of Staphylococcus aureus due to different levels of expression of the protease repressor sarA. Infect. Immun. 70:4239–46
    [Google Scholar]
  75. 75. 
    Karlsson-Kanth A, Tegmark-Wisell K, Arvidson S, Oscarsson J 2006. Natural human isolates of Staphylococcus aureus selected for high production of proteases and α-hemolysin are σB deficient. Int. J. Med. Microbiol. 296:229–36
    [Google Scholar]
  76. 76. 
    Kaundal S, Deep A, Kaur G, Thakur KG. 2020. Molecular and biochemical characterization of YeeF/YezG, a polymorphic toxin-immunity protein pair from Bacillus subtilis. Front. Microbiol. 11:95
    [Google Scholar]
  77. 77. 
    Klein TA, Ahmad S, Whitney JC 2020. Contact-dependent interbacterial antagonism mediated by protein secretion machines. Trends Microbiol 28:387–400
    [Google Scholar]
  78. 78. 
    Klein TA, Grebenc DW, Gandhi SY, Shah VS, Kim Y, Whitney JC. 2021. Structure of the extracellular region of the bacterial type VIIb secretion system subunit EsaA. Structure 29:2177–85.e6
    [Google Scholar]
  79. 79. 
    Klein TA, Pazos M, Surette MG, Vollmer W, Whitney JC. 2018. Molecular basis for immunity protein recognition of a type VII secretion system exported antibacterial toxin. J. Mol. Biol. 430:4344–58
    [Google Scholar]
  80. 80. 
    Kneuper H, Cao ZP, Twomey KB, Zoltner M, Jager F et al. 2014. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains. Mol. Microbiol. 93:928–43
    [Google Scholar]
  81. 81. 
    Korea CG, Balsamo G, Pezzicoli A, Merakou C, Tavarini S et al. 2014. Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infect. Immun. 82:4144–53
    [Google Scholar]
  82. 82. 
    Korotkova N, Freire D, Phan TH, Ummels R, Creekmore CC et al. 2014. Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25-PPE41 dimer. Mol. Microbiol. 94:367–82
    [Google Scholar]
  83. 83. 
    Korotkova N, Piton J, Wagner JM, Boy-Rottger S, Japaridze A et al. 2015. Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis. J. Struct. Biol. 191:236–44
    [Google Scholar]
  84. 84. 
    Krismer B, Weidenmaier C, Zipperer A, Peschel A. 2017. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat. Rev. Microbiol. 15:675–87
    [Google Scholar]
  85. 85. 
    Lauber F, Deme JC, Lea SM, Berks BC. 2018. Type 9 secretion system structures reveal a new protein transport mechanism. Nature 564:77–82
    [Google Scholar]
  86. 86. 
    Laux C, Peschel A, Krismer B. 2019. Staphylococcus aureus colonization of the human nose and interaction with other microbiome members. Microbiol. Spectr. 7:2 https://doi.org/10.1128/microbiolspec.GPP3-0029-2018
    [Crossref] [Google Scholar]
  87. 87. 
    Lebeurre J, Dahyot S, Diene S, Paulay A, Aubourg M et al. 2019. Comparative genome analysis of Staphylococcus lugdunensis shows clonal complex-dependent diversity of the putative virulence factor, ess/type VII locus. Front. Microbiol. 10:2479
    [Google Scholar]
  88. 88. 
    Lopez MS, Tan IS, Yan D, Kang J, McCreary M et al. 2017. Host-derived fatty acids activate type VII secretion in Staphylococcus aureus. PNAS 114:11223–28
    [Google Scholar]
  89. 89. 
    McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL et al. 2007. A Mycobacterium ESX-1–secreted virulence factor with unique requirements for export. PLOS Pathog 3:e105
    [Google Scholar]
  90. 90. 
    Meier S, Goerke C, Wolz C, Seidl K, Homerova D et al. 2007. σB and the σB-dependent arlRS and yabJ-spoVG loci affect capsule formation in Staphylococcus aureus. Infect. Immun. 75:4562–71
    [Google Scholar]
  91. 91. 
    Mielich-Suss B, Wagner RM, Mietrach N, Hertlein T, Marincola G et al. 2017. Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus. PLOS Pathog 13:e1006728
    [Google Scholar]
  92. 92. 
    Mietrach N, Damian-Aparicio D, Mielich-Suss B, Lopez D, Geibel S. 2020. Substrate interaction with the EssC coupling protein of the type VIIb secretion system. J. Bacteriol. 202:e00646-19
    [Google Scholar]
  93. 93. 
    Naushad S, Naqvi SA, Nobrega D, Luby C, Kastelic JP et al. 2019. Comprehensive virulence gene profiling of bovine non-aureus staphylococci based on whole-genome sequencing data. mSystems 4:e00098-18
    [Google Scholar]
  94. 94. 
    Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–75
    [Google Scholar]
  95. 95. 
    Ohol YM, Goetz DH, Chan K, Shiloh MU, Craik CS, Cox JS. 2010. Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 7:210–20
    [Google Scholar]
  96. 96. 
    Ohr RJ, Anderson M, Shi M, Schneewind O, Missiakas D. 2017. EssD, a nuclease effector of the Staphylococcus aureus ESS pathway. J. Bacteriol. 199:e00528-16
    [Google Scholar]
  97. 97. 
    Otto M. 2020. Staphylococci in the human microbiome: the role of host and interbacterial interactions. Curr. Opin. Microbiol. 53:71–77
    [Google Scholar]
  98. 98. 
    Pallen MJ. 2002. The ESAT-6/WXG100 superfamily—and a new Gram-positive secretion system?. Trends Microbiol 10:209–12
    [Google Scholar]
  99. 99. 
    Palmer T, Finney AJ, Saha CK, Atkinson GC, Sargent F. 2021. A holin/peptidoglycan hydrolase-dependent protein secretion system. Mol. Microbiol. 115:3345–55
    [Google Scholar]
  100. 100. 
    Palmer T, Stansfeld PJ. 2020. Targeting of proteins to the twin-arginine translocation pathway. Mol. Microbiol. 113:861–71
    [Google Scholar]
  101. 101. 
    Phan TH, Ummels R, Bitter W, Houben EN. 2017. Identification of a substrate domain that determines system specificity in mycobacterial type VII secretion systems. Sci. Rep. 7:42704
    [Google Scholar]
  102. 102. 
    Pinheiro J, Reis O, Vieira A, Moura IM, Zanolli Moreno L et al. 2017. Listeria monocytogenes encodes a functional ESX-1 secretion system whose expression is detrimental to in vivo infection. Virulence 8:993–1004
    [Google Scholar]
  103. 103. 
    Poulsen C, Panjikar S, Holton SJ, Wilmanns M, Song YH. 2014. WXG100 protein superfamily consists of three subfamilies and exhibits an alpha-helical C-terminal conserved residue pattern. PLOS ONE 9:e89313
    [Google Scholar]
  104. 104. 
    Poweleit N, Czudnochowski N, Nakagawa R, Trinidad DD, Murphy KC et al. 2019. The structure of the endogenous ESX-3 secretion system. eLife 8:e52983
    [Google Scholar]
  105. 105. 
    Prajsnar TK, Hamilton R, Garcia-Lara J, McVicker G, Williams A et al. 2012. A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model. Cell Microbiol 14:1600–19
    [Google Scholar]
  106. 106. 
    Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C et al. 2003. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 9:533–39
    [Google Scholar]
  107. 107. 
    Ramachandran G. 2014. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence 5:213–18
    [Google Scholar]
  108. 108. 
    Ramsdell TL, Huppert LA, Sysoeva TA, Fortune SM, Burton BM. 2015. Linked domain architectures allow for specialization of function in the FtsK/SpoIIIE ATPases of ESX secretion systems. J. Mol. Biol. 427:1119–32
    [Google Scholar]
  109. 109. 
    Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G et al. 2005. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 24:2491–98
    [Google Scholar]
  110. 110. 
    Rosenberg OS, Dovala D, Li X, Connolly L, Bendebury A et al. 2015. substrates control multimerization and activation of the multi-domain ATPase motor of type VII secretion. Cell 161:501–12
    [Google Scholar]
  111. 111. 
    Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE et al. 2019. Human gut bacteria contain acquired interbacterial defence systems. Nature 575:224–28
    [Google Scholar]
  112. 112. 
    Ruhe ZC, Low DA, Hayes CS. 2020. Polymorphic toxins and their immunity proteins: diversity, evolution, and mechanisms of delivery. Annu. Rev. Microbiol. 74:497–520
    [Google Scholar]
  113. 113. 
    Saha CK, Pires RS, Brolin H, Delannoy M, Atkinson GC. 2020. FlaGs and webFlaGs: discovering novel biology through the analysis of gene neighbourhood conservation. Bioinformatics 2020:btaa788
    [Google Scholar]
  114. 114. 
    São-José C, Lhuillier S, Lurz R, Melki R, Lepault J et al. 2006. The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA. J. Biol. Chem. 281:11464–70
    [Google Scholar]
  115. 115. 
    Schulthess B, Bloes DA, Berger-Bachi B. 2012. Opposing roles of σB and σB-controlled SpoVG in the global regulation of esxA in Staphylococcus aureus. BMC Microbiol 12:17
    [Google Scholar]
  116. 116. 
    Seilie ES, Bubeck Wardenburg J 2017. Staphylococcus aureus pore-forming toxins: the interface of pathogen and host complexity. Semin. Cell Dev. Biol. 72:101–6
    [Google Scholar]
  117. 117. 
    Selva L, Viana D, Regev-Yochay G, Trzcinski K, Corpa JM et al. 2009. Killing niche competitors by remote-control bacteriophage induction. PNAS 106:1234–38
    [Google Scholar]
  118. 118. 
    Shopsin B, Drlica-Wagner A, Mathema B, Adhikari RP, Kreiswirth BN, Novick RP. 2008. Prevalence of agr dysfunction among colonizing Staphylococcus aureus strains. J. Infect. Dis. 198:1171–74
    [Google Scholar]
  119. 119. 
    Solomonson M, Huesgen PF, Wasney GA, Watanabe N, Gruninger RJ et al. 2013. Structure of the mycosin-1 protease from the mycobacterial ESX-1 protein type VII secretion system. J. Biol. Chem. 288:17782–90
    [Google Scholar]
  120. 120. 
    Solomonson M, Setiaputra D, Makepeace KA, Lameignere E, Petrotchenko EV et al. 2015. Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism. Structure 23:571–83
    [Google Scholar]
  121. 121. 
    Stanley SA, Raghavan S, Hwang WW, Cox JS 2003. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. PNAS 100:13001–6
    [Google Scholar]
  122. 122. 
    Strong M, Sawaya MR, Wang S, Phillips M, Cascio D, Eisenberg D 2006. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. PNAS 103:8060–65
    [Google Scholar]
  123. 123. 
    Sun Z, Zhou D, Zhang X, Li Q, Lin H et al. 2020. Determining the genetic characteristics of resistance and virulence of the “epidermidis cluster group” through pan-genome analysis. Front. Cell Infect. Microbiol. 10:274
    [Google Scholar]
  124. 124. 
    Sundaramoorthy R, Fyfe PK, Hunter WN. 2008. Structure of Staphylococcus aureus EsxA suggests a contribution to virulence by action as a transport chaperone and/or adaptor protein. J. Mol. Biol. 383:603–14
    [Google Scholar]
  125. 125. 
    Sysoeva TA, Zepeda-Rivera MA, Huppert LA, Burton BM 2014. Dimer recognition and secretion by the ESX secretion system in Bacillus subtilis. PNAS 111:7653–58
    [Google Scholar]
  126. 126. 
    Tam K, Torres VJ. 2019. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol. Spectr. 7:2 https://doi.org/10.1128/microbiolspec.GPP3-0039-2018
    [Crossref] [Google Scholar]
  127. 127. 
    Tanaka Y, Kuroda M, Yasutake Y, Yao M, Tsumoto K et al. 2007. Crystal structure analysis reveals a novel forkhead-associated domain of ESAT-6 secretion system C protein in Staphylococcus aureus. Proteins 69:659–64
    [Google Scholar]
  128. 128. 
    Tassinari M, Doan T, Bellinzoni M, Chabalier M, Ben-Assaya M et al. 2020. Central role and structure of the membrane pseudokinase YukC in the antibacterial Bacillus subtilis Type VIIb Secretion System. bioRxiv 2020.05.09.085852
  129. 129. 
    Tsirigotaki A, De Geyter J, Sostaric N, Economou A, Karamanou S. 2017. Protein export through the bacterial Sec pathway. Nat. Rev. Microbiol. 15:21–36
    [Google Scholar]
  130. 130. 
    Ulhuq FR, Gomes MC, Duggan GM, Guo M, Mendonca C et al. 2020. A membrane-depolarizing toxin substrate of the Staphylococcus aureus Type VII secretion system mediates intraspecies competition. PNAS 117:20836–47
    [Google Scholar]
  131. 131. 
    Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ. 2017. The enigmatic Esx proteins: looking beyond mycobacteria. Trends Microbiol 25:192–204
    [Google Scholar]
  132. 132. 
    van den Ent F, Lowe J. 2005. Crystal structure of the ubiquitin-like protein YukD from Bacillus subtilis. FEBS Lett 579:3837–41
    [Google Scholar]
  133. 133. 
    van Winden VJ, Ummels R, Piersma SR, Jimenez CR, Korotkov KV et al. 2016. Mycosins are required for the stabilization of the ESX-1 and ESX-5 type VII secretion membrane complexes. mBio 7:e01471-16
    [Google Scholar]
  134. 134. 
    Vassallo CN, Cao P, Conklin A, Finkelstein H, Hayes CS, Wall D 2017. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. eLife 6:e29397
    [Google Scholar]
  135. 135. 
    Vassallo CN, Wall D 2019. Self-identity barcodes encoded by six expansive polymorphic toxin families discriminate kin in myxobacteria. PNAS 116:24808–18
    [Google Scholar]
  136. 136. 
    Vaziri F, Brosch R. 2019. ESX/type VII secretion systems—an important way out for mycobacterial proteins. Protein Secretion in Bacteria M Sandkvist, E Cascales, P Christie 351–62 Washington, DC: ASM https://doi.org/10.1128/microbiolspec.PSIB-0029-2019
    [Crossref] [Google Scholar]
  137. 137. 
    Wagner JM, Evans TJ, Chen J, Zhu H, Houben EN et al. 2013. Understanding specificity of the mycosin proteases in ESX/type VII secretion by structural and functional analysis. J. Struct. Biol. 184:115–28
    [Google Scholar]
  138. 138. 
    Wang Q, Boshoff HIM, Harrison JR, Ray PC, Green SR et al. 2020. PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. Science 367:1147–51
    [Google Scholar]
  139. 139. 
    Wang S, Zhou K, Yang X, Zhang B, Zhao Y et al. 2020. Structural insights into substrate recognition by the type VII secretion system. Protein Cell 11:124–37
    [Google Scholar]
  140. 140. 
    Wang Y, Hu M, Liu Q, Qin J, Dai Y et al. 2016. Role of the ESAT-6 secretion system in virulence of the emerging community-associated Staphylococcus aureus lineage ST398. Sci. Rep. 6:25163
    [Google Scholar]
  141. 141. 
    Warne B, Harkins CP, Harris SR, Vatsiou A, Stanley-Wall N et al. 2016. The Ess/type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC Genom 17:222
    [Google Scholar]
  142. 142. 
    Watanabe S, Aiba Y, Tan XE, Li FY, Boonsiri T et al. 2018. Complete genome sequencing of three human clinical isolates of Staphylococcus caprae reveals virulence factors similar to those of S. epidermidis and S. capitis. BMC Genom 19:810
    [Google Scholar]
  143. 143. 
    Way SS, Wilson CB. 2005. The Mycobacterium tuberculosis ESAT-6 homologue in Listeria monocytogenes is dispensable for growth in vitro and in vivo. Infect. Immun. 73:6151–53
    [Google Scholar]
  144. 144. 
    Webb JS, Nikolakakis KC, Willett JL, Aoki SK, Hayes CS, Low DA. 2013. Delivery of CdiA nuclease toxins into target cells during contact-dependent growth inhibition. PLOS ONE 8:e57609
    [Google Scholar]
  145. 145. 
    Weiling H, Xiaowen Y, Chunmei L, Jianping X. 2013. Function and evolution of ubiquitous bacterial signaling adapter phosphopeptide recognition domain FHA. Cell Signal 25:660–65
    [Google Scholar]
  146. 146. 
    Whitney JC, Peterson SB, Kim J, Pazos M, Verster AJ et al. 2017. A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. eLife 6:e26938
    [Google Scholar]
  147. 147. 
    Willis AR, Moore C, Mazon-Moya M, Krokowski S, Lambert C et al. 2016. Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. Curr. Biol. 26:3343–51
    [Google Scholar]
  148. 148. 
    Windmuller N, Witten A, Block D, Bunk B, Sproer C et al. 2015. Transcriptional adaptations during long-term persistence of Staphylococcus aureus in the airways of a cystic fibrosis patient. Int. J. Med. Microbiol. 305:38–46
    [Google Scholar]
  149. 149. 
    Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. 2012. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct. 7:18
    [Google Scholar]
  150. 150. 
    Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D et al. 2016. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535:511–16
    [Google Scholar]
  151. 151. 
    Zoltner M, Fyfe PK, Palmer T, Hunter WN 2013. Characterization of Staphylococcus aureus EssB, an integral membrane component of the Type VII secretion system: atomic resolution crystal structure of the cytoplasmic segment. Biochem. J. 449:469–77
    [Google Scholar]
  152. 152. 
    Zoltner M, Ng WM, Money JJ, Fyfe PK, Kneuper H et al. 2016. EssC: Domain structures inform on the elusive translocation channel in the Type VII secretion system. Biochem. J. 473:1941–52
    [Google Scholar]
  153. 153. 
    Zoltner M, Norman DG, Fyfe PK, El Mkami H, Palmer T, Hunter WN 2013. The architecture of EssB, an integral membrane component of the type VII secretion system. Structure 21:595–603
    [Google Scholar]
/content/journals/10.1146/annurev-micro-012721-123600
Loading
/content/journals/10.1146/annurev-micro-012721-123600
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error