1932

Abstract

Chromatic acclimation (CA) encompasses a diverse set of molecular processes that involve the ability of cyanobacterial cells to sense ambient light colors and use this information to optimize photosynthetic light harvesting. The six known types of CA, which we propose naming CA1 through CA6, use a range of molecular mechanisms that likely evolved independently in distantly related lineages of the phylum. Together, these processes sense and respond to the majority of the photosynthetically relevant solar spectrum, suggesting that CA provides fitness advantages across a broad range of light color niches. The recent discoveries of several new CA types suggest that additional CA systems involving additional light colors and molecular mechanisms will be revealed in coming years. Here we provide a comprehensive overview of the currently known types of CA and summarize the molecular details that underpin CA regulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115738
2019-09-08
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-115738.html?itemId=/content/journals/10.1146/annurev-micro-020518-115738&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Acinas SG, Haverkamp THA, Huisman J, Stal LJ 2008. Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria). ISME J 3:31–46
    [Google Scholar]
  2. 2. 
    Alvey RM, Bezy RP, Frankenberg-Dinkel N, Kehoe DM 2007. A light regulated OmpR-class promoter element coordinates light harvesting protein and chromophore biosynthetic enzyme gene expression. Mol. Microbiol. 64:319–32
    [Google Scholar]
  3. 3. 
    Alvey RM, Karty JA, Roos E, Reilly JP, Kehoe DM 2003. Lesions in phycoerythrin chromophore biosynthesis in Fremyella diplosiphon reveal coordinated light regulation of apoprotein and pigment biosynthetic enzyme gene expression. Plant Cell 15:2448–63
    [Google Scholar]
  4. 4. 
    Appleby JL, Parkinson JS, Bourret RB 1996. Signal transduction via the multi-step phosphorelay: Not necessarily a road less traveled. Cell 86:845–48
    [Google Scholar]
  5. 5. 
    Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM 2005. The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol. Rev. 29:231–62
    [Google Scholar]
  6. 6. 
    Averina S, Velichko N, Senatskaya E, Pinevich A 2018. Far-red light photoadaptations in aquatic cyanobacteria. Hydrobiologia 813:1–17
    [Google Scholar]
  7. 7. 
    Behrendt L, Brejnrod A, Schliep M, Sorensen SJ, Larkum AWD, Kuhl M 2015. Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium. ISME J 9:2108–11
    [Google Scholar]
  8. 8. 
    Bennett A, Bogorad L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 58:419–35
    [Google Scholar]
  9. 9. 
    Bezy RP, Wiltbank L, Kehoe DM 2011. Light-dependent attenuation of phycoerythrin gene expression reveals convergent evolution of green light sensing in cyanobacteria. PNAS 108:18542–47
    [Google Scholar]
  10. 10. 
    Bordowitz JR, Montgomery BL. 2008. Photoregulation of cellular morphology during complementary chromatic adaptation requires sensor-kinase-class protein RcaE in Fremyella diplosiphon.. J. Bacteriol 190:4069–74
    [Google Scholar]
  11. 11. 
    Brown II, Bryant DA, Casamatta D, Thomas-Keprta KL, Sarkisova SA et al. 2010. Polyphasic characterization of a thermotolerant siderophilic filamentous cyanobacterium that produces intracellular iron deposits. Appl. Environ. Microbiol. 76:6664–72
    [Google Scholar]
  12. 12. 
    Bussell AN, Kehoe DM. 2013. Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria. PNAS 110:12834–39
    [Google Scholar]
  13. 13. 
    Butler WL, Norris KH, Siegelman HW, Hendricks SB 1959. Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. PNAS 45:1703–8
    [Google Scholar]
  14. 14. 
    Chen M, Floetenmeyer M, Bibby TS 2009. Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina. FEBS Lett 583:2535–39
    [Google Scholar]
  15. 15. 
    Chiang GG, Schaefer MR, Grossman AR 1992. Complementation of a red-light-indifferent cyanobacterial mutant. PNAS 89:9415–19
    [Google Scholar]
  16. 16. 
    Cobley JG, Clark AC, Weerasurya S, Queseda FA, Xiao JY et al. 2002. CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR). Mol. Microbiol. 44:1517–31
    [Google Scholar]
  17. 17. 
    Collier JL, Palenik B. 2003. Phycoerythrin-containing picoplankton in the Southern California Bight. Deep-Sea Res. Part II Top. Stud. Oceanogr. 50:2405–22
    [Google Scholar]
  18. 18. 
    Conley PB, Lemaux PG, Grossman AR 1985. Cyanobacterial light-harvesting complex subunits encoded in two red light-induced transcripts. Science 230:550–53
    [Google Scholar]
  19. 19. 
    Conley PB, Lemaux PG, Grossman AR 1988. Molecular characterization and evolution of sequences encoding light-harvesting components in the chromatically adapting cyanobacterium Fremyella diplosiphon. J. Mol. Biol 199:447–65
    [Google Scholar]
  20. 20. 
    Deng GP, Liu F, Liu XW, Zhao JD 2012. Significant energy transfer from CpcG2-phycobilisomes to photosystem I in the cyanobacterium Synechococcus sp. PCC 7002 in the absence of ApcD-dependent state transitions. FEBS Lett 586:2342–45
    [Google Scholar]
  21. 21. 
    Diakoff S, Scheibe J. 1973. Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol 51:382–85
    [Google Scholar]
  22. 22. 
    Ding WL, Hou YN, Tan ZZ, Jiang SP, Miao D et al. 2018. Far-red acclimating cyanobacterium as versatile source for bright fluorescent biomarkers. Biochim. Biophys. Acta Mol. Cell Res. 1865:1649–56
    [Google Scholar]
  23. 23. 
    Duxbury Z, Schliep M, Ritchie RJ, Larkum AWD, Chen M 2009. Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. Photosynth. Res. 101:69–75
    [Google Scholar]
  24. 24. 
    Engelmann TW. 1902. Untersuchungen über die qualitativen Beziehungen zwieschen Absorbtion des Lichtes und Assimilation in Pflanzenzellen. I. Das Mikrospectraphotometer, ein Apparat zur qualitativen Mikrospectralanalyse. II. Experimentelle Grundlangen zur Ermittelung der quantitativen Beziehungen zwieschen Assimilationsenergie und Absorptiongrösse. III. Bestimmung der Vertheilung der Energie im Spectrum von Sonnenlicht mittels Bacterien-methode und quantitativen Mikrospectralanalyse. Bot. Z. 42:81–105
    [Google Scholar]
  25. 25. 
    Everroad C, Six C, Partensky F, Thomas JC, Holtzendorff J, Wood AM 2006. Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp. J. Bacteriol. 188:3345–56
    [Google Scholar]
  26. 26. 
    Federspiel NA, Grossman AR. 1990. Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon. J. Bacteriol 172:4072–81
    [Google Scholar]
  27. 27. 
    Federspiel NA, Scott L. 1992. Characterization of a light-regulated gene encoding a new phycoerythrin-associated linker protein from the cyanobacterium Fremyella diplosiphon. J. Bacteriol 174:5994–98
    [Google Scholar]
  28. 28. 
    Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL et al. 2013. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. PNAS 110:9824–29
    [Google Scholar]
  29. 29. 
    Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC 2001. Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13:965–78
    [Google Scholar]
  30. 30. 
    Fujita Y, Hattori A. 1960. Effect of chromatic lights on phycobilin formation in a blue-green alga, Tolypothrix tenuis. Plant Cell Physiol. 1:293–303
    [Google Scholar]
  31. 31. 
    Fujita Y, Hattori A. 1962. Photochemical interconversion between precursors of phycobilin chromoproteins in Tolypothrix tenuis. Plant Cell Physiol 3:209–20
    [Google Scholar]
  32. 32. 
    Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ 2003. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl. Env. Microbiol. 69:2430–43
    [Google Scholar]
  33. 33. 
    Gaidukov N. 1902. Über den Einfluss farbigen Lichts auf die Färbung lebender Oscillarien. Abh. Preuss Akad. Wiss. 5:1–36
    [Google Scholar]
  34. 34. 
    Gaidukov N. 1903. Die farbervonderung bei den prozessen der komplementoren chromatischen adaptation. Ber. Dtsch. Bot. Ges. 21:517–22
    [Google Scholar]
  35. 35. 
    Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL 1997. Arac/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev. 61:393–410
    [Google Scholar]
  36. 36. 
    Gan F, Shen G, Bryant DA 2015. Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria. Life 5:4–24
    [Google Scholar]
  37. 37. 
    Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA 2014. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–17
    [Google Scholar]
  38. 38. 
    Gendel S, Ohad I, Bogorad L 1979. Control of phycoerythrin synthesis during chromatic adaptation. Plant Physiol 64:786–90
    [Google Scholar]
  39. 39. 
    Glazer AN. 1989. Light guides: directional energy transfer in a photosynthetic antenna. J. Biol. Chem. 264:6457–62
    [Google Scholar]
  40. 40. 
    Gloag RS, Ritchie RJ, Chen M, Larkum AWD, Quinnell RG 2007. Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the chlorophyll d-containing oxyphotobacterium Acaryochloris marina. Biochem. Biophys. Acta Bioenergetics 1767:127–35
    [Google Scholar]
  41. 41. 
    Gomez-Lojero C, Leyva-Castillo LE, Herrera-Salgado P, Barrera-Rojas J, Rios-Castro E, Gutierrez-Cirlos EB 2018. Leptolyngbya CCM 4, a cyanobacterium with far-red photoacclimation from Cuatro Cienegas Basin, Mexico. Photosynthetica 56:342–53
    [Google Scholar]
  42. 42. 
    Grébert T, Dore H, Partensky F, Farrant GK, Boss ES et al. 2018. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. PNAS 115:E2010–19
    [Google Scholar]
  43. 43. 
    Grossman AR, Schaefer MR, Chiang GG, Collier JL 1993. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Mol. Biol. Rev. 57:725–49
    [Google Scholar]
  44. 44. 
    Gutu A, Kehoe DM. 2011. Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. Mol. Plant 5:1–13
    [Google Scholar]
  45. 45. 
    Gutu A, Nesbit AD, Alverson AJ, Palmer JD, Kehoe DM 2013. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression. PNAS 110:16253–58
    [Google Scholar]
  46. 46. 
    Hattori A, Fujita Y. 1959. Effect of pre-illumination on the formation of phycobilin pigments in a blue-green alga, Tolypothrix tenuis. J. Biochem. 46:1259–61
    [Google Scholar]
  47. 47. 
    Haury JF, Bogorad L. 1977. Action spectra for phycobiliprotein synthesis in a chromatically adapting cyanophyte, Fremyella diplosiphon. Plant Physiol. 60:835–39
    [Google Scholar]
  48. 48. 
    Hernandez-Prieto MA, Li YQ, Postier BL, Blankenship RE, Chen M 2018. Far-red light promotes biofilm formation in the cyanobacterium Acaryochloris marina. Environ. Microbiol 20:535–45
    [Google Scholar]
  49. 49. 
    Herrera-Salgado P, Leyva-Castillo LE, Rios-Castro E, Gomez-Lojero C 2018. Complementary chromatic and far-red photoacclimations in Synechococcus ATCC 29403 (PCC 7335). I: The phycobilisomes, a proteomic approach. Photosynth. Res. 138:39–56
    [Google Scholar]
  50. 50. 
    Hirose Y, Misawa N, Yonekawa C, Nagao N, Watanabe M et al. 2017. Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria. DNA Res 24:387–96
    [Google Scholar]
  51. 51. 
    Hirose Y, Narikawa R, Katyama M, Ikeuchi M 2010. Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adaptor. PNAS 107:8854–59
    [Google Scholar]
  52. 52. 
    Hirose Y, Rockwell NC, Nishiyama K, Narikawa R, Ukaji Y et al. 2013. Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. PNAS 110:4974–79
    [Google Scholar]
  53. 53. 
    Hirose Y, Shimada T, Narikawa R, Katayama M, Ikeuchi M 2008. Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. PNAS 105:9528–33
    [Google Scholar]
  54. 54. 
    Ho MY, Gan F, Shen GZ, Bryant DA 2017. Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II. Characterization of phycobiliproteins produced during acclimation to far-red light. Photosynth. Res. 131:187–202
    [Google Scholar]
  55. 55. 
    Ho MY, Gan F, Shen GZ, Zhao C, Bryant DA 2017. Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335: I. Regulation of FaRLiP gene expression. Photosynth. Res. 131:173–86
    [Google Scholar]
  56. 56. 
    Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N et al. 1999. Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim. Biophys. Acta Bioenerg 1412:250–61
    [Google Scholar]
  57. 57. 
    Humily F, Farrant GK, Marie D, Partensky F, Mazard S et al. 2014. Development of a targeted metagenomic approach to study a genomic region involved in light harvesting in marine Synechococcus. FEMS Microbiol. Ecol 88:231–49
    [Google Scholar]
  58. 58. 
    Humily F, Partensky F, Six C, Farrant GK, Ratin M et al. 2013. A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus. PLOS ONE 8:e84459
    [Google Scholar]
  59. 59. 
    Ikeuchi M, Ishizuka T. 2008. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem. Photobiol. Sci. 7:1159–67
    [Google Scholar]
  60. 60. 
    Itoh S, Ohno T, Noji T, Yamakawa H, Komatsu H et al. 2015. Harvesting far-red light by chlorophyll f in photosystems I and II of unicellular cyanobacterium strain KC1. Plant Cell Physiol 56:2024–34
    [Google Scholar]
  61. 61. 
    Kahn K, Mazel D, Houmard J, Tandeau de Marsac N, Schaefer MR 1997. A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis. J. Bacteriol. 179:998–1006
    [Google Scholar]
  62. 62. 
    Kehoe DM, Grossman AR. 1996. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273:1409–12
    [Google Scholar]
  63. 63. 
    Kehoe DM, Grossman AR. 1997. New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J. Bacteriol. 179:3914–21
    [Google Scholar]
  64. 64. 
    Kehoe DM, Gutu A. 2006. Responding to color: The regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol. 57:127–50
    [Google Scholar]
  65. 65. 
    Kondo K, Geng XX, Katayama M, Ikeuchi M 2005. Distinct roles of CpcG1 and CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp PCC 6803. Photosynth. Res. 84:269–73
    [Google Scholar]
  66. 66. 
    Kondo K, Ochiai Y, Katayama M, Ikeuchi M 2007. The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna. Plant Physiol 144:1200–10
    [Google Scholar]
  67. 67. 
    Li L, Alvey RM, Bezy RP, Kehoe DM 2008. Inverse transcriptional activities during complementary chromatic adaptation are controlled by the response regulator RcaC binding to red and green light-responsive promoters. Mol. Microbiol. 68:286–97
    [Google Scholar]
  68. 68. 
    Li L, Kehoe DM. 2005. In vivo analysis of the roles of conserved aspartate and histidine residues within a complex response regulator. Mol. Microbiol. 55:1538–52
    [Google Scholar]
  69. 69. 
    Li Y, Vella N, Chen M 2018. Characterization of isolated photosystem I from Halomicronema hongdechloris, a chlorophyll f-producing cyanobacterium. Photosynthetica 56:306–15
    [Google Scholar]
  70. 70. 
    Li YQ, Lin YK, Garvey CJ, Birch D, Corkery RW et al. 2016. Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris. Biochem. Biophys. Acta Bioenerg 1857:107–14
    [Google Scholar]
  71. 71. 
    Liu HB, Jing HM, Wong THC, Chen BZ 2014. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. Env. Microbiol. Rep. 6:90–99
    [Google Scholar]
  72. 72. 
    Liu LN, Chen XL, Zhang YZ, Zhou BC 2005. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim. Biophys. Acta Bioenerg. 1708:133–42
    [Google Scholar]
  73. 73. 
    Lomax TL, Conley PB, Schilling J, Grossman AR 1987. Isolation and characterization of light-regulated phycobilisome linker polypeptide genes and their transcription as a polycistronic mRNA. J. Bacteriol. 169:2675–84
    [Google Scholar]
  74. 74. 
    Loughlin PC, Duxbury Z, Mugerwa TTM, Smith PMC, Willows RD, Chen M 2016. Spectral properties of bacteriophytochrome AM1_5894 in the chlorophyll d-containing cyanobacterium Acaryochloris marina. Sci. Rep 6:27547
    [Google Scholar]
  75. 75. 
    MacColl R. 1998. Cyanobacterial phycobilisomes. J. Struct. Biol. 124:311–34
    [Google Scholar]
  76. 76. 
    Majumder ELW, Wolf BM, Liu HJ, Berg RH, Timlin JA et al. 2017. Subcellular pigment distribution is altered under far-red light acclimation in cyanobacteria that contain chlorophyll f. Photosynth. Res 134:183–92
    [Google Scholar]
  77. 77. 
    Marquardt J, Senger H, Miyashita H, Miyachi S, Morschel E 1997. Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410:428–32
    [Google Scholar]
  78. 78. 
    Mazel D, Guglielmi G, Houmard J, Sidler W, Bryant DA, Tandeau de Marsac N 1986. Green light induces transcription of the phycoerythrin operon in the cyanobacterium Calothrix 7601. Nucleic Acids Res 14:8279–90
    [Google Scholar]
  79. 79. 
    Mobberley JM, Lindemann SR, Bernstein HC, Moran JJ, Renslow RS et al. 2017. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat. FEMS Microbiol. Ecol. 93:13
    [Google Scholar]
  80. 80. 
    Montgomery BL, Lechno-Yossef S, Kerfeld CA 2016. Interrelated modules in cyanobacterial photosynthesis: the carbon-concentrating mechanism, photorespiration, and light perception. J. Exp. Bot. 67:2931–40
    [Google Scholar]
  81. 81. 
    Narikawa R, Enomoto G, Ni-Ni-Win Fushimi K, Ikeuchi M 2014. A new type of dual-cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle. Biochemistry 53:5051–59
    [Google Scholar]
  82. 82. 
    Narikawa R, Fushimi K, Ni-Ni-Win Ikeuchi M 2015. Red-shifted red/green-type cyanobacteriochrome AM1_1870g3 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Biochem. Biophys. Res. Commun 461:390–95
    [Google Scholar]
  83. 83. 
    Narikawa R, Nakajima T, Aono Y, Fushimi K, Enomoto G et al. 2015. A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Sci. Rep 5:10
    [Google Scholar]
  84. 84. 
    Nesbit AD, Whippo C, Hangarter RP, Kehoe DM 2015. Translation initiation factor 3 families: what are their roles in regulating cyanobacterial and chloroplast gene expression. ? Photosynth. Res. 126:147–59
    [Google Scholar]
  85. 85. 
    Oelmuller R, Grossman AR, Briggs WR 1988. Photoreversibility of the effect of red and green light-pulses on the accumulation in darkness of messenger-RNAs coding for phycocyanin and phycoerythrin in Fremyella diplosiphon. Plant Physiol 88:1084–91
    [Google Scholar]
  86. 86. 
    Ohki K, Fujita Y. 1978. Photocontrol of phycoerythrin formation in blue-green alga Tolypothrix tenuis growing in the dark. Plant Cell Physiol 19:7–15
    [Google Scholar]
  87. 87. 
    Ohki K, Watanabe M, Fujita Y 1982. Action of near UV and blue light on the photocontrol of phycobiliprotein formation: a complementary chromatic adaptation. Plant Cell Physiol 23:651–56
    [Google Scholar]
  88. 88. 
    Ohkubo S, Miyashita H. 2017. A niche for cyanobacteria producing chlorophyll f within a microbial mat. ISME J 11:2368–78
    [Google Scholar]
  89. 89. 
    Olson RJ, Chisholm SW, Zettler ER, Armbrust EV 1990. Pigments, size, and distribution of Synechococcus in the North-Atlantic and Pacific Oceans. Limnol. Oceanogr. 35:45–58
    [Google Scholar]
  90. 90. 
    Ong LJ, Glazer AN. 1991. Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins. J. Biol. Chem. 266:9515–27
    [Google Scholar]
  91. 91. 
    Ong LJ, Glazer AN, Waterbury JB 1984. An unusual phycoerythrin from a marine cyanobacterium. Science 224:80–83
    [Google Scholar]
  92. 92. 
    Palenik B. 2001. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67:991–94
    [Google Scholar]
  93. 93. 
    Pattanaik B, Busch AWU, Flu PS, Chen J, Montgomery BL 2014. Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon. Microbiology 160:992–1005
    [Google Scholar]
  94. 94. 
    Pattanaik B, Montgomery BL. 2010. FdTonB is involved in the photoregulation of cellular morphology during complementary chromatic adaptation in Fremyella diplosiphon. Microbiology 156:731–41
    [Google Scholar]
  95. 95. 
    Pattanaik B, Whitaker MJ, Montgomery BL 2012. Light quantity affects the regulation of cell shape in Fremyella diplosiphon. Front. Microbiol 3:170
    [Google Scholar]
  96. 96. 
    Peled-Zehavi H, Danon A. 2007. Translation and translational regulation in chloroplasts. Cell and Molecular Biology of Plastids R Block 249–81 Berlin/Heidelberg: Springer-Verlag
    [Google Scholar]
  97. 97. 
    Postius C, Neuschaefer-Rube O, Haid V, Boger P 2001. N2-fixation and complementary chromatic adaptation in non-heterocystous cyanobacteria from Lake Constance. FEMS Microbiol. Ecol. 37:117–25
    [Google Scholar]
  98. 98. 
    Rockwell NC, Lagarias JC. 2010. A brief history of phytochromes. Chem. Phys. Chem. 11:1172–80
    [Google Scholar]
  99. 99. 
    Rockwell NC, Su YS, Lagarias JC 2006. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57:837–58
    [Google Scholar]
  100. 100. 
    Rohnke BA, Singh SP, Pattanaik B, Montgomery BL 2018. RcaE-dependent regulation of carboxysome structural proteins has a central role in environmental determination of carboxysome morphology and abundance in Fremyella diplosiphon. mSphere 3:e00617–17
    [Google Scholar]
  101. 101. 
    Sanfilippo JE, Nguyen AA, Garczarek L, Karty JA, Pokhrel S et al. 2019. Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus. PNAS 116:6457–62
    [Google Scholar]
  102. 102. 
    Sanfilippo JE, Nguyen AA, Karty JA, Shukla A, Schluchter WM et al. 2016. Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus. PNAS 113:6077–82
    [Google Scholar]
  103. 103. 
    Scheer H, Zhao KH. 2008. Biliprotein maturation: the chromophore attachment. Mol. Microbiol. 68:263–76
    [Google Scholar]
  104. 104. 
    Schleif R. 2010. AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiol. Rev. 34:779–96
    [Google Scholar]
  105. 105. 
    Seib LO, Kehoe DM. 2002. A turquoise mutant genetically separates expression of genes encoding phycoerythrin and its associated linker peptides. J. Bacteriol. 184:962–70
    [Google Scholar]
  106. 106. 
    Shui J, Saunders E, Needleman R, Nappi M, Cooper J et al. 2009. Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. Plant Cell Physiol 50:1507–21
    [Google Scholar]
  107. 107. 
    Shukla A, Biswas A, Blot N, Partensky F, Karty JA et al. 2012. Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus. PNAS 109:20136–41
    [Google Scholar]
  108. 108. 
    Singh SP, Montgomery BL. 2012. Reactive oxygen species are involved in the morphology-determining mechanism of Fremyella diplosiphon cells during complementary chromatic adaptation. Microbiology 158:2235–45
    [Google Scholar]
  109. 109. 
    Singh SP, Montgomery BL. 2014. Morphogenes bolA and mreB mediate the photoregulation of cellular morphology during complementary chromatic acclimation in Fremyella diplosiphon. Mol. Microbiol 93:167–82
    [Google Scholar]
  110. 110. 
    Singh SP, Montgomery BL. 2015. Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon. Front. Microbiol 6:1215
    [Google Scholar]
  111. 111. 
    Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A et al. 2007. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259
    [Google Scholar]
  112. 112. 
    Stomp M, Huisman J, Stal LJ, Matthijs HCP 2007. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J 1:271–82
    [Google Scholar]
  113. 113. 
    Stomp M, van Dijk MA, van Overzee HM, Wortel MT, Sigon CA et al. 2008. The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. Am. Nat. 172:E169–85
    [Google Scholar]
  114. 114. 
    Stowe WC, Brodie-Kommit J, Stowe-Evans E 2011. Characterization of complementary chromatic adaptation in Gloeotrichia UTEX 583 and identification of a transposon-like insertion in the cpeBA operon. Plant Cell Physiol 52:553–62
    [Google Scholar]
  115. 115. 
    Stowe-Evans EL, Ford J, Kehoe DM 2004. Genomic DNA microarray analysis: identification of new genes regulated by light color in the cyanobacterium Fremyella diplosiphon.. J. Bacteriol 186:4338–49
    [Google Scholar]
  116. 116. 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K et al. 2015. Ocean plankton: structure and function of the global ocean microbiome. Science 348:1261359
    [Google Scholar]
  117. 117. 
    Tandeau de Marsac N. 1977. Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 130:82–91
    [Google Scholar]
  118. 118. 
    Tandeau de Marsac N, Cohen-Bazire G 1977. Molecular composition of cyanobacterial phycobilisomes. PNAS 74:1635–39
    [Google Scholar]
  119. 119. 
    Terauchi K, Montgomery BL, Grossman AR, Lagarias JC, Kehoe DM 2004. RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness. Mol. Microbiol. 51:567–77
    [Google Scholar]
  120. 120. 
    Thompson AW, van den Engh G 2016. A multi-laser flow cytometry method to measure single cell and population-level relative fluorescence action spectra for the targeted study and isolation of phytoplankton in complex assemblages. Limnol. Oceanogr. Methods 14:39–49
    [Google Scholar]
  121. 121. 
    Tobes R, Ramos JL. 2002. AraC-XylS database: a family of positive transcriptional regulators in bacteria. Nucleic Acids Res 30:318–21
    [Google Scholar]
  122. 122. 
    Vogelmann TC, Scheibe J. 1978. Action spectra for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143:233–39
    [Google Scholar]
  123. 123. 
    Watabe K, Mimuro M, Tsuchiya T 2015. Establishment of the forward genetic analysis of the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017 by applying in vivo transposon mutagenesis system. Photosynth. Res. 125:255–65
    [Google Scholar]
  124. 124. 
    Watanabe M, Ikeuchi M. 2013. Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth. Res. 116:265–76
    [Google Scholar]
  125. 125. 
    Watanabe M, Semchonok DA, Webber-Birungi MT, Ehira S, Kondo K et al. 2014. Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria. PNAS 111:2512–7
    [Google Scholar]
  126. 126. 
    Wiethaus J, Busch AWU, Dammeyer T, Frankenberg-Dinkel N 2010. Phycobiliproteins in Prochlorococcus marinus: biosynthesis of pigments and their assembly into proteins. Eur. J. Cell Biol. 89:1005–10
    [Google Scholar]
  127. 127. 
    Wiltbank LB, Kehoe DM. 2016. Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow and red light. mBio 7:e02130–15
    [Google Scholar]
  128. 128. 
    Wiltbank LB, Kehoe DM. 2019. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat. Rev. Microbiol. 17:37–50
    [Google Scholar]
  129. 129. 
    Wood AM, Horan PK, Muirhead K, Phinney DA, Yentsch CM, Waterbury JB 1985. Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy, and flow-cytometry. Limnol. Oceanogr. 30:1303–15
    [Google Scholar]
  130. 130. 
    Xia XM, Partensky F, Garczarek L, Suzuki K, Guo C et al. 2017. Phylogeography and pigment type diversity of Synechococcus cyanobacteria in surface waters of the northwestern Pacific Ocean. Environ. Microbiol. 19:142–58
    [Google Scholar]
  131. 131. 
    Xu QZ, Han JX, Tang QY, Ding WL, Miao D et al. 2016. Far-red light photoacclimation: Chromophorylation of FR induced α- and β-subunits of allophycocyanin from Chroococcidiopsis thermalis sp. PCC7203. Biochim. Biophys. Acta Bioenerg. 1857:1607–16
    [Google Scholar]
  132. 132. 
    Zhao C, Gan F, Shen GZ, Bryant DA 2015. RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP). Front. Microbiol. 6:1303
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115738
Loading
/content/journals/10.1146/annurev-micro-020518-115738
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error