1932

Abstract

Bacteria move by a variety of mechanisms, but the best understood types of motility are powered by flagella (72). Flagella are complex machines embedded in the cell envelope that rotate a long extracellular helical filament like a propeller to push cells through the environment. The flagellum is one of relatively few biological machines that experience continuous 360° rotation, and it is driven by one of the most powerful motors, relative to its size, on earth. The rotational force (torque) generated at the base of the flagellum is essential for motility, niche colonization, and pathogenesis. This review describes regulatory proteins that control motility at the level of torque generation.

Keyword(s): biofilmEpsEFliGMotAswarmingYcgR
Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115725
2019-09-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-115725.html?itemId=/content/journals/10.1146/annurev-micro-020518-115725&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adler J. 1966. Chemotaxis in bacteria. Science 153:708–16
    [Google Scholar]
  2. 2. 
    Aldridge P, Jenal U. 1999. Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator. Mol. Microbiol. 32:379–91
    [Google Scholar]
  3. 3. 
    Amikam D, Galperin MY. 2005. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6
    [Google Scholar]
  4. 4. 
    Armitage JP, Macnab RM. 1987. Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides. J. Bacteriol 169:514–18
    [Google Scholar]
  5. 5. 
    Armitage JP, Pitta TP, Vigeant MAS, Packer HL, Ford RM 1999. Transformations in flagellar structure of Rhodobacter sphaeroides and possible relationship to changes in swimming speed. J. Bacteriol. 181:4825–33
    [Google Scholar]
  6. 6. 
    Armstrong JB, Adler J, Dahl MM 1967. Nonchemotactic mutants of Escherichia coli. J. Bacteriol 93:390–98
    [Google Scholar]
  7. 7. 
    Atsumi T, McCarter L, Imae Y 1992. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355:182–84
    [Google Scholar]
  8. 8. 
    Attmannspacher U, Scharf BE, Harshey RM 2008. FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica. Mol. Microbiol 68:328–41
    [Google Scholar]
  9. 9. 
    Baker AE, Diepold A, Kuchma SL, Scott JE, Ha DG et al. 2016. PilZ domain protein FlgZ mediates cyclic di-GMP-dependent swarming motility control in Pseudomonas aeruginosa. J. Bacteriol 198:1837–46
    [Google Scholar]
  10. 10. 
    Bedrunka P, Graumann PL. 2017. Subcellular clustering of a putative c-di-GMP-dependent exopolysaccharide machinery affecting macro colony architecture in Bacillus subtilis. Environ. Microbiol. Rep 9:211–22
    [Google Scholar]
  11. 11. 
    Beeby M, Ribardo DA, Brennan CA, Ruby EG, Jensen GJ, Hendrixson DR 2016. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. PNAS 113:E1917–26
    [Google Scholar]
  12. 12. 
    Belas R, Goldman M, Ashliman K 1995. Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J. Bacteriol. 177:823–28
    [Google Scholar]
  13. 13. 
    Belas R, Suvanasuthi R. 2005. The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. J. Bacteriol. 187:6789–803
    [Google Scholar]
  14. 14. 
    Berg HC. 1974. Dynamic properties of bacterial flagellar motors. Nature 249:77–79
    [Google Scholar]
  15. 15. 
    Berg HC, Anderson RA. 1973. Bacteria swim by rotating their flagellar filaments. Nature 245:380–82
    [Google Scholar]
  16. 16. 
    Berg HC, Brown DA. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–4
    [Google Scholar]
  17. 17. 
    Berg HC, Turner L. 1993. Torque generated by the flagellar motor of Escherichia coli. Biophys. J 65:2201–16
    [Google Scholar]
  18. 18. 
    Berry RM, Berg HC 1997. Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. PNAS 94:14433–37
    [Google Scholar]
  19. 19. 
    Blair DF, Berg HC. 1988. Restoration of torque in defective flagellar motors. Science 242:1678–81
    [Google Scholar]
  20. 20. 
    Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB 2008. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320:1636–38First demonstration of molecular clutch regulation on the flagellum.
    [Google Scholar]
  21. 21. 
    Block SM, Berg HC. 1984. Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309:470–72First motor resurrection experiment indicating incremental stator addition and stator dynamism.
    [Google Scholar]
  22. 22. 
    Block SM, Blair DF, Berg HC 1989. Compliance of bacterial flagella measured with optical tweezers. Nature 338:514–18
    [Google Scholar]
  23. 23. 
    Block SM, Blair DF, Berg HC 1991. Compliance of bacterial polyhooks measured with optical tweezers. Cytometry 12:492–96
    [Google Scholar]
  24. 24. 
    Boehm A, Kaiser M, Li H, Spangler C, Kasper CA et al. 2010. Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141:107–16
    [Google Scholar]
  25. 25. 
    Borkovich KA, Simon MI. 1990. The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63:1339–48
    [Google Scholar]
  26. 26. 
    Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R 2001. Fruiting body formation in Bacillus subtilis. PNAS 98:11621–26
    [Google Scholar]
  27. 27. 
    Braun TF, Al-Mawsawi LQ, Kojima S, Blair DF 2004. Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. Biochemistry 43:35–45
    [Google Scholar]
  28. 28. 
    Braun TF, Blair DF. 2001. Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H+ channels in the stator complex. Biochemistry 40:13051–59
    [Google Scholar]
  29. 29. 
    Braun TF, Poulson S, Gully JB, Empey JC, Van Way S et al. 1999. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. J. Bacteriol 181:3542–51
    [Google Scholar]
  30. 30. 
    Cairns LS, Marlow VL, Bissett E, Ostrowski A, Stanley-Wall NR 2013. A mechanical signal transmitted by the flagellum controls signaling in Bacillus subtilis. . Mol. Microbiol 90:6–21
    [Google Scholar]
  31. 31. 
    Calvo RA, Kearns DB. 2015. FlgM is secreted by the flagellar export apparatus in Bacillus subtilis. J. Bacteriol 197:81–91
    [Google Scholar]
  32. 32. 
    Cascales E, Lloubès R, Sturgis JN 2001. The TolQ-TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA-MotB. Mol. Microbiol. 42:795–807
    [Google Scholar]
  33. 33. 
    Chaban B, Coleman I, Beeby M 2018. Evolution of higher torque in Campylobacter-type bacterial flagellar motors. Sci. Rep. 8:97
    [Google Scholar]
  34. 34. 
    Chan JM, Guttenplan SB, Kearns DB 2014. Defects in the flagellar motor increase synthesis of poly-γ-glutamate in Bacillus subtilis. J. Bacteriol 196:740–53
    [Google Scholar]
  35. 35. 
    Chawla R, Ford KM, Lele PP 2017. Torque, but not FliL, regulates mechanosensitive flagellar motor function. Sci. Rep. 7:5565
    [Google Scholar]
  36. 36. 
    Chen Y, Chai Y, Guo JH, Losick R 2012. Evidence for cyclic di-GMP-mediated signaling in Bacillus subtilis. J. Bacteriol 194:5080–90
    [Google Scholar]
  37. 37. 
    Chevance FFV, Hughes KT. 2008. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6:455–65
    [Google Scholar]
  38. 38. 
    Chun SY, Parkinson JS. 1988. Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239:276–78
    [Google Scholar]
  39. 39. 
    Collins ALT, Stocker BAD. 1976. Salmonella typhimurium mutants generally defective in chemotaxis. J. Bacteriol. 128:754–65
    [Google Scholar]
  40. 40. 
    Colquhoun DB, Kirkpartrick J. 1932. The isolation of motile organisms from apparently non-motile cultures of B. typhosus, B. proteus, B. pestis, B.melitensis, etc. J. Pathol. Bacteriol 35:367–71
    [Google Scholar]
  41. 41. 
    Cummings LA, Wilkerson WD, Bergsbaken T, Cookson BT 2006. Invivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol. Microbiol 61:795–809
    [Google Scholar]
  42. 42. 
    Cusick K, Lee Y-Y, Youchak B, Belas R 2012. Perturbation of FliL interferes with Proteus mirabilis swarmer cell gene expression and differentiation. J. Bacteriol. 194:437–47
    [Google Scholar]
  43. 43. 
    Darnton NC, Berg HC. 2008. Bacterial flagella are firmly anchored. J. Bacteriol. 190:8223–24
    [Google Scholar]
  44. 44. 
    Dean GE, Macnab RM, Stader J, Matsumura P, Burks C 1984. Gene sequence and predicted amino acid sequence of the MotA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli. J. Bacteriol 159:991–99
    [Google Scholar]
  45. 45. 
    Doyle TB, Hawkins AC, McCarter LL 2004. The complex flagellar torque generator of Pseudomonas aeruginosa. J. Bacteriol 186:6341–50
    [Google Scholar]
  46. 46. 
    Enomoto M. 1966. Genetic studies of paralyzed mutants in Salmonella. I. Genetic fine structure of the mot loci in Salmonella typhimurium. Genetics 54:715–26
    [Google Scholar]
  47. 47. 
    Fang X, Gomelsky M. 2010. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol. Microbiol. 76:1295–305
    [Google Scholar]
  48. 48. 
    Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleber S 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14:563–75
    [Google Scholar]
  49. 49. 
    Friewer FI, Leifson E. 1952. Non-motile flagellated variants of Salmonella typhimurium. J. Pathol. Bacteriol 64:223–24
    [Google Scholar]
  50. 50. 
    Fu G, Bandaria JN, Le Gall AV, Fan X, Yildiz A et al. 2018. MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. PNAS 115:2484–89
    [Google Scholar]
  51. 51. 
    Fukuoka H, Wada T, Kojima S, Ishijima A, Homma M 2009. Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol. Microbiol. 71:825–35
    [Google Scholar]
  52. 52. 
    Fung DC, Berg HC. 1995. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375:809–12
    [Google Scholar]
  53. 53. 
    Gabel CV, Berg HC. 2003. The speed of the flagellar rotary motor of Escherichia coli varies linearly with proton motive force. PNAS 100:8748–51
    [Google Scholar]
  54. 54. 
    Gao X, Mukherjee S, Matthews PM, Hammad LA, Kearns DB, Dann CE 3rd 2013. Functional characterization of core components of the Bacillus subtilis cyclic-di-GMP signaling pathway. J. Bacteriol. 195:4782–92
    [Google Scholar]
  55. 55. 
    Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T 2011. Coupled circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:222–25
    [Google Scholar]
  56. 56. 
    Gerding MA, Ogata Y, Pecora ND, Niki H, de Boer PAJ 2007. The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol. Microbiol 63:1008–25
    [Google Scholar]
  57. 57. 
    Germon P, Ray M-C, Vianney A, Lazzaroni JC 2001. Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR. J. Bacteriol. 183:4110–14
    [Google Scholar]
  58. 58. 
    Girgis HS, Liu Y, Ryu WS, Tavazoie S 2007. A comprehensive genetic characterization of bacterial motility. PLOS Genet 3:e514
    [Google Scholar]
  59. 59. 
    Goy MF, Springer MS, Adler J 1978. Failure of sensory adaptation in bacterial mutants that are defective in a protein methylation reaction. Cell 15:1231–40
    [Google Scholar]
  60. 60. 
    Grimbergen AJ, Siebring J, Solopova A, Kuipers OP 2015. Microbial bet-hedging: the power of being different. Curr. Opin. Microbiol. 25:67–72
    [Google Scholar]
  61. 61. 
    Guttenplan SB, Blair KM, Kearns DB 2010. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLOS Genet 6:e1001243
    [Google Scholar]
  62. 62. 
    Guttenplan SB, Kearns DB. 2013. Regulation of flagellar motility during biofilm formation. FEMS Microbiol. Rev. 37:849–71
    [Google Scholar]
  63. 63. 
    Guttenplan SB, Shaw S, Kearns DB 2013. The cell biology of peritrichous flagella in Bacillus subtilis. Mol. Microbiol 87:211–29
    [Google Scholar]
  64. 64. 
    Hall AN, Subramanian S, Oshiro RT, Canzoneri AK, Kearns DB 2018. SwrD (YlzI) promotes swarming in Bacillus subtilis by increasing power to the flagellar motor. J. Bacteriol. 200:e00529–17
    [Google Scholar]
  65. 65. 
    Hazelbauer GL, Mesibov RE, Adler J 1969. Escherichia coli mutants defective in chemotaxis toward specific chemicals. PNAS 64:1300–7
    [Google Scholar]
  66. 66. 
    Hirota N, Imae Y. 1983. Na+-driven flagellar motors of an alkalophilic Bacillus strain. J. Biol. Chem. 258:10577–81
    [Google Scholar]
  67. 67. 
    Hosking ER, Vogt C, Bakker EP, Manson MD 2006. The Escherichia coli MotAB proton channel unplugged. J. Mol. Biol. 364:921–37Discovery that flagellar stators autoinhibit proton flux.
    [Google Scholar]
  68. 68. 
    Iino T, Enomoto M. 1966. Genetical studies of non-flagellate mutants of Salmonella. J. Gen. Microbiol 43:315–27
    [Google Scholar]
  69. 69. 
    Imazawa R, Takahashi Y, Aoki W, Sano M, Ito M 2016. A novel type bacterial flagellar motor that can use divalent cations as a coupling ion. Sci. Rep. 6:19773
    [Google Scholar]
  70. 70. 
    Ingham CJ, Armitage JP. 1987. Involvement of transport in Rhodobacter sphaeroides chemotaxis. J. Bacteriol. 169:5801–7
    [Google Scholar]
  71. 71. 
    Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers BD et al. 2004. MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis. Mol. Microbiol 53:1035–49
    [Google Scholar]
  72. 72. 
    Jarrell KF, McBride MJ. 2008. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6:466–76
    [Google Scholar]
  73. 73. 
    Jenal U, Shapiro L. 1996. Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter predivisional cell. EMBO J 15:2393–406
    [Google Scholar]
  74. 74. 
    Jenal U, White J, Shapiro L 1994. Caulobacter flagellar function, but not assembly, requires FliL, a non-polarly localized membrane protein present in all cell types. J. Mol. Biol. 243:227–44
    [Google Scholar]
  75. 75. 
    Joys TM, Frankel RW. 1967. Genetic control of flagellation in Bacillus subtilis. J. Bacteriol 94:32–37
    [Google Scholar]
  76. 76. 
    Kanbe M, Shibata S, Umino Y, Jenal U, Aizawa S-I 2005. Protease susceptibility of the Caulobacter crescentus flagellar hook-basal body: a possible mechanism of flagellar ejection during cell differentiation. Microbiology 151:433–38
    [Google Scholar]
  77. 77. 
    Karlinsey JE, Tanaka S, Bettenworth V, Yamaguchi S, Boos W et al. 2000. Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol. Microbiol. 37:1220–31
    [Google Scholar]
  78. 78. 
    Kaufmann F. 1939. Die serologische Salmonella-diagnose. Acta Patholog. Microbiol. Scand. 16:278–302
    [Google Scholar]
  79. 79. 
    Kearns DB. 2010. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8:634–44
    [Google Scholar]
  80. 80. 
    Kearns DB, Chu F, Branda SS, Kolter R, Losick R 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol 55:739–49
    [Google Scholar]
  81. 81. 
    Kearns DB, Losick R. 2005. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19:3083–94
    [Google Scholar]
  82. 82. 
    Khan S, Dapice M, Reese TS 1988. Effects of mot gene expression on the structure of the flagellar motor. J. Mol. Biol. 202:575–84Freeze fracture electron microscopy indicates stator densities surround flagellum.
    [Google Scholar]
  83. 83. 
    Khan S, Macnab RM. 1980. Proton chemical potential, proton electrical potential and bacterial motility. J. Mol. Biol. 138:599–614
    [Google Scholar]
  84. 84. 
    Ko M, Park C. 2000. Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J. Mol. Biol 303:371–82
    [Google Scholar]
  85. 85. 
    Kojima S, Blair DF. 2001. Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–50Biochemical demonstration that flagellar stators generate torque by conformational change.
    [Google Scholar]
  86. 86. 
    Kojima S, Blair DF. 2004. Solubilization and purification of the MotA/MotB complex of Escherichia coli. Biochemistry 43:26–34
    [Google Scholar]
  87. 87. 
    Kojima S, Imada K, Sakuma M, Sudo Y, Kojima C et al. 2009. Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol. Microbiol. 73:710–18
    [Google Scholar]
  88. 88. 
    Kojima S, Takao M, Almira G, Kawahara I, Sakuma M et al. 2018. The helix rearrangement in the periplasmic domain of the flagellar stator B subunit activates peptidoglycan binding and ion influx. Structure 26:590–98
    [Google Scholar]
  89. 89. 
    Konkol MA, Blair KM, Kearns DB 2013. Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J. Bacteriol 195:4085–93
    [Google Scholar]
  90. 90. 
    Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L 2017. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15:740–55
    [Google Scholar]
  91. 91. 
    Kuchma SL, Delalez NJ, Filkins LM, Snavely EA, Armitage JP, O'Toole GA 2015. Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator. J. Bacteriol. 197:420–30
    [Google Scholar]
  92. 92. 
    Larsen SH, Adler J, Gargus J, Hogg RW 1974. Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. PNAS 71:1239–43
    [Google Scholar]
  93. 93. 
    Larsen SH, Reader RW, Kort EN, Tso W-W, Adler J 1974. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249:74–77
    [Google Scholar]
  94. 94. 
    Le Guyon S, Simm R, Rehn M, Römling U 2015. Dissecting the cyclic di-guanylate monophosphate signaling network regulating motility in Salmonella enterica serovar typhimurium. Environ. Microbiol. 17:1310–20
    [Google Scholar]
  95. 95. 
    Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP 2006. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–58Stator dynamism shown by fluorescence microscopy.
    [Google Scholar]
  96. 96. 
    Lee KL, Ginsberg MA, Crovace C, Donohoe M, Stock D 2010. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466:996–1000
    [Google Scholar]
  97. 97. 
    Lee Y-Y, Belas R. 2015. Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming. J. Bacteriol. 197:159–73
    [Google Scholar]
  98. 98. 
    Lee Y-Y, Patellis J, Belas R 2013. Activity of Proteus mirabilis FliL is viscosity dependent and requires extragenic DNA. J. Bacteriol. 195:823–32
    [Google Scholar]
  99. 99. 
    Lele PP, Hosu BG, Berg HC 2013. Dynamics of mechanosensing in the bacterial flagellar motor. PNAS 110:11839–44
    [Google Scholar]
  100. 100. 
    Lin T-S, Zhu S, Kojima S, Homma M, Lo C-J 2018. FliL association with flagella stator in the sodium-driven Vibrio motor characterized by the fluorescent microscopy. Sci. Rep. 8:11172
    [Google Scholar]
  101. 101. 
    Lloyd SA, Blair DF. 1997. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J. Mol. Biol 266:733–44
    [Google Scholar]
  102. 102. 
    Lowder BJ, Duyvesteyn MD, Blair DF 2005. FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking. J. Bacteriol. 187:5640–47
    [Google Scholar]
  103. 103. 
    Macnab RM. 1992. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26:131–58
    [Google Scholar]
  104. 104. 
    Macnab RM, Koshland DE Jr 1972. The gradient-sensing mechanism in bacterial chemotaxis. PNAS 69:2509–12
    [Google Scholar]
  105. 105. 
    Manson MD, Tedesco P, Berg HC, Harold FM, van der Drift C 1977. A protonmotive force drives bacterial flagella. PNAS 74:3060–64
    [Google Scholar]
  106. 106. 
    Martínez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, González de Heredia E et al. 2014. Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLOS ONE 9:e87608
    [Google Scholar]
  107. 107. 
    Meister M, Berg HC. 1987. The stall torque of the bacterial flagellar motor. Biophys. J. 52:413–19
    [Google Scholar]
  108. 108. 
    Meynell EW. 1961. A phage, ϕχ, which attacks motile bacteria. J. Gen. Microbiol. 25:253–90
    [Google Scholar]
  109. 109. 
    Morimoto YV, Nakamura S, Hiraoka KD, Namba K, Minamino T 2013. Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation. J. Bacteriol. 195:474–81
    [Google Scholar]
  110. 110. 
    Morimoto YV, Nakamura S, Kami-ike N, Namba K, Minamino T 2010. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Mol. Microbiol. 78:1117–29
    [Google Scholar]
  111. 111. 
    Motaleb MA, Pitzer JE, Sultan SZ, Liu J 2011. A novel gene inactivation system reveals altered periplasmic flagellar orientation in a Borrelia burgdorferi fliL mutant. J. Bacteriol. 193:3324–31
    [Google Scholar]
  112. 112. 
    Mukherjee S, Kearns DB. 2014. The structure and regulation of flagella in Bacillus subtilis. Annu. Rev. Genet 48:319–40
    [Google Scholar]
  113. 113. 
    Muramoto K, Sugiyama S, Cragoe EJ Jr., Imae Y 1994. Successive inactivation of the force-generating units of sodium-driven bacterial flagellar motors by a photoreactive amiloride analog. J. Biol. Chem. 269:3374–80
    [Google Scholar]
  114. 114. 
    Nishihara Y, Kitao A. 2015. Gate-controlled proton diffusion and protonation-induced ratchet motion in the stator of the bacterial flagellar motor. PNAS 112:7737–42
    [Google Scholar]
  115. 115. 
    Nord AL, Sowa Y, Steel BC, Lo C-J, Berry RM 2017. Speed of the bacterial flagellar motor near zero load depends on the number of stator units. PNAS 114:11603–8
    [Google Scholar]
  116. 116. 
    Norman TM, Lord ND, Paulsson J, Losick R 2013. Memory and modularity in cell-fate decision making. Nature 503:481–86
    [Google Scholar]
  117. 117. 
    Packer HL, Armitage JP. 1994. The chemokinetic and chemotactic behavior of Rhodobacter sphaeroides: two independent responses. J. Bacteriol. 176:206–12
    [Google Scholar]
  118. 118. 
    Parkinson JS. 1974. Data processing by the chemotaxis machinery of Escherichia coli. Nature 252:317–19
    [Google Scholar]
  119. 119. 
    Parkinson JS, Revello PT. 1978. Sensory adaptation mutants of E. coli. Cell 15:1221–30
    [Google Scholar]
  120. 120. 
    Patridge JD, Nieto V, Harshey RM 2015. A new player at the flagellar motor: FliL controls both motor output and bias. mBio 6:e02367–14
    [Google Scholar]
  121. 121. 
    Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM 2010. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol. Cell 38:128–39
    [Google Scholar]
  122. 122. 
    Paulick A, Koerdt A, Lassak J, Huntley S, Wilms I et al. 2009. Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol. Microbiol. 71:836–50
    [Google Scholar]
  123. 123. 
    Phillips AM, Calvo RA, Kearns DB 2015. Functional activation of the flagellar type III secretion apparatus. PLOS Genet 11:e1005443
    [Google Scholar]
  124. 124. 
    Pilizota T, Brown MT, Leake MC, Branch RW, Berry RM, Armitage JP 2009. A molecular brake, not a clutch, stops the Rhodobacter sphaeroides flagellar motor. PNAS 106:11582–87First demonstration of molecular brake regulation on the flagellum.
    [Google Scholar]
  125. 125. 
    Poole PS, Armitage JP. 1988. Motility response of Rhodobacter sphaeroides to chemotactic stimulation. J. Bacteriol. 170:5673–79
    [Google Scholar]
  126. 126. 
    Porter SL, Wadhams GH, Armitage JP 2011. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9:153–65
    [Google Scholar]
  127. 127. 
    Porter SL, Wadhams GH, Martin AC, Byles ED, Lancaster DE, Armitage JP 2006. The CheYs of Rhodobacter sphaeroides. J. Biol. Chem 281:32694–704
    [Google Scholar]
  128. 128. 
    Postle K, Larsen RA. 2007. TonB-dependent energy transduction between outer and cytoplasmic membranes. BioMetals 20:453–65
    [Google Scholar]
  129. 129. 
    Pratt JT, Tamayo R, Tischler AD, Camilli A 2007. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J. Biol. Chem 282:12860–70
    [Google Scholar]
  130. 130. 
    Pultz IS, Christen M, Kulasekara HD, Kennard A, Kulasekara B, Miller SI 2012. The response threshold of Salmonella PilZ domain proteins is determined by their binding affinities for c-di-GMP. Mol. Microbiol. 86:1424–40
    [Google Scholar]
  131. 131. 
    Raha M, Sockett H, Macnab RM 1994. Characterization of the fliL gene in the flagellar regulon of Escherichia coli and Salmonella typhimurium. J. Bacteriol 176:2308–11
    [Google Scholar]
  132. 132. 
    Ravid S, Eisenbach M. 1984. Minimal requirements for rotation of bacterial flagella. J. Bacteriol. 158:1208–10
    [Google Scholar]
  133. 133. 
    Reid SW, Leake MC, Chandler JH, Lo C-J, Armitage JP, Berry RM 2006. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. PNAS 103:8066–71
    [Google Scholar]
  134. 134. 
    Ryjenkov DA, Simm R, Römling U, Gomelsky M 2006. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281:30310–14
    [Google Scholar]
  135. 135. 
    Ryu WS, Berry RM, Berg HC 2000. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403:444–47
    [Google Scholar]
  136. 136. 
    Schneiderberend M, Abdurachim K, Murray TS, Kazmierczak BI 2013. The GTPase activity of FlhF is dispensible for flagellar localization but not motility, in Pseudomonas aeruginosa. J. Bacteriol 195:1051–60
    [Google Scholar]
  137. 137. 
    Schoenhals GJ, Macnab RM. 1999. FliL is a membrane-associated component of the flagellar basal body of Salmonella. Microbiology 145:1769–75
    [Google Scholar]
  138. 138. 
    Segall JE, Ishihara A, Berg HC 1985. Chemotactic signaling in filamentous cells of Escherichia coli. J. Bacteriol 161:51–59
    [Google Scholar]
  139. 139. 
    Sertic V, Goulgakov NA. 1936. Bactériophages spécifique pour des variétés bactériennes flagellées. C. R. Soc. Biol. Paris 123:887–88
    [Google Scholar]
  140. 140. 
    Shioi J-I, Matsuura S, Imae Y 1980. Quantitative measurements of proton motive force and motility in Bacillus subtilis. J. Bacteriol 144:891–97
    [Google Scholar]
  141. 141. 
    Shrivastava A, Lele PP, Berg HC 2015. A rotary motor drives Flavobacterium gliding. Curr. Biol. 25:338–41
    [Google Scholar]
  142. 142. 
    Shrivastava D, Hsieh M-L, Khataokar A, Neidtich MB, Waters CM 2013. Cylcic di-GMP inhibits Vibrio cholerae motility by repressing induction of transcription and inducing extracellular polysaccharide production. Mol. Microbiol. 90:1262–76
    [Google Scholar]
  143. 143. 
    Silverman M, Matsumura P, Simon M 1976. The identification of the mot gene product with Escherichia coli-lambda hybrids. PNAS 73:3126–30
    [Google Scholar]
  144. 144. 
    Silverman M, Simon M. 1974. Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74The first flagellar tethering assay used to show that bacterial flagella generate force by rotation.
    [Google Scholar]
  145. 145. 
    Simm R, Morr M, Kader A, Nimtz M, Römling U 2004. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol. 53:1123–34
    [Google Scholar]
  146. 146. 
    Skare JT, Postle K. 1991. Evidence for a TonB-dependent energy transduction complex in Escherichia coli. Mol. Microbiol 5:2883–90
    [Google Scholar]
  147. 147. 
    Smith DR, Chapman MR. 2010. Economical evolution: microbes reduce the synthetic cost of extracellular proteins. mBio 3:e00131–10
    [Google Scholar]
  148. 148. 
    Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M et al. 2005. Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:916–19
    [Google Scholar]
  149. 149. 
    Stader J, Matsumura P, Vacante D, Dean GE, Macnab RM 1986. Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane. J. Bacteriol. 166:244–52
    [Google Scholar]
  150. 150. 
    Stewart MK, Cookson BT. 2014. Mutually repressing repressor functions and multi-layered cellular heterogeneity regulate bistable Salmonella fliC census. Mol. Microbiol. 94:1272–84
    [Google Scholar]
  151. 151. 
    Stocker BAD, Zinder ND, Lederberg J 1953. Transduction of flagellar characters in Salmonella. J. Gen. Microbiol 9:410–33
    [Google Scholar]
  152. 152. 
    Suatse-Olmos F, Domenzain C, Mireles-Rodríguez JC, Poggio S, Osorio A et al. 2010. The flagellar protein FliL is essential for swimming in Rhodobacter sphaeroides. J. Bacteriol 192:6230–39
    [Google Scholar]
  153. 153. 
    Subramanian S, Gao X, Dann CE III, Kearns DB 2018. MotI (DgrA) acts as a molecular clutch on the flagellar stator protein MotA in Bacillus subtilis. PNAS 114:13537–42
    [Google Scholar]
  154. 154. 
    Takekawa N, Nishiyama M, Kaneseki T, Kanai T, Atomi H et al. 2015. Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium. Sci. Rep. 5:12711
    [Google Scholar]
  155. 155. 
    Takekawa N, Terahara N, Kato T, Gohara M, Mayanagi K et al. 2016. The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium. Sci. Rep. 6:31526
    [Google Scholar]
  156. 156. 
    Terahara N, Sano M, Ito M 2012. A Bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+. PLOS ONE 7:e46248
    [Google Scholar]
  157. 157. 
    Thomas DR, Francis NR, Xu C, DeRosier DJ 2006. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J. Bacteriol. 188:7039–48
    [Google Scholar]
  158. 158. 
    Tipping MJ, Delalez NJ, Lim R, Berry RM, Armitage JP 2013. Load-dependent assembly of the bacterial flagellar motor. mBio 4:e00551
    [Google Scholar]
  159. 159. 
    Tipping MJ, Steel BC, Delalez NJ, Berry RM, Armitage JP 2013. Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Mol. Microbiol. 87:338–47
    [Google Scholar]
  160. 160. 
    Toutain CM, Caizza NC, Zegans ME, O'Toole GA 2007. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Res. Microbiol 158:471–77
    [Google Scholar]
  161. 161. 
    Toutain CM, Zegans ME, O'Toole GA 2005. Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J. Bacteriol 187:771–77
    [Google Scholar]
  162. 162. 
    Turner L, Ryu WS, Berg HC 2000. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182:2793–801
    [Google Scholar]
  163. 163. 
    Van Way SM, Hosking ER, Braun TF, Manson MD 2000. Mot protein assembly into the bacterial flagellum: a model based on mutation analysis of the motB gene. J. Mol. Biol. 297:7–24
    [Google Scholar]
  164. 164. 
    Welch M, Oosawa K, Aizawa S-I, Eisenbach M 1993. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. PNAS 90:8787–91
    [Google Scholar]
  165. 165. 
    Wirebrand L, Österberg S, López-Sánchez A, Govantes F, Shingler V 2018. PP4397/FlgZ provides the link between PP2258 c-di-GMP signaling and altered motility in Pseudomonas putida. Sci. Rep 8:12205
    [Google Scholar]
  166. 166. 
    Zhou J, Blair DF. 1997. Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J. Mol. Biol. 273:428–39
    [Google Scholar]
  167. 167. 
    Zhou J, Fazzio RT, Blair DF 1995. Membrane topology of the MotA protein of Escherichia coli. J. Mol. Biol 251:237–42
    [Google Scholar]
  168. 168. 
    Zhou J, Lloyd SA, Blair DF 1998. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. PNAS 95:6436–41Culmination of genetic evidence indicating that stator-FliG interaction generates torque.
    [Google Scholar]
  169. 169. 
    Zhou J, Sharp LL, Tang L, Lloyd SA, Billings S et al. 1998. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J. Bacteriol. 180:2729–35
    [Google Scholar]
  170. 170. 
    Zhu S, Kumar A, Kojima S, Homma M 2015. FliL associates with the stator to support torque generation of the sodium-driven polar flagellar motor of Vibrio. Mol. Microbiol 98:101–10
    [Google Scholar]
  171. 171. 
    Zhu S, Nishikino T, Hu B, Kojima S, Homma M, Liu J 2017. Molecular architecture of the sheathed polar flagellum in Vibrio alginolyticus. PNAS 114:10966–71
    [Google Scholar]
  172. 172. 
    Zhu S, Takao M, Li N, Sakuma M, Nishino Y et al. 2014. Conformational change in the periplasmic region of the flagellar stator coupled with the assembly around the rotor. PNAS 37:13523–28
    [Google Scholar]
  173. 173. 
    Zorraquino V, Garcia B, Latasa C, Echeverz M, Toledo-Arana A et al. 2013. Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. J. Bacteriol. 195:417–28
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115725
Loading
/content/journals/10.1146/annurev-micro-020518-115725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error