1932

Abstract

Ribonucleases (RNases) are essential for almost every aspect of RNA metabolism. However, despite their important metabolic roles, RNases can also be destructive enzymes. As a consequence, cells must carefully regulate the amount, the activity, and the localization of RNases to avoid the inappropriate degradation of essential RNA molecules. In addition, bacterial cells often must adjust RNase levels as environmental situations demand, also requiring careful regulation of these critical enzymes. As the need for strict control of RNases has become more evident, multiple mechanisms for this regulation have been identified and studied, and these are described in this review. The major conclusion that emerges is that no common regulatory mechanism applies to all RNases, or even to a family of RNases; rather, a wide variety of processes have evolved that act on these enzymes, and in some cases, multiple regulatory mechanisms can even act on a single RNase.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020121-011201
2021-10-08
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-020121-011201.html?itemId=/content/journals/10.1146/annurev-micro-020121-011201&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Anderson PE, Matsunaga J, Simons EL, Simons RW. 1996. Structure and regulation of the Salmonellatyphimuriumrnc-era-recO operon. Biochimie 78:1025–34
    [Google Scholar]
  2. 2. 
    Bardwell JC, Regnier P, Chen SM, Nakamura Y, Grunberg-Manago M, Court DL. 1989. Autoregulation of RNase III operon by mRNA processing. EMBO J 8:3401–7
    [Google Scholar]
  3. 3. 
    Basturea GN, Zundel MA, Deutscher MP. 2011. Degradation of ribosomal RNA during starvation: comparison to quality control during steady-state growth and a role for RNase PH. RNA 17:338–45
    [Google Scholar]
  4. 4. 
    Bayas CA, Wang J, Lee MK, Schrader JM, Shapiro L, Moerner WE 2018. Spatial organization and dynamics of RNase E and ribosomes in Caulobactercrescentus. PNAS 115:E3712–21
    [Google Scholar]
  5. 5. 
    Bechhofer DH, Deutscher MP. 2019. Bacterial ribonucleases and their roles in RNA metabolism. Crit. Rev. Biochem. Mol. Biol. 54:242–300
    [Google Scholar]
  6. 6. 
    Beran RK, Simons RW. 2001. Cold-temperature induction of Escherichia coli polynucleotide phosphorylase occurs by reversal of its autoregulation. Mol. Microbiol. 39:112–25
    [Google Scholar]
  7. 7. 
    Briani F, Carzaniga T, Deho G. 2016. Regulation and functions of bacterial PNPase. Wiley Interdiscip. Rev. RNA 7:241–58
    [Google Scholar]
  8. 8. 
    Cairrão F, Chora A, Zilhão R, Carpousis AJ, Arraiano CM. 2001. RNase II levels change according to the growth conditions: characterization of gmr, a new Escherichia coli gene involved in the modulation of RNase II. Mol. Microbiol. 39:1550–61
    [Google Scholar]
  9. 9. 
    Cairrão F, Cruz A, Mori H, Arraiano CM. 2003. Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol. Microbiol. 50:1349–60
    [Google Scholar]
  10. 10. 
    Campos M, Jacobs-Wagner C. 2013. Cellular organization of the transfer of genetic information. Curr. Opin. Microbiol. 16:171–76
    [Google Scholar]
  11. 11. 
    Cannistraro VJ, Kennell D. 1991. RNase I*, a form of RNase I, and mRNA degradation in Escherichia coli. J. Bacteriol. 173:4653–59
    [Google Scholar]
  12. 12. 
    Carzaniga T, Briani F, Zangrossi S, Merlino G, Marchi P, Deho G. 2009. Autogenous regulation of Escherichia coli polynucleotide phosphorylase expression revisited. J. Bacteriol. 191:1738–48
    [Google Scholar]
  13. 13. 
    Chen C, Deutscher MP. 2005. Elevation of RNase R in response to multiple stress conditions. J. Biol. Chem. 280:34393–96
    [Google Scholar]
  14. 14. 
    Chen H, Previero A, Deutscher MP. 2019. A novel mechanism of ribonuclease regulation: GcvB and Hfq stabilize the mRNA that encodes RNase BN/Z during exponential phase. J. Biol. Chem. 294:19997–20008
    [Google Scholar]
  15. 15. 
    Cheng ZF, Deutscher MP. 2002. Purification and characterization of the Escherichia coli exoribonuclease RNase R: comparison with RNase II. J. Biol. Chem. 277:21624–29
    [Google Scholar]
  16. 16. 
    Cheng ZF, Deutscher MP. 2005. An important role for RNase R in mRNA decay. Mol. Cell 17:313–18
    [Google Scholar]
  17. 17. 
    DeLoughery A, Dengler V, Chai Y, Losick R. 2016. Biofilm formation by Bacillussubtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR. Mol. Microbiol. 99:425–37
    [Google Scholar]
  18. 18. 
    DeLoughery A, Lalanne JB, Losick R, Li GW 2018. Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillussubtilis. PNAS 115:E5585–94
    [Google Scholar]
  19. 19. 
    Deutscher MP. 2003. Degradation of stable RNA in bacteria. J. Biol. Chem. 278:45041–44
    [Google Scholar]
  20. 20. 
    Deutscher MP. 2015. How bacterial cells keep ribonucleases under control. FEMS Microbiol. Rev. 39:350–61
    [Google Scholar]
  21. 21. 
    DiChiara JM, Liu B, Figaro S, Condon C, Bechhofer DH. 2016. Mapping of internal monophosphate 5′ ends of Bacillussubtilis messenger RNAs and ribosomal RNAs in wild-type and ribonuclease-mutant strains. Nucleic Acids Res 44:3373–89
    [Google Scholar]
  22. 22. 
    Diwa A, Bricker AL, Jain C, Belasco JG. 2000. An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression. Genes Dev 14:1249–60
    [Google Scholar]
  23. 23. 
    Dutta T, Deutscher MP. 2010. Mode of action of RNase BN/RNase Z on tRNA precursors: RNase BN does not remove the CCA sequence from tRNA. J. Biol. Chem. 285:22874–81
    [Google Scholar]
  24. 24. 
    Evans S, Dennis PP. 1985. Promoter activity and transcript mapping in the regulatory region for genes encoding ribosomal protein S15 and polynucleotide phosphorylase of Escherichia coli. Gene 40:15–22
    [Google Scholar]
  25. 25. 
    Fontaine F, Gasiorowski E, Gracia C, Ballouche M, Caillet J et al. 2016. The small RNA SraG participates in PNPase homeostasis. RNA 22:1560–73
    [Google Scholar]
  26. 26. 
    Gao J, Lee K, Zhao M, Qiu J, Zhan X et al. 2006. Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Mol. Microbiol. 61:394–406
    [Google Scholar]
  27. 27. 
    Garrey SM, Mackie GA. 2011. Roles of the 5′-phosphate sensor domain in RNase E. Mol. Microbiol. 80:1613–24
    [Google Scholar]
  28. 28. 
    Gone S, Alfonso-Prieto M, Paudyal S, Nicholson AW. 2016. Mechanism of ribonuclease III catalytic regulation by serine phosphorylation. Sci. Rep. 6:25448
    [Google Scholar]
  29. 29. 
    Górna MW, Pietras Z, Tsai YC, Callaghan AJ, Hernández H et al. 2010. The regulatory protein RraA modulates RNA-binding and helicase activities of the E. coli RNA degradosome. RNA 16:553–62
    [Google Scholar]
  30. 30. 
    Govindarajan S, Nevo-Dinur K, Amster-Choder O. 2012. Compartmentalization and spatiotemporal organization of macromolecules in bacteria. FEMS Microbiol. Rev. 36:1005–22
    [Google Scholar]
  31. 31. 
    Hadjeras L, Poljak L, Bouvier M, Morin-Ogier Q, Canal I et al. 2019. Detachment of the RNA degradosome from the inner membrane of Escherichia coli results in a global slowdown of mRNA degradation, proteolysis of RNase E and increased turnover of ribosome-free transcripts. Mol. Microbiol. 111:1715–31
    [Google Scholar]
  32. 32. 
    Hamouche L, Billaudeau C, Rocca A, Chastanet A, Ngo S et al. 2020. Dynamic membrane localization of RNase Y in Bacillussubtilis. mBio 11:e03337-19
    [Google Scholar]
  33. 33. 
    Jain C. 2020. RNase AM, a 5′ to 3′ exonuclease, matures the 5′ end of all three ribosomal RNAs in E. coli. Nucleic Acids Res 48:5616–23
    [Google Scholar]
  34. 34. 
    Jain C, Belasco JG. 1995. Autoregulation of RNase E synthesis in Escherichia coli. Nucleic Acids Symp. Ser. 1995 85–88
    [Google Scholar]
  35. 35. 
    Jain C, Deana A, Belasco JG 2002. Consequences of RNase E scarcity in Escherichia coli. Mol. Microbiol. 43:1053–64
    [Google Scholar]
  36. 36. 
    Jones PG, VanBogelen RA, Neidhardt FC. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169:2092–95
    [Google Scholar]
  37. 37. 
    Khemici V, Poljak L, Luisi BF, Carpousis AJ. 2008. The RNase E of Escherichia coli is a membrane-binding protein. Mol. Microbiol. 70:799–813
    [Google Scholar]
  38. 38. 
    Khemici V, Prados J, Linder P, Redder P. 2015. Decay-initiating endoribonucleolytic cleavage by RNase Y is kept under tight control via sequence preference and sub-cellular localisation. PLOS Genet 11:e1005577
    [Google Scholar]
  39. 39. 
    Kim HJ, Kwon AR, Lee BJ. 2018. A novel chlorination-induced ribonuclease YabJ from Staphylococcusaureus. Biosci. Rep. 38:BSR20180768
    [Google Scholar]
  40. 40. 
    Kim KS, Manasherob R, Cohen SN. 2008. YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity. Genes Dev 22:3497–508
    [Google Scholar]
  41. 41. 
    Lehnik-Habrink M, Newman J, Rothe FM, Solovyova AS, Rodrigues C et al. 2011. RNase Y in Bacillussubtilis: a natively disordered protein that is the functional equivalent of RNase E from Escherichia coli. J. Bacteriol. 193:5431–41
    [Google Scholar]
  42. 42. 
    Li Z, Reimers S, Pandit S, Deutscher MP. 2002. RNA quality control: degradation of defective transfer RNA. EMBO J 21:1132–38
    [Google Scholar]
  43. 43. 
    Liang W, Deutscher MP. 2010. A novel mechanism for ribonuclease regulation: transfer-messenger RNA (tmRNA) and its associated protein SmpB regulate the stability of RNase R. J. Biol. Chem. 285:29054–58
    [Google Scholar]
  44. 44. 
    Liang W, Deutscher MP. 2012. Post-translational modification of RNase R is regulated by stress-dependent reduction in the acetylating enzyme Pka (YfiQ). RNA 18:37–41
    [Google Scholar]
  45. 45. 
    Liang W, Deutscher MP. 2012. Transfer-messenger RNA-SmpB protein regulates ribonuclease R turnover by promoting binding of HslUV and Lon proteases. J. Biol. Chem. 287:33472–79
    [Google Scholar]
  46. 46. 
    Liang W, Deutscher MP. 2013. Ribosomes regulate the stability and action of the exoribonuclease RNase R. J. Biol. Chem. 288:34791–98
    [Google Scholar]
  47. 47. 
    Liang W, Malhotra A, Deutscher MP. 2011. Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R. Mol. Cell 44:160–66
    [Google Scholar]
  48. 48. 
    Lin PH, Lin-Chao S 2005. RhlB helicase rather than enolase is the beta-subunit of the Escherichia coli polynucleotide phosphorylase (PNPase)-exoribonucleolytic complex. PNAS 102:16590–95
    [Google Scholar]
  49. 49. 
    Lu F, Taghbalout A. 2013. Membrane association via an amino-terminal amphipathic helix is required for the cellular organization and function of RNase II. J. Biol. Chem. 288:7241–51
    [Google Scholar]
  50. 50. 
    Marcaida MJ, DePristo MA, Chandran V, Carpousis AJ, Luisi BF. 2006. The RNA degradosome: life in the fast lane of adaptive molecular evolution. Trends Biochem. Sci. 31:359–65
    [Google Scholar]
  51. 51. 
    Marchand I, Nicholson AW, Dreyfus M. 2001. Bacteriophage T7 protein kinase phosphorylates RNase E and stabilizes mRNAs synthesized by T7 RNA polymerase. Mol. Microbiol. 42:767–76
    [Google Scholar]
  52. 52. 
    Marchi P, Longhi V, Zangrossi S, Gaetani E, Briani F, Deho G. 2007. Autogenous regulation of Escherichia coli polynucleotide phosphorylase during cold acclimation by transcription termination and antitermination. Mol. Genet. Genom. 278:75–84
    [Google Scholar]
  53. 53. 
    Mardle CE, Goddard LR, Spelman BC, Atkins HS, Butt LE et al. 2020. Identification and analysis of novel small molecule inhibitors of RNase E: implications for antibacterial targeting and regulation of RNase E. Biochem. Biophys. Rep. 23:100773
    [Google Scholar]
  54. 54. 
    Matsunaga J, Dyer M, Simons EL, Simons RW. 1996. Expression and regulation of the rnc and pdxJ operons of Escherichia coli. Mol. Microbiol. 22:977–89
    [Google Scholar]
  55. 55. 
    Matsunaga J, Simons EL, Simons RW. 1996. RNase III autoregulation: structure and function of rncO, the posttranscriptional “operator. .” RNA 2:1228–40
    [Google Scholar]
  56. 56. 
    Mayer JE, Schweiger M. 1983. RNase III is positively regulated by T7 protein kinase. J. Biol. Chem. 258:5340–43
    [Google Scholar]
  57. 57. 
    Mechold U, Fang G, Ngo S, Ogryzko V, Danchin A. 2007. YtqI from Bacillussubtilis has both oligoribonuclease and pAp-phosphatase activity. Nucleic Acids Res 35:4552–61
    [Google Scholar]
  58. 58. 
    Mohanty BK, Kushner SR. 2002. Polyadenylation of Escherichia coli transcripts plays an integral role in regulating intracellular levels of polynucleotide phosphorylase and RNase E. Mol. Microbiol. 45:1315–24
    [Google Scholar]
  59. 59. 
    Murashko ON, Lin-Chao S 2017. Escherichia coli responds to environmental changes using enolasic degradosomes and stabilized DicF sRNA to alter cellular morphology. PNAS 114:E8025–34
    [Google Scholar]
  60. 60. 
    Neu HC, Heppel LA. 1964. The release of ribonuclease into the medium when Escherichia coli cells are converted to speroplasts. J. Biol. Chem. 239:3893–900
    [Google Scholar]
  61. 61. 
    Nikolic N, Bergmiller T, Vandervelde A, Albanese TG, Gelens L, Moll I 2018. Autoregulation of mazEF expression underlies growth heterogeneity in bacterial populations. Nucleic Acids Res 46:2918–31
    [Google Scholar]
  62. 62. 
    Niyogi SK, Datta AK. 1975. A novel oligoribonuclease of Escherichia coli. I. Isolation and properties. J. Biol. Chem. 250:7307–12
    [Google Scholar]
  63. 63. 
    Nurmohamed S, Vincent HA, Titman CM, Chandran V, Pears MR et al. 2011. Polynucleotide phos-phorylase activity may be modulated by metabolites in Escherichia coli. J. Biol. Chem. 286:14315–23
    [Google Scholar]
  64. 64. 
    Park H, Yakhnin H, Connolly M, Romeo T, Babitzke P. 2015. CsrA participates in a PNPase autoregulatory mechanism by selectively repressing translation of pnp transcripts that have been previously processed by RNase III and PNPase. J. Bacteriol. 197:3751–59
    [Google Scholar]
  65. 65. 
    Paudyal S, Alfonso-Prieto M, Carnevale V, Redhu SK, Klein ML, Nicholson AW. 2015. Combined computational and experimental analysis of a complex of ribonuclease III and the regulatory macrodomain protein, YmdB. Proteins 83:459–72
    [Google Scholar]
  66. 66. 
    Qi D, Alawneh AM, Yonesaki T, Otsuka Y. 2015. Rapid degradation of host mRNAs by stimulation of RNase E activity by Srd of bacteriophage T4. Genetics 201:977–87
    [Google Scholar]
  67. 67. 
    Redko Y, Aubert S, Stachowicz A, Lenormand P, Namane A et al. 2013. A minimal bacterial RNase J-based degradosome is associated with translating ribosomes. Nucleic Acids Res 41:288–301
    [Google Scholar]
  68. 68. 
    Robertson HD, Webster RE, Zinder ND. 1968. Purification and properties of ribonuclease III from Escherichia coli. J. Biol. Chem. 243:82–91
    [Google Scholar]
  69. 69. 
    Schuck A, Diwa A, Belasco JG. 2009. RNase E autoregulates its synthesis in Escherichia coli by binding directly to a stem-loop in the rne 5′ untranslated region. Mol. Microbiol. 72:470–78
    [Google Scholar]
  70. 70. 
    Shahbabian K, Jamalli A, Zig L, Putzer H. 2009. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillussubtilis. EMBO J 28:3523–33
    [Google Scholar]
  71. 71. 
    Singh D, Chang SJ, Lin PH, Averina OV, Kaberdin VR, Lin-Chao S 2009. Regulation of ribonuclease E activity by the L4 ribosomal protein of Escherichia coli. PNAS 106:864–69
    [Google Scholar]
  72. 72. 
    Song L, Wang G, Malhotra A, Deutscher MP, Liang W. 2016. Reversible acetylation on Lys501 regulates the activity of RNase II. Nucleic Acids Res 44:1979–88
    [Google Scholar]
  73. 73. 
    Sousa S, Marchand I, Dreyfus M. 2001. Autoregulation allows Escherichia coli RNase E to adjust continuously its synthesis to that of its substrates. Mol. Microbiol. 42:867–78
    [Google Scholar]
  74. 74. 
    Spahr PF, Hollingworth BR. 1961. Purification and mechanism of action of ribonuclease from Escherichia coli ribosomes. J. Biol. Chem. 236:823–31
    [Google Scholar]
  75. 75. 
    Spickler C, Mackie GA. 2000. Action of RNase II and polynucleotide phosphorylase against RNAs containing stem-loops of defined structure. J. Bacteriol. 182:2422–27
    [Google Scholar]
  76. 76. 
    Stone CM, Butt LE, Bufton JC, Lourenco DC, Gowers DM et al. 2017. Inhibition of homologous phosphorolytic ribonucleases by citrate may represent an evolutionarily conserved communicative link between RNA degradation and central metabolism. Nucleic Acids Res 45:4655–66
    [Google Scholar]
  77. 77. 
    Strahl H, Turlan C, Khalid S, Bond PJ, Kebalo JM et al. 2015. Membrane recognition and dynamics of the RNA degradosome. PLOS Genet 11:e1004961
    [Google Scholar]
  78. 78. 
    Sulthana S, Basturea GN, Deutscher MP. 2016. Elucidation of pathways of ribosomal RNA degradation: an essential role for RNase E. RNA 22:1163–71
    [Google Scholar]
  79. 79. 
    Sulthana S, Quesada E, Deutscher MP. 2017. RNase II regulates RNase PH and is essential for cell survival during starvation and stationary phase. RNA 23:1456–64
    [Google Scholar]
  80. 80. 
    Taghbalout A, Rothfield L 2007. RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton. PNAS 104:1667–72
    [Google Scholar]
  81. 81. 
    Taghbalout A, Rothfield L. 2008. RNaseE and RNA helicase B play central roles in the cytoskeletal organization of the RNA degradosome. J. Biol. Chem. 283:13850–55
    [Google Scholar]
  82. 82. 
    Trinquier A, Durand S, Braun F, Condon C. 2020. Regulation of RNA processing and degradation in bacteria. Biochim. Biophys. Acta Gene Regul. Mech. 1863:194505
    [Google Scholar]
  83. 83. 
    Tsai YC, Du D, Domínguez-Malfavón L, Dimastrogiovanni D, Cross J et al. 2012. Recognition of the 70S ribosome and polysome by the RNA degradosome in Escherichia coli. Nucleic Acids Res 40:10417–31
    [Google Scholar]
  84. 84. 
    Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA. 2011. Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J. Mol. Biol. 407:633–39
    [Google Scholar]
  85. 85. 
    Van den Bossche A, Hardwick SW, Ceyssens PJ, Hendrix H, Voet M et al. 2016. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome. eLife 5:e16413
    [Google Scholar]
  86. 86. 
    Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R. 2006. Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol. Microbiol. 62:1014–34
    [Google Scholar]
  87. 87. 
    Wong AG, McBurney KL, Thompson KJ, Stickney LM, Mackie GA. 2013. S1 and KH domains of polynucleotide phosphorylase determine the efficiency of RNA binding and autoregulation. J. Bacteriol. 195:2021–31
    [Google Scholar]
  88. 88. 
    Xu W, Huang J, Cohen SN. 2008. Autoregulation of AbsB (RNase III) expression in Streptomycescoelicolor by endoribonucleolytic cleavage of absB operon transcripts. J. Bacteriol. 190:5526–30
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020121-011201
Loading
/content/journals/10.1146/annurev-micro-020121-011201
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error