1932

Abstract

Trypanosomes have complex life cycles within which there are both proliferative and differentiation cell divisions. The coordination of the cell cycle to achieve these different divisions is critical for the parasite to infect both host and vector. From studying the regulation of the proliferative cell cycle of the procyclic life cycle stage, three subcycles emerge that control the duplication and segregation of () the nucleus, () the kinetoplast, and () a set of cytoskeletal structures. We discuss how the clear dependency relationships within these subcycles, and the potential for cross talk between them, are likely required for overall cell cycle coordination. Finally, we look at the implications this interdependence has for proliferative and differentiation divisions through the life cycle and in related parasitic trypanosomatid species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115617
2019-09-08
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-115617.html?itemId=/content/journals/10.1146/annurev-micro-020518-115617&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Absalon S, Blisnick T, Kohl L, Toutirais G, Doré G et al. 2008. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol. Biol. Cell 19:3929–44
    [Google Scholar]
  2. 2. 
    Adhiambo C, Forney JD, Asai DJ, LeBowitz JH 2005. The two cytoplasmic dynein-2 isoforms in Leishmania mexicana perform separate functions. Mol. Biochem. Parasitol. 143:2216–25
    [Google Scholar]
  3. 3. 
    Affolter M, Hemphill A, Roditi I, Müller N, Seebeck T 1994. The repetitive microtubule-associated proteins MARP-1 and MARP-2 of Trypanosoma brucei. J. Struct. Biol 112:3241–51
    [Google Scholar]
  4. 4. 
    Akiyoshi B, Gull K. 2013. Evolutionary cell biology of chromosome segregation: insights from trypanosomes. Open Biol 3:5130023
    [Google Scholar]
  5. 5. 
    Akiyoshi B, Gull K. 2014. Discovery of unconventional kinetochores in kinetoplastids. Cell 156:61247–58
    [Google Scholar]
  6. 6. 
    Albisetti A, Florimond C, Landrein N, Vidilaseris K, Eggenspieler M et al. 2017. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei. PLOS Pathog 13:11e1006710
    [Google Scholar]
  7. 7. 
    Alcantara CL, Vidal JC, Souza W, Cunha-e-Silva NL 2017. The cytostome-cytopharynx complex of Trypanosoma cruzi epimastigotes disassembles during cell division. J. Cell Sci. 130:1164–76
    [Google Scholar]
  8. 8. 
    Ambit A, Woods KL, Cull B, Coombs GH, Mottram JC 2011. Morphological events during the cell cycle of Leishmania major. Eukaryot. Cell 10:111429–38
    [Google Scholar]
  9. 9. 
    Archer SK, Inchaustegui D, Queiroz R, Clayton C 2011. The cell cycle regulated transcriptome of Trypanosoma brucei. PLOS ONE 6:3e18425
    [Google Scholar]
  10. 10. 
    Baines A, Gull K. 2008. WCB is a C2 domain protein defining the plasma membrane—sub-pellicular microtubule corset of kinetoplastid parasites. Protist 159:1115–25
    [Google Scholar]
  11. 11. 
    Barton R, Gull K. 1988. Variation in cytoplasmic microtubule organization and spindle length between the two forms of the dimorphic fungus Candida albicans. J. Cell Sci 91:Part 2211–20
    [Google Scholar]
  12. 12. 
    Benz C, Clucas C, Mottram JC, Hammarton TC 2012. Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin. PLOS ONE 7:1e30367
    [Google Scholar]
  13. 13. 
    Benz C, Dondelinger F, McKean PG, Urbaniak MD 2017. Cell cycle synchronisation of Trypanosoma brucei by centrifugal counter-flow elutriation reveals the timing of nuclear and kinetoplast DNA replication. Sci. Rep. 7:117599
    [Google Scholar]
  14. 14. 
    Bertiaux E, Morga B, Blisnick T, Rotureau B, Bastin P 2018. A grow-and-lock model for the control of flagellum length in trypanosomes. Curr. Biol. 28:3802–14.13
    [Google Scholar]
  15. 15. 
    Bessat M, Ersfeld K. 2009. Functional characterization of cohesin SMC3 and separase and their roles in the segregation of large and minichromosomes in Trypanosoma brucei.Mol. Microbiol 71:61371–85
    [Google Scholar]
  16. 16. 
    Bonhivers M, Nowacki S, Landrein N, Robinson DR 2008. Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated. PLOS Biol 6:5e105
    [Google Scholar]
  17. 17. 
    Borges AR, Toledo DA, Fermino BR, Oliveira JC, Silber AM et al. 2019. In vitro cellular division of Trypanosoma abeli reveals two pathways for organelle replication. J. Eukaryot. Microbiol. 66:3385–92
    [Google Scholar]
  18. 18. 
    Boynak NY, Rojas F, D'Alessio C, Vilchez Larrea SC, Rodriguez V et al. 2013. Identification of a wee1-like kinase gene essential for procyclic Trypanosoma brucei survival. PLOS ONE 8:11e79364
    [Google Scholar]
  19. 19. 
    Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR et al. 2006. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:7081224–27
    [Google Scholar]
  20. 20. 
    Calderano SG, Drosopoulos WC, Quaresma MM, Marques CA, Kosiyatrakul S et al. 2015. Single molecule analysis of Trypanosoma brucei DNA replication dynamics. Nucleic Acids Res 43:52655–65
    [Google Scholar]
  21. 21. 
    Chanez A-L, Hehl AB, Engstler M, Schneider A 2006. Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. J. Cell Sci. 119:142968–74
    [Google Scholar]
  22. 22. 
    Concepción-Acevedo J, Miller JC, Boucher MJ, Klingbeil MM 2018. Cell cycle localization dynamics of mitochondrial DNA polymerase IC in African trypanosomes. Mol. Biol. Cell 29:212540–52
    [Google Scholar]
  23. 23. 
    Crozier TWM, Tinti M, Wheeler RJ, Ly T, Ferguson MAJ, Lamond AI 2018. Proteomic analysis of the cell cycle of procylic form Trypanosoma brucei. Mol. Cell Proteom 17:61184–95
    [Google Scholar]
  24. 24. 
    da Silva MS, Muñoz PAM, Armelin HA, Elias MC 2017. Differences in the Detection of BrdU/EdU incorporation assays alter the calculation for G1, S, and G2 phases of the cell cycle in trypanosomatids. J. Eukaryot. Microbiol. 64:6756–70
    [Google Scholar]
  25. 25. 
    da Silva MS, Pavani RS, Damasceno JD, Marques CA, McCulloch R et al. 2017. Nuclear DNA replication in trypanosomatids: There are no easy methods for solving difficult problems. Trends Parasitol 33:11858–74
    [Google Scholar]
  26. 26. 
    Dang HQ, Li Z. 2011. The Cdc45⋅Mcm2–7⋅GINS protein complex in trypanosomes regulates DNA replication and interacts with two Orc1-like proteins in the origin recognition complex. J. Biol. Chem. 286:3732424–35
    [Google Scholar]
  27. 27. 
    Dang HQ, Zhou Q, Rowlett VW, Hu H, Lee KJ et al. 2017. Proximity interactions among basal body components in Trypanosoma brucei identify novel regulators of basal body biogenesis and inheritance. mBio 8:1e02120–16
    [Google Scholar]
  28. 28. 
    D'Archivio S, Wickstead B. 2017. Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J. Cell Biol. 216:2379–91
    [Google Scholar]
  29. 29. 
    Davidge JA, Chambers E, Dickinson HA, Towers K, Ginger ML et al. 2006. Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. J. Cell Sci. 119:Part 193935–43
    [Google Scholar]
  30. 30. 
    Dean S, Gould MK, Dewar CE, Schnaufer AC 2013. Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. PNAS 110:3614741–46
    [Google Scholar]
  31. 31. 
    Dean S, Moreira-Leite F, Varga V, Gull K 2016. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. PNAS 113:35E5135–43
    [Google Scholar]
  32. 32. 
    DiMaio J, Ruthel G, Cannon J, Malfara M, Povelones ML 2018. The single mitochondrion of the kinetoplastid parasite Crithidia fasciculata is a dynamic network. bioRxiv 388660
  33. 33. 
    Duncan SM, Myburgh E, Philipon C, Brown E, Meissner M et al. 2016. Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation. Mol. Microbiol. 100:6931–44
    [Google Scholar]
  34. 34. 
    Echeverry MC, Bot C, Obado SO, Taylor MC, Kelly JM 2012. Centromere-associated repeat arrays on Trypanosoma brucei chromosomes are much more extensive than predicted. BMC Genom 13:29
    [Google Scholar]
  35. 35. 
    Edwards BFL, Wheeler RJ, Barker AR, Moreira-Leite FF, Gull K, Sunter JD 2018. Direction of flagellum beat propagation is controlled by proximal/distal outer dynein arm asymmetry. PNAS 115:31E7341–50
    [Google Scholar]
  36. 36. 
    Elias MC, da Cunha JPC, de Faria FP, Mortara RA, Freymüller E, Schenkman S 2007. Morphological events during the Trypanosoma cruzi cell cycle. Protist 158:2147–57
    [Google Scholar]
  37. 37. 
    Esson HJ, Morriswood B, Yavuz S, Vidilaseris K, Dong G, Warren G 2012. Morphology of the trypanosome bilobe, a novel cytoskeletal structure. Eukaryot. Cell 11:6761–72
    [Google Scholar]
  38. 38. 
    Farr H, Gull K. 2009. Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes. Cell Motil. Cytoskelet. 66:124–35
    [Google Scholar]
  39. 39. 
    Farr H, Gull K. 2012. Cytokinesis in trypanosomes. Cytoskeleton 69:11931–41
    [Google Scholar]
  40. 40. 
    Fort C, Bonnefoy S, Kohl L, Bastin P 2016. Intraflagellar transport is required for the maintenance of the trypanosome flagellum composition but not its length. J. Cell Sci. 129:153026–41
    [Google Scholar]
  41. 41. 
    Gheiratmand L, Brasseur A, Zhou Q, He CY 2013. Biochemical characterization of the bi-lobe reveals a continuous structural network linking the bi-lobe to other single-copied organelles in Trypanosoma brucei. J. Biol. Chem 288:53489–99
    [Google Scholar]
  42. 42. 
    Glover L, Hutchinson S, Alsford S, Horn D 2016. VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes. PNAS 113:267225–30
    [Google Scholar]
  43. 43. 
    Gluenz E, Povelones ML, Englund PT, Gull K 2011. The kinetoplast duplication cycle in Trypanosoma brucei is orchestrated by cytoskeleton-mediated cell morphogenesis. Mol. Cell. Biol. 31:51012–21
    [Google Scholar]
  44. 44. 
    Gluenz E, Sharma R, Carrington M, Gull K 2008. Functional characterization of cohesin subunit SCC1 in Trypanosoma brucei and dissection of mutant phenotypes in two life cycle stages. Mol. Microbiol. 69:3666–80
    [Google Scholar]
  45. 45. 
    Halliday C, Billington K, Wang Z, Dean S, Sunter JD, Wheeler RJ 2019. Cellular landmarks of Trypanosoma brucei and Leishmania mexicana. Mol. Biochem. Parasitol 230:24–36
    [Google Scholar]
  46. 46. 
    Hammarton TC, Clark J, Douglas F, Boshart M, Mottram JC 2003. Stage-specific differences in cell cycle control in Trypanosoma brucei revealed by RNA interference of a mitotic cyclin. J. Biol. Chem. 278:2522877–86
    [Google Scholar]
  47. 47. 
    Hammarton TC, Engstler M, Mottram JC 2004. The Trypanosoma brucei cyclin, CYC2, is required for cell cycle progression through G1 phase and for maintenance of procyclic form cell morphology. J. Biol. Chem. 279:2324757–64
    [Google Scholar]
  48. 48. 
    Hammarton TC, Kramer S, Tetley L, Boshart M, Mottram JC 2007. Trypanosoma brucei Polo-like kinase is essential for basal body duplication, kDNA segregation and cytokinesis. Mol. Microbiol. 65:51229–48
    [Google Scholar]
  49. 49. 
    Hammarton TC, Lillico SG, Welburn SC, Mottram JC 2005. Trypanosoma brucei MOB1 is required for accurate and efficient cytokinesis but not for exit from mitosis. Mol. Microbiol. 56:1104–16
    [Google Scholar]
  50. 50. 
    Hammarton TC, Monnerat S, Mottram JC 2007. Cytokinesis in trypanosomatids. Curr. Opin. Microbiol. 10:6520–27
    [Google Scholar]
  51. 51. 
    Han X, Li Z. 2014. Comparative analysis of chromosome segregation in human, yeasts and trypanosome. Front. Biol. 9:6472–80
    [Google Scholar]
  52. 52. 
    Harashima H, Dissmeyer N, Schnittger A 2013. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 23:7345–56
    [Google Scholar]
  53. 53. 
    Hayashi H, Akiyoshi B. 2018. Degradation of cyclin B is critical for nuclear division in Trypanosoma brucei. Biol. Open 7:3bio031609
    [Google Scholar]
  54. 54. 
    Hayes P, Varga V, Olego-Fernandez S, Sunter J, Ginger ML, Gull K 2014. Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology. J. Cell Biol. 206:3377–84
    [Google Scholar]
  55. 55. 
    He CY, Ho HH, Malsam J, Chalouni C, West CM et al. 2004. Golgi duplication in Trypanosoma brucei. J. Cell Biol 165:3313–21
    [Google Scholar]
  56. 56. 
    He CY, Pypaert M, Warren G 2005. Golgi duplication in Trypanosoma brucei requires Centrin2. Science 310:57511196–98
    [Google Scholar]
  57. 57. 
    Hilton NA, Sladewski TE, Perry JA, Pataki Z, Sinclair-Davis AN et al. 2018. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis. Mol. Microbiol. 109:3306–26
    [Google Scholar]
  58. 58. 
    Hirano T. 2012. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev 26:151659–78
    [Google Scholar]
  59. 59. 
    Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K 2010. Reconstructing the evolutionary history of the centriole from protein components. J. Cell Sci. 123:Part 91407–13
    [Google Scholar]
  60. 60. 
    Hoffmann A, Käser S, Jakob M, Amodeo S, Peitsch C et al. 2018. Molecular model of the mitochondrial genome segregation machinery in Trypanosoma brucei. PNAS 115:8E1809–18
    [Google Scholar]
  61. 61. 
    Holden JM, Koreny L, Obado S, Ratushny AV, Chen W-M et al. 2014. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol. Biol. Cell 25:91421–36
    [Google Scholar]
  62. 62. 
    Hu H, Liu Y, Zhou Q, Siegel S, Li Z 2015. The centriole cartwheel protein SAS-6 in Trypanosoma brucei is required for probasal body biogenesis and flagellum assembly. Eukaryot. Cell 14:9898–907
    [Google Scholar]
  63. 63. 
    Hu H, Zhou Q, Han X, Li Z 2017. CRL4WDR1 controls polo-like kinase protein abundance to promote bilobe duplication, basal body segregation and flagellum attachment in Trypanosoma brucei. PLOS Pathog 13:1e1006146
    [Google Scholar]
  64. 64. 
    Hu H, Zhou Q, Li Z 2015. A novel basal body protein that is a Polo-like kinase substrate is required for basal body segregation and flagellum adhesion in Trypanosoma brucei. J. Biol. Chem 290:4125012–22
    [Google Scholar]
  65. 65. 
    Hu L, Hu H, Li Z 2012. A kinetoplastid-specific kinesin is required for cytokinesis and for maintenance of cell morphology in Trypanosoma brucei. Mol. Microbiol 83:3565–78
    [Google Scholar]
  66. 66. 
    Hughes L, Borrett S, Towers K, Starborg T, Vaughan S 2017. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J. Cell Sci. 130:3637–47
    [Google Scholar]
  67. 67. 
    Hughes L, Towers K, Starborg T, Gull K, Vaughan S 2013. A cell-body groove housing the new flagellum tip suggests an adaptation of cellular morphogenesis for parasitism in the bloodstream form of Trypanosoma brucei. J. Cell Sci 126:Part 245748–57
    [Google Scholar]
  68. 68. 
    Ikeda KN, de Graffenried CL 2012. Polo-like kinase is necessary for flagellum inheritance in Trypanosoma brucei. J. Cell Sci 125:Part 133173–84
    [Google Scholar]
  69. 69. 
    Jakob M, Hoffmann A, Amodeo S, Peitsch C, Zuber B, Ochsenreiter T 2016. Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms. Sci. Rep. 6:36565
    [Google Scholar]
  70. 70. 
    Jensen RE, Englund PT. 2012. Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 66:473–91
    [Google Scholar]
  71. 71. 
    Johnson A, Skotheim JM. 2013. Start and the restriction point. Curr. Opin. Cell Biol. 25:6717–23
    [Google Scholar]
  72. 72. 
    Knoblach B, Rachubinski RA. 2015. Sharing the cell's bounty—organelle inheritance in yeast. J. Cell Sci. 128:4621–30
    [Google Scholar]
  73. 73. 
    Kohl L, Robinson D, Bastin P 2003. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO J 22:205336–46
    [Google Scholar]
  74. 74. 
    Kumar P, Wang CC. 2006. Dissociation of cytokinesis initiation from mitotic control in a eukaryote. Eukaryot. Cell 5:192–102
    [Google Scholar]
  75. 75. 
    Kurasawa Y, Hu H, Zhou Q, Li Z 2018. The trypanosome-specific protein CIF3 cooperates with the CIF1 protein to promote cytokinesis in Trypanosoma brucei. J. Biol. Chem 293:2610275–86
    [Google Scholar]
  76. 76. 
    Kurup SP, Tarleton RL. 2014. The Trypanosoma cruzi flagellum is discarded via asymmetric cell division following invasion and provides early targets for protective CD8+ T cells. Cell Host Microbe 16:4439–49
    [Google Scholar]
  77. 77. 
    Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK et al. 2009. Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J. Cell Sci. 122:81081–90
    [Google Scholar]
  78. 78. 
    Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK et al. 2010. Basal body movements orchestrate membrane organelle division and cell morphogenesis in Trypanosoma brucei. J. Cell Sci 123:Pt 172884–91
    [Google Scholar]
  79. 79. 
    LaCount DJ, Barrett B, Donelson JE 2002. Trypanosoma brucei FLA1 is required for flagellum attachment and cytokinesis. J. Biol. Chem. 277:2017580–88
    [Google Scholar]
  80. 80. 
    Lai D-H, Hashimi H, Lun Z-R, Ayala FJ, Lukeš J 2008. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. PNAS 105:61999–2004
    [Google Scholar]
  81. 81. 
    Li Z. 2012. Regulation of the cell division cycle in Trypanosoma brucei. Eukaryot. Cell 11:101180–90
    [Google Scholar]
  82. 82. 
    Li Z, Lee JH, Chu F, Burlingame AL, Günzl A, Wang CC 2008. Identification of a novel chromosomal passenger complex and its unique localization during cytokinesis in Trypanosoma brucei. PLOS ONE 3:6e2354
    [Google Scholar]
  83. 83. 
    Li Z, Umeyama T, Wang CC 2008. The chromosomal passenger complex and a mitotic kinesin interact with the Tousled-like kinase in trypanosomes to regulate mitosis and cytokinesis. PLOS ONE 3:11e3814
    [Google Scholar]
  84. 84. 
    Li Z, Wang CC. 2003. A PHO80-like cyclin and a B-type cyclin control the cell cycle of the procyclic form of Trypanosoma brucei. J. Biol. Chem 278:2320652–58
    [Google Scholar]
  85. 85. 
    Liu Y, Hu H, Li Z 2013. The cooperative roles of PHO80-like cyclins in regulating the G1/S transition and posterior cytoskeletal morphogenesis in Trypanosoma brucei. Mol. Microbiol 90:1130–46
    [Google Scholar]
  86. 86. 
    Llauró A, Hayashi H, Bailey ME, Wilson A, Ludzia P et al. 2018. The kinetoplastid kinetochore protein KKT4 is an unconventional microtubule tip-coupling protein. J. Cell Biol. 217:113886–900
    [Google Scholar]
  87. 87. 
    Lozano-Núñez A, Ikeda KN, Sauer T, de Graffenried CL 2013. An analogue-sensitive approach identifies basal body rotation and flagellum attachment zone elongation as key functions of PLK in Trypanosoma brucei. Mol. Biol. Cell 24:91321–33
    [Google Scholar]
  88. 88. 
    Ma J, Benz C, Grimaldi R, Stockdale C, Wyatt P et al. 2010. Nuclear DBF-2-related kinases are essential regulators of cytokinesis in bloodstream stage Trypanosoma brucei. J. Biol. Chem 285:2015356–68
    [Google Scholar]
  89. 89. 
    Marques CA, McCulloch R. 2018. Conservation and variation in strategies for DNA replication of kinetoplastid nuclear genomes. Curr. Genom. 19:298–109
    [Google Scholar]
  90. 90. 
    Marques CA, Tiengwe C, Lemgruber L, Damasceno JD, Scott A et al. 2016. Diverged composition and regulation of the Trypanosoma brucei origin recognition complex that mediates DNA replication initiation. Nucleic Acids Res 44:104763–84
    [Google Scholar]
  91. 91. 
    McAllaster MR, Ikeda KN, Lozano-Núñez A, Anrather D, Unterwurzacher V et al. 2015. Proteomic identification of novel cytoskeletal proteins associated with TbPLK, an essential regulator of cell morphogenesis in Trypanosoma brucei. Mol. Biol. Cell 26:173013–29
    [Google Scholar]
  92. 92. 
    Mendoza M, Norden C, Durrer K, Rauter H, Uhlmann F, Barral Y 2009. A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat. Cell Biol. 11:4477–83
    [Google Scholar]
  93. 93. 
    Milman N, Motyka SA, Englund PT, Robinson D, Shlomai J 2007. Mitochondrial origin-binding protein UMSBP mediates DNA replication and segregation in trypanosomes. PNAS 104:4919250–55
    [Google Scholar]
  94. 94. 
    Mishra P, Chan DC. 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15:10634–46
    [Google Scholar]
  95. 95. 
    Morgan GW, Denny PW, Vaughan S, Goulding D, Jeffries TR et al. 2005. An evolutionarily conserved coiled-coil protein implicated in polycystic kidney disease is involved in basal body duplication and flagellar biogenesis in Trypanosoma brucei. Mol. Cell. Biol 25:93774–83
    [Google Scholar]
  96. 96. 
    Morriswood B. 2015. Form, fabric, and function of a flagellum-associated cytoskeletal structure. Cells 4:4726–47
    [Google Scholar]
  97. 97. 
    Nerusheva OO, Akiyoshi B. 2016. Divergent polo box domains underpin the unique kinetoplastid kinetochore. Open Biol 6:3150206
    [Google Scholar]
  98. 98. 
    Ogbadoyi E, Ersfeld K, Robinson D, Sherwin T, Gull K 2000. Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108:8501–13
    [Google Scholar]
  99. 99. 
    Ogbadoyi EO, Robinson DR, Gull K 2003. A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol. Biol. Cell 14:51769–79
    [Google Scholar]
  100. 100. 
    Olego-Fernandez S, Vaughan S, Shaw MK, Gull K, Ginger ML 2009. Cell morphogenesis of Trypanosoma brucei requires the paralogous, differentially expressed calpain-related proteins CAP5.5 and CAP5.5V. Protist 160:4576–90
    [Google Scholar]
  101. 101. 
    Ooi C-P, Schuster S, Cren-Travaille C, Bertiaux E, Cosson A et al. 2016. The cyclical development of Trypanosoma vivax in the tsetse fly involves an asymmetric division. Front. Cell. Infect. Microbiol. 6:115
    [Google Scholar]
  102. 102. 
    Pasternack DA, Sharma AI, Olson CL, Epting CL, Engman DM 2015. Sphingosine kinase regulates microtubule dynamics and organelle positioning necessary for proper G1/S cell cycle transition in Trypanosoma brucei. mBio 6:5e01291–15
    [Google Scholar]
  103. 103. 
    Peacock L, Bailey M, Carrington M, Gibson W 2014. Meiosis and haploid gametes in the pathogen Trypanosoma brucei. Curr. Biol 24:2181–86
    [Google Scholar]
  104. 104. 
    Peacock L, Kay C, Bailey M, Gibson W 2018. Shape-shifting trypanosomes: Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus. PLOS Pathog 14:5e1007043
    [Google Scholar]
  105. 105. 
    Peña-Diaz P, Vancová M, Resl C, Field MC, Lukeš J 2017. A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei. PLOS Pathog 13:4e1006310
    [Google Scholar]
  106. 106. 
    Ploubidou A, Robinson DR, Docherty RC, Ogbadoyi EO, Gull K 1999. Evidence for novel cell cycle checkpoints in trypanosomes: kinetoplast segregation and cytokinesis in the absence of mitosis. J. Cell Sci. 112:Part 244641–50
    [Google Scholar]
  107. 107. 
    Portman N, Gull K. 2014. Identification of paralogous life-cycle stage specific cytoskeletal proteins in the parasite Trypanosoma brucei. PLOS ONE 9:9e106777
    [Google Scholar]
  108. 108. 
    Povelones ML. 2014. Beyond replication: division and segregation of mitochondrial DNA in kinetoplastids. Mol. Biochem. Parasitol. 196:153–60
    [Google Scholar]
  109. 109. 
    Pradel LC, Bonhivers M, Landrein N, Robinson DR 2006. NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei. J. Cell Sci 119:Part 91852–63
    [Google Scholar]
  110. 110. 
    Ralston KS, Lerner AG, Diener DR, Hill KL 2006. Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot. Cell 5:4696–711
    [Google Scholar]
  111. 111. 
    Robinson DR, Sherwin T, Ploubidou A, Byard EH, Gull K 1995. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J. Cell Biol. 128:61163–72
    [Google Scholar]
  112. 112. 
    Rojas F, Silvester E, Young J, Milne R, Tettey M et al. 2019. Oligopeptide signaling through TbGPR89 drives trypanosome quorum sensing. Cell 176:306–17.e16
    [Google Scholar]
  113. 113. 
    Rotureau B, Subota I, Buisson J, Bastin P 2012. A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly. Development 139:101842–50
    [Google Scholar]
  114. 114. 
    Ruijtenberg S, van den Heuvel S 2016. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 15:2196–212
    [Google Scholar]
  115. 115. 
    Santoro A, Vlachou T, Carminati M, Pelicci PG, Mapelli M 2016. Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Rep 17:121700–20
    [Google Scholar]
  116. 116. 
    Savage AF, Kolev NG, Franklin JB, Vigneron A, Aksoy S, Tschudi C 2016. Transcriptome profiling of Trypanosoma brucei development in the tsetse fly vector Glossina morsitans. PLOS ONE 11:12e0168877
    [Google Scholar]
  117. 117. 
    Schneider A, Ochsenreiter T. 2018. Failure is not an option—mitochondrial genome segregation in trypanosomes. J. Cell Sci. 131:18jcs221820
    [Google Scholar]
  118. 118. 
    Scott V, Sherwin T, Gull K 1997. γ-Tubulin in trypanosomes: molecular characterisation and localisation to multiple and diverse microtubule organising centres. J. Cell Sci. 110:2157–68
    [Google Scholar]
  119. 119. 
    Sheader K, Vaughan S, Minchin J, Hughes K, Gull K, Rudenko G 2005. Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes. PNAS 102:248716–21
    [Google Scholar]
  120. 120. 
    Sheriff O, Lim L-F, He CY 2014. Tracking the biogenesis and inheritance of subpellicular microtubule in Trypanosoma brucei with inducible YFP-α-tubulin. BioMed Res. Int. 2014:e893272
    [Google Scholar]
  121. 121. 
    Sherwin T, Gull K. 1989. The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos. Trans. R. Soc. Lond. B. 323:1218573–88
    [Google Scholar]
  122. 122. 
    Sherwin T, Gull K. 1989. Visualization of detyrosination along single microtubules reveals novel mechanisms of assembly during cytoskeletal duplication in trypanosomes. Cell 57:2211–21
    [Google Scholar]
  123. 123. 
    Siegel TN, Hekstra DR, Cross GAM 2008. Analysis of the Trypanosoma brucei cell cycle by quantitative DAPI imaging. Mol. Biochem. Parasitol. 160:2171–74
    [Google Scholar]
  124. 124. 
    Silvester E, McWilliam KR, Matthews KR 2017. The cytological events and molecular control of life cycle development of Trypanosoma brucei in the mammalian bloodstream. Pathogens 6:3E29
    [Google Scholar]
  125. 125. 
    Sinclair-Davis AN, McAllaster MR, de Graffenried CL 2017. A functional analysis of TOEFAZ1 uncovers protein domains essential for cytokinesis in Trypanosoma brucei. J. Cell Sci 130:223918–32
    [Google Scholar]
  126. 126. 
    Stanojcic S, Sollelis L, Kuk N, Crobu L, Balard Y et al. 2016. Single-molecule analysis of DNA replication reveals novel features in the divergent eukaryotes Leishmania and Trypanosoma brucei versus mammalian cells. Sci. Rep. 6:23142
    [Google Scholar]
  127. 127. 
    Sullenberger C, Piqué D, Ogata Y, Mensa-Wilmot K 2017. AEE788 inhibits basal body assembly and blocks DNA replication in the African trypanosome. Mol. Pharmacol. 91:5482–98
    [Google Scholar]
  128. 128. 
    Sunter JD, Benz C, Andre J, Whipple S, McKean PG et al. 2015. Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions. J. Cell Sci. 128:163117–30
    [Google Scholar]
  129. 129. 
    Sunter JD, Gull K. 2016. The flagellum attachment zone: “the cellular ruler” of trypanosome morphology. Trends Parasitol 32:4309–24
    [Google Scholar]
  130. 130. 
    Sunter JD, Moreira-Leite F, Gull K 2018. Dependency relationships between IFT-dependent flagellum elongation and cell morphogenesis in Leishmania. Open Biol 8:11180124
    [Google Scholar]
  131. 131. 
    Sunter JD, Varga V, Dean S, Gull K 2015. A dynamic coordination of flagellum and cytoplasmic cytoskeleton assembly specifies cell morphogenesis in trypanosomes. J. Cell Sci. 128:81580–94
    [Google Scholar]
  132. 132. 
    Tiengwe C, Marcello L, Farr H, Gadelha C, Burchmore R et al. 2012. Identification of ORC1/CDC6-interacting factors in Trypanosoma brucei reveals critical features of origin recognition complex architecture. PLOS ONE 7:3e32674
    [Google Scholar]
  133. 133. 
    Tiengwe C, Marques CA, McCulloch R 2014. Nuclear DNA replication initiation in kinetoplastid parasites: new insights into an ancient process. Trends Parasitol 30:127–36
    [Google Scholar]
  134. 134. 
    Van Den Abbeele J, Claes Y, van Bockstaele D, Le Ray D, Coosemans M 1999. Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology 118:Part 5469–78
    [Google Scholar]
  135. 135. 
    Vaughan S, Gull K. 2015. Basal body structure and cell cycle-dependent biogenesis in Trypanosoma brucei. Cilia 5:5
    [Google Scholar]
  136. 136. 
    Vedrenne C, Giroud C, Robinson DR, Besteiro S, Bosc C et al. 2002. Two related subpellicular cytoskeleton-associated proteins in Trypanosoma brucei stabilize microtubules. Mol. Biol. Cell 13:31058–70
    [Google Scholar]
  137. 137. 
    Wang Z, Englund PT. 2001. RNA interference of a trypanosome topoisomerase II causes progressive loss of mitochondrial DNA. EMBO J 20:174674–83
    [Google Scholar]
  138. 138. 
    Wheeler RJ. 2015. Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles. Mol. Biol. Cell 26:223898–903
    [Google Scholar]
  139. 139. 
    Wheeler RJ, Gluenz E, Gull K 2011. The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol. Microbiol. 79:3647–62
    [Google Scholar]
  140. 140. 
    Wheeler RJ, Gluenz E, Gull K 2015. Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum. Nat. Commun. 6:8964
    [Google Scholar]
  141. 141. 
    Wheeler RJ, Gull K, Gluenz E 2012. Detailed interrogation of trypanosome cell biology via differential organelle staining and automated image analysis. BMC Biol 10:11
    [Google Scholar]
  142. 142. 
    Wheeler RJ, Scheumann N, Wickstead B, Gull K, Vaughan S 2013. Cytokinesis in Trypanosoma brucei differs between bloodstream and tsetse trypomastigote forms: implications for microtubule‐based morphogenesis and mutant analysis. Mol. Microbiol. 90:61339–55
    [Google Scholar]
  143. 143. 
    Wheeler RJ, Sunter JD, Gull K 2016. Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. J. Cell Sci. 129:4854–67
    [Google Scholar]
  144. 144. 
    Wickstead B, Ersfeld K, Gull K 2004. The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res 14:61014–24
    [Google Scholar]
  145. 145. 
    Woodward R, Gull K. 1990. Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J. Cell Sci 95:Part 149–57
    [Google Scholar]
  146. 146. 
    Yanagida M. 1998. Fission yeast cut mutations revisited: control of anaphase. Trends Cell Biol 8:4144–49
    [Google Scholar]
  147. 147. 
    Zhou Q, Gu J, Lun Z-R, Ayala FJ, Li Z 2016. Two distinct cytokinesis pathways drive trypanosome cell division initiation from opposite cell ends. PNAS 113:123287–92
    [Google Scholar]
  148. 148. 
    Zhou Q, Hu H, He CY, Li Z 2015. Assembly and maintenance of the flagellum attachment zone filament in Trypanosoma brucei. J. Cell Sci 128:132361–72
    [Google Scholar]
  149. 149. 
    Zhou Q, Hu H, Li Z 2014. New insights into the molecular mechanisms of mitosis and cytokinesis in trypanosomes. Int. Rev. Cell Mol. Biol. 308:127–66
    [Google Scholar]
  150. 150. 
    Zhou Q, Hu H, Li Z 2016. An EF-hand-containing protein in Trypanosoma brucei regulates cytokinesis initiation by maintaining the stability of the cytokinesis initiation factor CIF1. J. Biol. Chem. 291:2814395–409
    [Google Scholar]
  151. 151. 
    Zhou Q, Lee KJ, Kurasawa Y, Hu H, An T, Li Z 2018. Faithful chromosome segregation in Trypanosoma brucei requires a cohort of divergent spindle-associated proteins with distinct functions. Nucleic Acids Res 46:168216–31
    [Google Scholar]
  152. 152. 
    Zhou Q, Li Z. 2015. The γ-tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly. Mol. Microbiol. 98:4667–80
    [Google Scholar]
  153. 153. 
    Zur A, Brandeis M. 2001. Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J 20:4792–801
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115617
Loading
/content/journals/10.1146/annurev-micro-020518-115617
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error