1932

Abstract

African apes harbor at least twelve species, some of which have been a source of human infection. It is now well established that emerged following the transmission of a gorilla parasite, perhaps within the last 10,000 years, while emerged earlier from a parasite lineage that infected humans and apes in Africa before the Duffy-negative mutation eliminated the parasite from humans there. Compared to their ape relatives, both human parasites have greatly reduced genetic diversity and an excess of nonsynonymous mutations, consistent with severe genetic bottlenecks followed by rapid population expansion. A putative new species widespread in chimpanzees, gorillas, and bonobos places the origin of in Africa. Here, we review what is known about the origins and evolutionary history of all human-infective species, the time and circumstances of their emergence, and the diversity, host specificity, and zoonotic potential of their ape counterparts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115628
2020-09-08
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-020518-115628.html?itemId=/content/journals/10.1146/annurev-micro-020518-115628&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adler S. 1923. Malaria in chimpanzees in Sierra Leone. Ann. Trop. Med. Parasitol. 17:13–18
    [Google Scholar]
  2. 2. 
    Arisue N, Hashimoto T, Kawai S, Honma H, Kume K, Horii T 2019. Apicoplast phylogeny reveals the position of Plasmodium vivax basal to the Asian primate malaria parasite clade. Sci. Rep. 9:7274
    [Google Scholar]
  3. 3. 
    Auburn S, Bohme U, Steinbiss S, Trimarsanto H, Hostetler J et al. 2016. A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of pir genes. Wellcome Open Res 1:4
    [Google Scholar]
  4. 4. 
    Bakker JW, Loy DE, Takken W, Hahn BH, Verhulst NO 2020. Attraction of mosquitoes to primate odours and implications for zoonotic Plasmodium transmission. Med. Vet. Entomol. 34:117–26
    [Google Scholar]
  5. 5. 
    Battle KE, Lucas TCD, Nguyen M, Howes RE, Nandi AK et al. 2019. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet 394:332–43
    [Google Scholar]
  6. 6. 
    Baum J, Maier AG, Good RT, Simpson KM, Cowman AF 2005. Invasion by P. falciparum merozoites suggests a hierarchy of molecular interactions. PLOS Pathog 1:e37
    [Google Scholar]
  7. 7. 
    Bitome-Essono PY, Ollomo B, Arnathau C, Durand P, Mokoudoum ND et al. 2017. Tracking zoonotic pathogens using blood-sucking flies as ‘flying syringes’. eLife 6:e22069
    [Google Scholar]
  8. 8. 
    Blacklock B, Adler S. 1922. A parasite resembling Plasmodium falciparum in a chimpanzee. Ann. Trop. Med. Parasitol. 16:99–106
    [Google Scholar]
  9. 9. 
    Bohme U, Otto TD, Cotton JA, Steinbiss S, Sanders M et al. 2018. Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals. Genome Res 28:547–60
    [Google Scholar]
  10. 10. 
    Bopp SE, Manary MJ, Bright AT, Johnston GL, Dharia NV et al. 2013. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLOS Genet 9:e1003293
    [Google Scholar]
  11. 11. 
    Boundenga L, Ollomo B, Rougeron V, Mouele LY, Mve-Ondo B et al. 2015. Diversity of malaria parasites in great apes in Gabon. Malar. J. 14:111
    [Google Scholar]
  12. 12. 
    Brasil P, Zalis MG, de Pina-Costa A, Siqueira AM, Júnior CB et al. 2017. Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. Lancet Glob. Health 5:e1038–46
    [Google Scholar]
  13. 13. 
    Bray RS. 1958. Studies on malaria in chimpanzees. VI. Laverania falciparum. Am. J. Trop. Med. Hyg. 7:20–24
    [Google Scholar]
  14. 14. 
    Bray RS. 1960. Studies on malaria in chimpanzees. VIII. The experimental transmission and pre-erythrocytic phase of Plasmodium malariae, with a note on the host-range of the parasite. Am. J. Trop. Med. Hyg. 9:455–65
    [Google Scholar]
  15. 15. 
    Brown FH, McDougall I, Fleagle JG 2012. Correlation of the KHS Tuff of the Kibish Formation to volcanic ash layers at other sites, and the age of early Homo sapiens (Omo I and Omo II). J. Hum. Evol. 63:577–85
    [Google Scholar]
  16. 16. 
    Buery JC, Rodrigues PT, Natal L, Salla LC, Loss AC et al. 2017. Mitochondrial genome of Plasmodium vivax/simium detected in an endemic region for malaria in the Atlantic Forest of Espirito Santo state, Brazil: Do mosquitoes, simians and humans harbour the same parasite. Malar. J. 16:437
    [Google Scholar]
  17. 17. 
    Caldecott JO, Miles L. 2005. World Atlas of Great Apes and Their Conservation Berkley, CA: Univ. Calif. Press
    [Google Scholar]
  18. 18. 
    Carter R. 2003. Speculations on the origins of Plasmodium vivax malaria. Trends Parasitol 19:214–19
    [Google Scholar]
  19. 19. 
    Carter R, Mendis KN. 2002. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15:564–94
    [Google Scholar]
  20. 20. 
    Chang HH, Moss EL, Park DJ, Ndiaye D, Mboup S et al. 2013. Malaria life cycle intensifies both natural selection and random genetic drift. PNAS 110:20129–34
    [Google Scholar]
  21. 21. 
    Chang HH, Park DJ, Galinsky KJ, Schaffner SF, Ndiaye D et al. 2012. Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal reveals the demographic history of the population. Mol. Biol. Evol. 29:3427–39
    [Google Scholar]
  22. 22. 
    Chien JT, Pakala SB, Geraldo JA, Lapp SA, Humphrey JC et al. 2016. High-quality genome assembly and annotation for Plasmodium coatneyi, generated using single-molecule real-time PacBio technology. Genome Announc 4:e00883–16
    [Google Scholar]
  23. 23. 
    Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E et al. 1998. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. PNAS 95:11751–56
    [Google Scholar]
  24. 24. 
    Claessens A, Hamilton WL, Kekre M, Otto TD, Faizullabhoy A et al. 2014. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of var genes during mitosis. PLOS Genet 10:e1004812
    [Google Scholar]
  25. 25. 
    Coatney GR. 1971. The simian malarias: zoonoses, anthroponoses, or both. Am. J. Trop. Med. Hyg. 20:795–803
    [Google Scholar]
  26. 26. 
    Coatney GR, Chin W, Contacos PG, King HK 1966. Plasmodium inui, a quartan-type malaria parasite of Old World monkeys transmissible to man. J. Parasitol. 52:660–63
    [Google Scholar]
  27. 27. 
    Coatney GR, Collins WE, Warren M, Contacos PG 1971. The Primate Malarias Washington, DC: US Gov. Print. Off.
    [Google Scholar]
  28. 28. 
    Collins WE, Jeffery GM. 2007. Plasmodium malariae: parasite and disease. Clin. Microbiol. Rev. 20:579–92
    [Google Scholar]
  29. 29. 
    Contacos PG, Coatney GR, Orihel TC, Collins WE, Chin W, Jeter MH 1970. Transmission of Plasmodium schwetzi from the chimpanzee to man by mosquito bite. Am. J. Trop. Med. Hyg. 19:190–95
    [Google Scholar]
  30. 30. 
    Contacos PG, Lunn JS, Coatney GR, Kilpatrick JW, Jones FE 1963. Quartan-type malaria parasite of New World monkeys transmissible to man. Science 142:676
    [Google Scholar]
  31. 31. 
    Cowman AF, Tonkin CJ, Tham WH, Duraisingh MT 2017. The molecular basis of erythrocyte invasion by malaria parasites. Cell Host Microbe 22:232–45
    [Google Scholar]
  32. 32. 
    Cox-Singh J, Davis TM, Lee KS, Shamsul SS, Matusop A et al. 2008. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin. Infect. Dis. 46:165–71
    [Google Scholar]
  33. 33. 
    Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M et al. 2011. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480:534–37
    [Google Scholar]
  34. 34. 
    Culleton R, Coban C, Zeyrek FY, Cravo P, Kaneko A et al. 2011. The origins of African Plasmodium vivax: insights from mitochondrial genome sequencing. PLOS ONE 6:e29137
    [Google Scholar]
  35. 35. 
    Dankwa S, Lim C, Bei AK, Jiang RH, Abshire JR et al. 2016. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite. Nat. Commun. 7:11187
    [Google Scholar]
  36. 36. 
    De Nys HM, Calvignac-Spencer S, Thiesen U, Boesch C, Wittig RM et al. 2013. Age-related effects on malaria parasite infection in wild chimpanzees. Biol. Lett. 9:20121160
    [Google Scholar]
  37. 37. 
    Deane LM. 1992. Simian malaria in Brazil. Mem. Inst. Oswaldo Cruz. 87:Suppl. 31–20
    [Google Scholar]
  38. 38. 
    Delicat-Loembet L, Rougeron V, Ollomo B, Arnathau C, Roche B et al. 2015. No evidence for ape Plasmodium infections in humans in Gabon. PLOS ONE 10:e0126933
    [Google Scholar]
  39. 39. 
    Duval L, Fourment M, Nerrienet E, Rousset D, Sadeuh SA et al. 2010. African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. PNAS 107:10561–66
    [Google Scholar]
  40. 40. 
    Duval L, Nerrienet E, Rousset D, Sadeuh Mba SA, Houze S et al. 2009. Chimpanzee malaria parasites related to Plasmodium ovale in Africa. PLOS ONE 4:e5520
    [Google Scholar]
  41. 41. 
    Escalante AA, Ayala FJ. 1994. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. PNAS 91:11373–77
    [Google Scholar]
  42. 42. 
    Escalante AA, Barrio E, Ayala FJ 1995. Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol. Biol. Evol. 12:616–26
    [Google Scholar]
  43. 43. 
    Escalante AA, Cornejo OE, Freeland DE, Poe AC, Durrego E et al. 2005. A monkey's tale: the origin of Plasmodium vivax as a human malaria parasite. PNAS 102:1980–85
    [Google Scholar]
  44. 44. 
    Feachem RGA, Chen I, Akbari O, Bertozzi-Villa A, Bhatt S et al. 2019. Malaria eradication within a generation: ambitious, achievable, and necessary. Lancet 394:1056–112
    [Google Scholar]
  45. 45. 
    Galaway F, Drought LG, Fala M, Cross N, Kemp AC et al. 2017. P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat. Commun. 8:14333
    [Google Scholar]
  46. 46. 
    Galaway F, Yu R, Constantinou A, Prugnolle F, Wright GJ 2019. Resurrection of the ancestral RH5 invasion ligand provides a molecular explanation for the origin of P. falciparum malaria in humans. PLOS Biol 17:e3000490
    [Google Scholar]
  47. 47. 
    Garnham PCC. 1964. The subgenera of Plasmodium in mammals. Ann. Soc. Belg. Med. Trop. 44:267–72
    [Google Scholar]
  48. 48. 
    Gelabert P, Sandoval-Velasco M, Olalde I, Fregel R, Rieux A et al. 2016. Mitochondrial DNA from the eradicated European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain. PNAS 113:11495–500
    [Google Scholar]
  49. 49. 
    Gilabert A, Otto TD, Rutledge GG, Franzon B, Ollomo B et al. 2018. Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution. PLOS Biol 16:e2006035
    [Google Scholar]
  50. 50. 
    Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A 2011. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43:1031–34
    [Google Scholar]
  51. 51. 
    Hayakawa T, Arisue N, Udono T, Hirai H, Sattabongkot J et al. 2009. Identification of Plasmodium malariae, a human malaria parasite, in imported chimpanzees. PLOS ONE 4:e7412
    [Google Scholar]
  52. 52. 
    Hayakawa T, Culleton R, Otani H, Horii T, Tanabe K 2008. Big bang in the evolution of extant malaria parasites. Mol. Biol. Evol. 25:2233–39
    [Google Scholar]
  53. 53. 
    Hedrick PW. 2011. Population genetics of malaria resistance in humans. Heredity 107:283–304
    [Google Scholar]
  54. 54. 
    Ho SY, Duchene S, Molak M, Shapiro B 2015. Time-dependent estimates of molecular evolutionary rates: evidence and causes. Mol. Ecol. 24:6007–12
    [Google Scholar]
  55. 55. 
    Honma H, Kawai S, Motooka D, Nakamura S, Tougan T et al. 2017. Draft genome sequence of Plasmodium gonderi, a malaria parasite of African Old World monkeys. Genome Announc 5:e00612–17
    [Google Scholar]
  56. 56. 
    Howes RE, Patil AP, Piel FB, Nyangiri OA, Kabaria CW et al. 2011. The global distribution of the Duffy blood group. Nat. Commun. 2:266
    [Google Scholar]
  57. 57. 
    Hughes AL, Verra F. 2010. Malaria parasite sequences from chimpanzee support the co-speciation hypothesis for the origin of virulent human malaria (Plasmodium falciparum). Mol. Phylogenet. Evol. 57:135–43
    [Google Scholar]
  58. 58. 
    Hupalo DN, Luo Z, Melnikov A, Sutton PL, Rogov P et al. 2016. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat. Genet 48:953–58
    [Google Scholar]
  59. 59. 
    Imwong M, Madmanee W, Suwannasin K, Kunasol C, Peto TJ et al. 2019. Asymptomatic natural human infections with the simian malaria parasites Plasmodium cynomolgi and Plasmodium knowlesi. J. Infect. Dis 219:695–702
    [Google Scholar]
  60. 60. 
    Joy DA, Feng X, Mu J, Furuya T, Chotivanich K et al. 2003. Early origin and recent expansion of Plasmodium falciparum. Science 300:318–21
    [Google Scholar]
  61. 61. 
    Kaiser M, Lowa A, Ulrich M, Ellerbrok H, Goffe AS et al. 2010. Wild chimpanzees infected with five Plasmodium species. Emerg. Infect. Dis. 16:1956–59
    [Google Scholar]
  62. 62. 
    Keightley PD, Campos JL, Booker TR, Charlesworth B 2016. Inferring the frequency spectrum of derived variants to quantify adaptive molecular evolution in protein-coding genes of Drosophila melanogaster. Genetics 203:975–84
    [Google Scholar]
  63. 63. 
    Krief S, Escalante AA, Pacheco MA, Mugisha L, Andre C et al. 2010. On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from bonobos. PLOS Pathog 6:e1000765
    [Google Scholar]
  64. 64. 
    Lalremruata A, Magris M, Vivas-Martinez S, Koehler M, Esen M et al. 2015. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon. EBioMedicine 2:1186–92
    [Google Scholar]
  65. 65. 
    Languillon J. 1957. Carte épidémiologique du paludisme au Cameroun [Epidemiological chart of paludism in the Cameroons]. Bull. Soc. Path. Exot. 50:585–600
    [Google Scholar]
  66. 66. 
    Larsen PA, Hayes CE, Williams CV, Junge RE, Razafindramanana J et al. 2016. Blood transcriptomes reveal novel parasitic zoonoses circulating in Madagascar's lemurs. Biol. Lett. 12:20150829
    [Google Scholar]
  67. 67. 
    Liu W, Li Y, Learn GH, Rudicell RS, Robertson JD et al. 2010. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467:420–25
    [Google Scholar]
  68. 68. 
    Liu W, Li Y, Shaw KS, Learn GH, Plenderleith LJ et al. 2014. African origin of the malaria parasite Plasmodium vivax. Nat. Commun 5:3346
    [Google Scholar]
  69. 69. 
    Liu W, Sherrill-Mix S, Learn GH, Scully EJ, Li Y et al. 2017. Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nat. Commun. 8:1635
    [Google Scholar]
  70. 70. 
    Liu W, Sundararaman SA, Loy DE, Learn GH, Li Y et al. 2016. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol. Evol. 8:1929–39
    [Google Scholar]
  71. 71. 
    Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ et al. 2017. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int. J. Parasitol 47:87–97
    [Google Scholar]
  72. 72. 
    Loy DE, Plenderleith LJ, Sundararaman SA, Liu W, Gruszczyk J et al. 2018. Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites. PNAS 115:E8450–59
    [Google Scholar]
  73. 73. 
    Loy DE, Rubel MA, Avitto AN, Liu W, Li Y et al. 2018. Investigating zoonotic infection barriers to ape Plasmodium parasites using faecal DNA analysis. Int. J. Parasitol. 48:531–42
    [Google Scholar]
  74. 74. 
    Lysenko AJ, Beljaev AE. 1969. An analysis of the geographical distribution of Plasmodium ovale. Bull. World Health Organ 40:383–94
    [Google Scholar]
  75. 75. 
    Maeno Y. 2017. Molecular epidemiology of mosquitoes for the transmission of forest malaria in south-central Vietnam. Trop. Med. Health 45:27
    [Google Scholar]
  76. 76. 
    Makanga B, Yangari P, Rahola N, Rougeron V, Elguero E et al. 2016. Ape malaria transmission and potential for ape-to-human transfers in Africa. PNAS 113:5329–34
    [Google Scholar]
  77. 77. 
    Malar. Genom. Epidemiol. Netw 2016. Pf3k pilot data release 5. MalariaGEN https://www.malariagen.net/data/pf3k-5
    [Google Scholar]
  78. 78. 
    Mapua MI, Fuehrer HP, Petrzelkova KJ, Todd A, Noedl H et al. 2018. Plasmodium ovale wallikeri in western lowland gorillas and humans, Central African Republic. Emerg. Infect. Dis. 24:1581–83
    [Google Scholar]
  79. 79. 
    Mapua MI, Qablan MA, Pomajbikova K, Petrzelkova KJ, Huzova Z et al. 2015. Ecology of malaria infections in western lowland gorillas inhabiting Dzanga Sangha protected areas, Central African Republic. Parasitology 142:890–900
    [Google Scholar]
  80. 80. 
    Martin MJ, Rayner JC, Gagneux P, Barnwell JW, Varki A 2005. Evolution of human-chimpanzee differences in malaria susceptibility: relationship to human genetic loss of N-glycolylneuraminic acid. PNAS 102:12819–24
    [Google Scholar]
  81. 81. 
    McQueen PG, McKenzie FE. 2006. Competition for red blood cells can enhance Plasmodium vivax parasitemia in mixed-species malaria infections. Am. J. Trop. Med. Hyg. 75:112–25
    [Google Scholar]
  82. 82. 
    Membrebe JV, Suchard MA, Rambaut A, Baele G, Lemey P 2019. Bayesian inference of evolutionary histories under time-dependent substitution rates. Mol. Biol. Evol. 36:1793–803
    [Google Scholar]
  83. 83. 
    Mendis K, Sina BJ, Marchesini P, Carter R 2001. The neglected burden of Plasmodium vivax malaria. Am. J. Trop. Med. Hyg. 64:97–106
    [Google Scholar]
  84. 84. 
    Miller LH, Mason SJ, Clyde DF, McGinniss MH 1976. The resistance factor to Plasmodium vivax in blacks: the Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295:302–4
    [Google Scholar]
  85. 85. 
    Moon RW, Sharaf H, Hastings CH, Ho YS, Nair MB et al. 2016. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasite Plasmodium knowlesi. PNAS 113:7231–36
    [Google Scholar]
  86. 86. 
    Mu J, Joy DA, Duan J, Huang Y, Carlton J et al. 2005. Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol. Biol. Evol. 22:1686–93
    [Google Scholar]
  87. 87. 
    Muchmore EA, Diaz S, Varki A 1998. A structural difference between the cell surfaces of humans and the great apes. Am. J. Phys. Anthropol. 107:187–98
    [Google Scholar]
  88. 88. 
    Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK et al. 2009. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect. Dis. 9:555–66
    [Google Scholar]
  89. 89. 
    Mueller I, Zimmerman PA, Reeder JC 2007. Plasmodium malariae and Plasmodium ovale—the “bashful” malaria parasites. Trends Parasitol 23:278–83
    [Google Scholar]
  90. 90. 
    Neafsey DE, Galinsky K, Jiang RH, Young L, Sykes SM et al. 2012. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat. Genet 44:1046–50
    [Google Scholar]
  91. 91. 
    Ngoubangoye B, Boundenga L, Arnathau C, Mombo IM, Durand P et al. 2016. The host specificity of ape malaria parasites can be broken in confined environments. Int. J. Parasitol. 46:737–44
    [Google Scholar]
  92. 92. 
    Ollomo B, Durand P, Prugnolle F, Douzery E, Arnathau C et al. 2009. A new malaria agent in African hominids. PLOS Pathog 5:e1000446
    [Google Scholar]
  93. 93. 
    Orlandi PA, Klotz FW, Haynes JD 1992. A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac(α2–3)Gal- sequences of glycophorin A. J. Cell Biol. 116:901–9
    [Google Scholar]
  94. 94. 
    Otto TD, Bohme U, Jackson AP, Hunt M, Franke-Fayard B et al. 2014. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol 12:86
    [Google Scholar]
  95. 95. 
    Otto TD, Gilabert A, Crellen T, Bohme U, Arnathau C et al. 2018. Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria. Nat. Microbiol. 3:687–97
    [Google Scholar]
  96. 96. 
    Otto TD, Rayner JC, Bohme U, Pain A, Spottiswoode N et al. 2014. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts. Nat. Commun. 5:4754
    [Google Scholar]
  97. 97. 
    Pacheco MA, Battistuzzi FU, Junge RE, Cornejo OE, Williams CV et al. 2011. Timing the origin of human malarias: the lemur puzzle. BMC Evol. Biol. 11:299
    [Google Scholar]
  98. 98. 
    Pacheco MA, Reid MJ, Schillaci MA, Lowenberger CA, Galdikas BM et al. 2012. The origin of malarial parasites in orangutans. PLOS ONE 7:e34990
    [Google Scholar]
  99. 99. 
    Pagani L, Lawson DJ, Jagoda E, Morseburg A, Eriksson A et al. 2016. Genomic analyses inform on migration events during the peopling of Eurasia. Nature 538:238–42
    [Google Scholar]
  100. 100. 
    Pain A, Bohme U, Berry AE, Mungall K, Finn RD et al. 2008. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature 455:799–803
    [Google Scholar]
  101. 101. 
    Pasini EM, Bohme U, Rutledge GG, Voorberg-Van der Wel A, Sanders M et al. 2017. An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion. Wellcome Open Res 2:42
    [Google Scholar]
  102. 102. 
    Paupy C, Makanga B, Ollomo B, Rahola N, Durand P et al. 2013. Anopheles moucheti and Anopheles vinckei are candidate vectors of ape Plasmodium parasites, including Plasmodium praefalciparum in Gabon. PLOS ONE 8:e57294
    [Google Scholar]
  103. 103. 
    Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J et al. 2016. Genomic analysis of local variation and recent evolution in Plasmodium vivax. Nat. Genet 48:959–64
    [Google Scholar]
  104. 104. 
    Plenderleith LJ, Liu W, MacLean OA, Li Y, Loy DE et al. 2018. Adaptive evolution of RH5 in ape Plasmodium species of the Laverania subgenus. mBio 9:e02237–17
    [Google Scholar]
  105. 105. 
    Plenderleith LJ, Weimin L, Learn GH, Loy DE, Speede S et al. 2019. Ancient introgression between two ape malaria parasite species. Genome Biol. Evol. 11:3269–74
    [Google Scholar]
  106. 106. 
    Proto WR, Siegel SV, Dankwa S, Liu W, Kemp A et al. 2019. Adaptation of Plasmodium falciparum to humans involved the loss of an ape-specific erythrocyte invasion ligand. Nat. Commun. 10:4512
    [Google Scholar]
  107. 107. 
    Prugnolle F, Durand P, Neel C, Ollomo B, Ayala FJ et al. 2010. African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. PNAS 107:1458–63
    [Google Scholar]
  108. 108. 
    Prugnolle F, Rougeron V, Becquart P, Berry A, Makanga B et al. 2013. Diversity, host switching and evolution of Plasmodium vivax infecting African great apes. PNAS 110:8123–28
    [Google Scholar]
  109. 109. 
    Ramasamy R. 2014. Zoonotic malaria—global overview and research and policy needs. Front. Public Health 2:123
    [Google Scholar]
  110. 110. 
    Rayner JC. 2015. Plasmodium malariae malaria: from monkey to man?. EBioMedicine 2:1023–24
    [Google Scholar]
  111. 111. 
    Rayner JC, Liu W, Peeters M, Sharp PM, Hahn BH 2011. A plethora of Plasmodium species in wild apes: a source of human infection?. Trends Parasitol 27:222–29
    [Google Scholar]
  112. 112. 
    Reichenow E. 1920. Über das Vorkommen der Malariaparasiten des Menschen bei den Afrikanischen Menschenaffen. Centralbl. f. Bakt. I. Abt. 85:207–16
    [Google Scholar]
  113. 113. 
    Reid MJ, Ursic R, Cooper D, Nazzari H, Griffiths M et al. 2006. Transmission of human and macaque Plasmodium spp. to ex-captive orangutans in Kalimantan, Indonesia. Emerg. Infect. Dis. 12:1902–8
    [Google Scholar]
  114. 114. 
    Rich SM, Leendertz FH, Xu G, LeBreton M, Djoko CF et al. 2009. The origin of malignant malaria. PNAS 106:14902–7
    [Google Scholar]
  115. 115. 
    Rich SM, Licht MC, Hudson RR, Ayala FJ 1998. Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. PNAS 95:4425–30
    [Google Scholar]
  116. 116. 
    Rodhain J. 1940. Les plasmodium des anthropoids de l'Afrique centrale et leurs relations avec les plasmodiums humains. Ann. Soc. Belg. Med. Trop. 35:69–73
    [Google Scholar]
  117. 117. 
    Rodhain J, Dellaert R. 1943. L'infection à Plasmodium malariae du chimpanzé chez l'homme: étude d'une première souche isolée de l'anthropoide Pan satyrus verus. Ann. Soc. Belg. Med. Trop 23:19–46
    [Google Scholar]
  118. 118. 
    Rougeron V, Elguero E, Arnathau C, Acuña Hidalgo B, Durand P et al. 2020. Human Plasmodium vivax diversity, population structure and evolutionary origin. PLOS Negl. Trop. Dis. 14:e0008072
    [Google Scholar]
  119. 119. 
    Rutledge GG, Bohme U, Sanders M, Reid AJ, Cotton JA et al. 2017. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature 542:101–4
    [Google Scholar]
  120. 120. 
    Singh B, Daneshvar C. 2013. Human infections and detection of Plasmodium knowlesi. Clin. Microbiol. Rev 26:165–84
    [Google Scholar]
  121. 121. 
    Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS et al. 2004. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363:1017–24
    [Google Scholar]
  122. 122. 
    Snow RW, Sartorius B, Kyalo D, Maina J, Amratia P et al. 2017. The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature 550:515–18
    [Google Scholar]
  123. 123. 
    Sundararaman SA, Liu W, Keele BF, Learn GH, Bittinger K et al. 2013. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria. PNAS 110:7020–25
    [Google Scholar]
  124. 124. 
    Sundararaman SA, Plenderleith LJ, Liu W, Loy DE, Learn GH et al. 2016. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat. Commun. 7:11078
    [Google Scholar]
  125. 125. 
    Sutherland CJ. 2016. Persistent parasitism: the adaptive biology of malariae and ovale malaria. Trends Parasitol 32:808–19
    [Google Scholar]
  126. 126. 
    Sutherland CJ, Tanomsing N, Nolder D, Oguike M, Jennison C et al. 2010. Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. J. Infect. Dis. 201:1544–50
    [Google Scholar]
  127. 127. 
    Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM 2014. First case of a naturally acquired human infection with Plasmodium cynomolgi. Malar. J 13:68
    [Google Scholar]
  128. 128. 
    Tachibana S, Sullivan SA, Kawai S, Nakamura S, Kim HR et al. 2012. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat. Genet. 44:1051–55
    [Google Scholar]
  129. 129. 
    Triglia T, Thompson JK, Cowman AF 2001. An EBA175 homologue which is transcribed but not translated in erythrocytic stages of Plasmodium falciparum. Mol. Biochem. Parasitol 116:55–63
    [Google Scholar]
  130. 130. 
    Twohig KA, Pfeffer DA, Baird JK, Price RN, Zimmerman PA et al. 2019. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLOS Negl. Trop. Dis. 13:e0007140
    [Google Scholar]
  131. 131. 
    van Dorp L, Gelabert P, Rieux A, de Manuel M, de-Dios T et al. 2020. Plasmodium vivax malaria viewed through the lens of an eradicated European strain. Mol. Biol. Evol. 37:3773–85
    [Google Scholar]
  132. 132. 
    Wanaguru M, Liu W, Hahn BH, Rayner JC, Wright GJ 2013. RH5-Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. PNAS 110:20735–40
    [Google Scholar]
  133. 133. 
    White NJ. 2008. Plasmodium knowlesi: the fifth human malaria parasite. Clin. Infect. Dis. 46:172–73
    [Google Scholar]
  134. 134. 
    Woldearegai TG, Lalremruata A, Nguyen TT, Gmeiner M, Veletzky L et al. 2019. Characterization of Plasmodium infections among inhabitants of rural areas in Gabon. Sci. Rep. 9:9784
    [Google Scholar]
  135. 135. 
    Wong W, Huang R, Menant S, Hong C, Sandow JJ et al. 2019. Structure of Plasmodium falciparum Rh5-CyRPA-Ripr invasion complex. Nature 565:118–21
    [Google Scholar]
  136. 136. 
    World Health Organ 2014. Severe malaria. Trop. Med. Int. Health 19:Suppl.7–131
    [Google Scholar]
  137. 137. 
    World Health Organ 2019. World Malaria Report 2019 Geneva: World Health Organ.
    [Google Scholar]
  138. 138. 
    Wright KE, Hjerrild KA, Bartlett J, Douglas AD, Jin J et al. 2014. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature 515:427–30
    [Google Scholar]
  139. 139. 
    Zaw MT, Lin Z. 2019. Human Plasmodium knowlesi infections in South-East Asian countries. J. Microbiol. Immunol. Infect. 52:679–84
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115628
Loading
/content/journals/10.1146/annurev-micro-020518-115628
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error