1932

Abstract

Helical cell shape appears throughout the bacterial phylogenetic tree. Recent exciting work characterizing cell shape mutants in a number of curved and helical is beginning to suggest possible mechanisms and provide tools to assess functional significance. We focus here on , , , and , organisms from three classes of that live in diverse environments, from freshwater and saltwater to distinct compartments within the gastrointestinal tract of humans and birds. Comparisons among these bacteria reveal common themes as well as unique solutions to the task of maintaining cell curvature. While motility appears to be influenced in all these bacteria when cell shape is perturbed, consequences on niche colonization are diverse, suggesting the need to consider additional selective pressures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115919
2019-09-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-115919.html?itemId=/content/journals/10.1146/annurev-micro-020518-115919&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aaron M, Charbon G, Lam H, Schwarz H, Vollmer W, Jacobs-Wagner C 2007. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol. Microbiol 64:938–52
    [Google Scholar]
  2. 2. 
    An DR, Im HN, Jang JY, Kim HS, Kim J et al. 2016. Structural basis of the heterodimer formation between cell shape-determining proteins Csd1 and Csd2 from Helicobacter pylori. PLOS ONE 11:e0164243
    [Google Scholar]
  3. 3. 
    Ausmees N, Kuhn JR, Jacobs-Wagner C 2003. The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115:705–13
    [Google Scholar]
  4. 4. 
    Baltrus DA, Amieva MR, Covacci A, Lowe TM, Merrell DS et al. 2009. The complete genome sequence of Helicobacter pylori strain G27. J. Bacteriol. 191:447–48
    [Google Scholar]
  5. 5. 
    Bartlett TM, Bratton BP, Duvshani A, Miguel A, Sheng Y et al. 2017. A periplasmic polymer curves Vibrio cholerae and promotes pathogenesis. Cell 168:172–85.e15
    [Google Scholar]
  6. 6. 
    Berg HC, Turner L. 1979. Movement of microorganisms in viscous environments. Nature 278:349–51
    [Google Scholar]
  7. 7. 
    Biteen JS, Thompson MA, Tselentis NK, Bowman GR, Shapiro L, Moerner WE 2008. Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat. Methods 5:947–49
    [Google Scholar]
  8. 8. 
    Blair KM, Mears KS, Taylor JA, Fero J, Jones LA et al. 2018. The Helicobacter pylori cell shape promoting protein Csd5 interacts with the cell wall, MurF, and the bacterial cytoskeleton. Mol. Microbiol. 110:114–27
    [Google Scholar]
  9. 9. 
    Bonis M, Ecobichon C, Guadagnini S, Prevost MC, Boneca IG 2010. A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. Mol. Microbiol. 78:809–19
    [Google Scholar]
  10. 10. 
    Booth BA, Boesman-Finkelstein M, Finkelstein RA 1983. Vibrio cholerae soluble hemagglutinin/protease is a metalloenzyme. Infect. Immunity 42:639–44
    [Google Scholar]
  11. 11. 
    Burns AR, Guillemin K. 2017. The scales of the zebrafish: host-microbiota interactions from proteins to populations. Curr. Opin. Microbiol. 38:137–41
    [Google Scholar]
  12. 12. 
    Butler SM, Camilli A. 2004. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. PNAS 101:5018–23
    [Google Scholar]
  13. 13. 
    Cabeen MT, Charbon G, Vollmer W, Born P, Ausmees N et al. 2009. Bacterial cell curvature through mechanical control of cell growth. EMBO J 28:1208–19
    [Google Scholar]
  14. 14. 
    Cabeen MT, Herrmann H, Jacobs-Wagner C 2011. The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function. Cytoskeleton 68:205–19
    [Google Scholar]
  15. 15. 
    Cabeen MT, Murolo MA, Briegel A, Bui NK, Vollmer W et al. 2010. Mutations in the lipopolysaccharide biosynthesis pathway interfere with crescentin-mediated cell curvature in Caulobacter crescentus. J. Bacteriol 192:3368–78
    [Google Scholar]
  16. 16. 
    Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH et al. 2007. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules 8:1580–86
    [Google Scholar]
  17. 17. 
    Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I et al. 2009. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. PNAS 106:14321–26
    [Google Scholar]
  18. 18. 
    Chaput C, Labigne A, Boneca IG 2007. Characterization of Helicobacter pylori lytic transglycosylases Slt and MltD. J. Bacteriol. 189:422–29
    [Google Scholar]
  19. 19. 
    Charbon G, Cabeen MT, Jacobs-Wagner C 2009. Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. Genes Dev 23:1131–44
    [Google Scholar]
  20. 20. 
    Constantino MA, Jabbarzadeh M, Fu HC, Bansil R 2016. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. Sci. Adv. 2:e1601661
    [Google Scholar]
  21. 21. 
    Cooper S. 2001. Helical growth and the curved shape of Vibrio cholerae. FEMS Microbiol. Lett 198:123–24
    [Google Scholar]
  22. 22. 
    Debowski AW, Walton SM, Chua EG, Tay AC, Liao T et al. 2017. Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection. PLOS Pathog 13:e1006464
    [Google Scholar]
  23. 23. 
    Drescher K, Dunkel J, Nadell CD, van Teeffelen S, Grnja I et al. 2016. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. PNAS 113:E2066–72
    [Google Scholar]
  24. 24. 
    Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL 2014. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24:50–55
    [Google Scholar]
  25. 25. 
    Dye NA, Pincus Z, Fisher IC, Shapiro L, Theriot JA 2011. Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter. Mol. Microbiol 81:368–94
    [Google Scholar]
  26. 26. 
    Eaton KA, Brooks CL, Morgan DR, Krakowka S 1991. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immunity 59:2470–75
    [Google Scholar]
  27. 27. 
    Eaton KA, Suerbaum S, Josenhans C, Krakowka S 1996. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immunity 64:2445–48
    [Google Scholar]
  28. 28. 
    El Ghachi M, Mattei PJ, Ecobichon C, Martins A, Hoos S et al. 2011. Characterization of the elongasome core PBP2: MreC complex of Helicobacter pylori. Mol. Microbiol 82:68–86
    [Google Scholar]
  29. 29. 
    Esson D, Gupta S, Bailey D, Wigley P, Wedley A et al. 2017. Identification and initial characterisation of a protein involved in Campylobacter jejuni cell shape. Microb. Pathog. 104:202–11
    [Google Scholar]
  30. 30. 
    Esson D, Mather AE, Scanlan E, Gupta S, de Vries SP et al. 2016. Genomic variations leading to alterations in cell morphology of Campylobacter spp. Sci. Rep. 6:38303
    [Google Scholar]
  31. 31. 
    Esue O, Rupprecht L, Sun SX, Wirtz D 2010. Dynamics of the bacterial intermediate filament crescentin in vitro and in vivo. PLOS ONE 5:e8855
    [Google Scholar]
  32. 32. 
    Ferrero RL, Lee A. 1988. Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rod-shaped bacteria. J. Gen. Microbiol. 134:53–59
    [Google Scholar]
  33. 33. 
    Figge RM, Divakaruni AV, Gober JW 2004. MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol. Microbiol 51:1321–32
    [Google Scholar]
  34. 34. 
    Freter R, O'Brien PC. 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: chemotactic responses of Vibrio cholerae and description of motile nonchemotactic mutants. Infect. Immunity 34:215–21
    [Google Scholar]
  35. 35. 
    Freter R, O'Brien PC. 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae mutants in infant mice. Infect. Immunity 34:222–33
    [Google Scholar]
  36. 36. 
    Freter R, O'Brien PC, Macsai MS 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect. Immunity 34:234–40
    [Google Scholar]
  37. 37. 
    Frirdich E, Biboy J, Adams C, Lee J, Ellermeier J et al. 2012. Peptidoglycan-modifying enzyme Pgp1 is required for helical cell shape and pathogenicity traits in Campylobacter jejuni. PLOS Pathog 8:e1002602
    [Google Scholar]
  38. 38. 
    Frirdich E, Biboy J, Huynh S, Parker CT, Vollmer W, Gaynor EC 2017. Morphology heterogeneity within a Campylobacter jejuni helical population: the use of calcofluor white to generate rod-shaped C. jejuni 81–176 clones and the genetic determinants responsible for differences in morphology within 11168 strains. Mol. Microbiol. 104:948–71
    [Google Scholar]
  39. 39. 
    Frirdich E, Vermeulen J, Biboy J, Soares F, Taveirne ME et al. 2014. Peptidoglycan LD-carboxypeptidase Pgp2 influences Campylobacter jejuni helical cell shape and pathogenic properties and provides the substrate for the DL-carboxypeptidase Pgp1. J. Biol. Chem. 289:8007–18
    [Google Scholar]
  40. 40. 
    Gaynor EC, Cawthraw S, Manning G, MacKichan JK, Falkow S, Newell DG 2004. The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J. Bacteriol. 186:503–17
    [Google Scholar]
  41. 41. 
    Goley ED, Comolli LR, Fero KE, Downing KH, Shapiro L 2010. DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter. Mol. Microbiol 77:56–73
    [Google Scholar]
  42. 42. 
    Greenberg EP, Canale-Parola E. 1977. Motility of flagellated bacteria in viscous environments. J. Bacteriol. 132:356–58
    [Google Scholar]
  43. 43. 
    Greenberg EP, Canale-Parola E. 1977. Relationship between cell coiling and motility of spirochetes in viscous environments. J. Bacteriol. 131:960–69
    [Google Scholar]
  44. 44. 
    Guentzel MN, Berry LJ. 1975. Motility as a virulence factor for Vibrio cholerae. Infect. Immunity 11:890–97
    [Google Scholar]
  45. 45. 
    Ha R, Frirdich E, Sychantha D, Biboy J, Taveirne ME et al. 2016. Accumulation of peptidoglycan O-acetylation leads to altered cell wall biochemistry and negatively impacts pathogenesis factors of Campylobacter jejuni. J. Biol. Chem 291:22686–702
    [Google Scholar]
  46. 46. 
    Howitt MR, Lee JY, Lertsethtakarn P, Vogelmann R, Joubert LM et al. 2011. ChePep controls Helicobacter pylori infection of the gastric glands and chemotaxis in the Epsilonproteobacteria. mBio 2:4e00098–11
    [Google Scholar]
  47. 47. 
    Hyon Y, Marcos Powers TR, Stocker R, Fu HC et al. 2012. The wiggling trajectories of bacteria. J. Fluid Mech. 705:58–76
    [Google Scholar]
  48. 48. 
    Ingerson-Mahar M, Briegel A, Werner JN, Jensen GJ, Gitai Z 2010. The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat. Cell Biol. 12:739–46
    [Google Scholar]
  49. 49. 
    Irnov I, Wang Z, Jannetty ND, Bustamante JA, Rhee KY, Jacobs-Wagner C 2017. Crosstalk between the tricarboxylic acid cycle and peptidoglycan synthesis in Caulobacter crescentus through the homeostatic control of α-ketoglutarate. PLOS Genet 13:8e1006978
    [Google Scholar]
  50. 50. 
    Jackson KM, Schwartz C, Wachter J, Rosa PA, Stewart PE 2018. A widely conserved bacterial cytoskeletal component influences unique helical shape and motility of the spirochete Leptospira biflexa. Mol. Microbiol 108:77–89
    [Google Scholar]
  51. 51. 
    Karim QN, Logan RP, Puels J, Karnholz A, Worku ML 1998. Measurement of motility of Helicobacter pylori, Campylobacter jejuni, and Escherichia coli by real time computer tracking using the Hobson BacTracker. J. Clin. Pathol. 51:623–28
    [Google Scholar]
  52. 52. 
    Keilberg D, Zavros Y, Shepherd B, Salama NR, Ottemann KM 2016. Spatial and temporal shifts in bacterial biogeography and gland occupation during the development of a chronic infection. mBio 7:5e0175–16
    [Google Scholar]
  53. 53. 
    Kim HS, Kim J, Im HN, An DR, Lee M et al. 2014. Structural basis for the recognition of muramyltripeptide by Helicobacter pylori Csd4, a D,L-carboxypeptidase controlling the helical cell shape. Acta Crystallogr. D Biol. Crystallogr. 70:2800–12
    [Google Scholar]
  54. 54. 
    Kim JS, Sun SX. 2009. Morphology of Caulobacter crescentus and the mechanical role of crescentin. Biophys. J. 96:L47–49
    [Google Scholar]
  55. 55. 
    Koster S, Weitz DA, Goldman RD, Aebi U, Herrmann H 2015. Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr. Opin. Cell Biol. 32:82–91
    [Google Scholar]
  56. 56. 
    Kuhn J, Briegel A, Morschel E, Kahnt J, Leser K et al. 2011. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J 29:327–39
    [Google Scholar]
  57. 57. 
    Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S et al. 2012. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew. Chem. 51:12519–23
    [Google Scholar]
  58. 58. 
    Lacayo CI, Pincus Z, VanDuijn MM, Wilson CA, Fletcher DA et al. 2007. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics. PLOS Biol 5:e233
    [Google Scholar]
  59. 59. 
    Lee SH, Butler SM, Camilli A 2001. Selection for in vivo regulators of bacterial virulence. PNAS 98:6889–94
    [Google Scholar]
  60. 60. 
    Lew MD, Lee SF, Ptacin JL, Lee MK, Twieg RJ et al. 2011. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. PNAS 108:E1102–10
    [Google Scholar]
  61. 61. 
    Liu B, Gulino M, Morse M, Tang JX, Powers TR, Breuer KS 2014. Helical motion of the cell body enhances Caulobacter crescentus motility. PNAS 111:11252–56
    [Google Scholar]
  62. 62. 
    Lowenthal AC, Hill M, Sycuro LK, Mehmood K, Salama NR, Ottemann KM 2009. Functional analysis of the Helicobacter pylori flagellar switch proteins. J. Bacteriol. 191:7147–56
    [Google Scholar]
  63. 63. 
    Magariyama Y, Sugiyama S, Muramoto K, Kawagishi I, Imae Y, Kudo S 1995. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys. J. 69:2154–62
    [Google Scholar]
  64. 64. 
    Martínez LE, Hardcastle JM, Wang J, Pincus Z, Tsang J et al. 2016. Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments. Mol. Microbiol. 99:88–110
    [Google Scholar]
  65. 65. 
    Martínez LE, O'Brien VP, Leverich CK, Knoblaugh SE, Salama NR 2019. Non-helical Helicobacter pylori show altered gland colonization and elicit less gastric pathology during chronic infection. Infect. Immun. 87:e00904–18
    [Google Scholar]
  66. 66. 
    McLennan MK, Ringoir DD, Frirdich E, Svensson SL, Wells DH et al. 2008. Campylobacter jejuni biofilms up-regulated in the absence of the stringent response utilize a calcofluor white-reactive polysaccharide. J. Bacteriol. 190:1097–107
    [Google Scholar]
  67. 67. 
    Meier EL, Razavi S, Inoue T, Goley ED 2016. A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus. Mol. Microbiol 101:265–80
    [Google Scholar]
  68. 68. 
    Millet YA, Alvarez D, Ringgaard S, von Andrian UH, Davis BM, Waldor MK 2014. Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLOS Pathog 10:e1004405
    [Google Scholar]
  69. 69. 
    Mirbagheri SA, Fu HC. 2016. Helicobacter pylori couples motility and diffusion to actively create a heterogeneous complex medium in gastric mucus. Phys. Rev. Lett. 116:19198101
    [Google Scholar]
  70. 70. 
    Moll A, Dorr T, Alvarez L, Davis BM, Cava F, Waldor MK 2015. A D, D-carboxypeptidase is required for Vibrio cholerae halotolerance. Environ. Microbiol. 17:527–40
    [Google Scholar]
  71. 71. 
    Moll A, Schlimpert S, Briegel A, Jensen GJ, Thanbichler M 2010. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus. Mol. Microbiol 77:90–107
    [Google Scholar]
  72. 72. 
    Naito M, Frirdich E, Fields JA, Pryjma M, Li J et al. 2010. Effects of sequential Campylobacter jejuni 81–176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis. J. Bacteriol. 192:2182–92
    [Google Scholar]
  73. 73. 
    Nakamura H, Yoshiyama H, Takeuchi H, Mizote T, Okita K, Nakazawa T 1998. Urease plays an important role in the chemotactic motility of Helicobacter pylori in a viscous environment. Infect. Immunity 66:4832–37
    [Google Scholar]
  74. 74. 
    Paul D, Achouri S, Yoon YZ, Herre J, Bryant CE, Cicuta P 2013. Phagocytosis dynamics depends on target shape. Biophys. J. 105:1143–50
    [Google Scholar]
  75. 75. 
    Persat A, Stone HA, Gitai Z 2014. The curved shape of Caulobacter crescentus enhances surface colonization in flow. Nat. Commun. 5:3824
    [Google Scholar]
  76. 76. 
    Peyer KE, Zhang L, Nelson BJ 2013. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5:1259–72
    [Google Scholar]
  77. 77. 
    Poggio S, Takacs CN, Vollmer W, Jacobs-Wagner C 2010. A protein critical for cell constriction in the Gram-negative bacterium Caulobacter crescentus localizes at the division site through its peptidoglycan-binding LysM domains. Mol. Microbiol. 77:74–89
    [Google Scholar]
  78. 78. 
    Rolig AS, Shanks J, Carter JE, Ottemann KM 2012. Helicobacter pylori requires TlpD-driven chemotaxis to proliferate in the antrum. Infect. Immunity 80:3713–20
    [Google Scholar]
  79. 79. 
    Sachs G, Weeks DL, Melchers K, Scott DR 2003. The gastric biology of Helicobacter pylori. Annu. Rev. Physiol 65:349–69
    [Google Scholar]
  80. 80. 
    Saurabh S, Perez AM, Comerci CJ, Shapiro L, Moerner WE 2016. Super-resolution imaging of live bacteria cells using a genetically directed, highly photostable fluoromodule. J. Am. Chem. Soc. 138:10398–401
    [Google Scholar]
  81. 81. 
    Sayi A, Kohler E, Hitzler I, Arnold I, Schwendener R et al. 2009. The CD4+ T cell-mediated IFN-γ response to Helicobacter infection is essential for clearance and determines gastric cancer risk. J. Immunol. 182:7085–101
    [Google Scholar]
  82. 82. 
    Schlomann BH, Wiles TJ, Wall ES, Guillemin K, Parthasarathy R 2018. Bacterial cohesion predicts spatial distribution in the larval zebrafish intestine. Biophys. J. 115:2271–77
    [Google Scholar]
  83. 83. 
    Schreiber S, Konradt M, Groll C, Scheid P, Hanauer G et al. 2004. The spatial orientation of Helicobacter pylori in the gastric mucus. PNAS 101:5024–29
    [Google Scholar]
  84. 84. 
    Schuech R, Hoehfurtner T, Smith D, Humphries S 2018. Motile curved bacteria are Pareto-optimal. bioRxiv 441139. https://doi.org/10.1101/441139
    [Crossref] [Google Scholar]
  85. 85. 
    Shapland EB, Reisinger SJ, Bajwa AK, Ryan KR 2011. An essential tyrosine phosphatase homolog regulates cell separation, outer membrane integrity, and morphology in Caulobacter crescentus. J. Bacteriol 193:4361–70
    [Google Scholar]
  86. 86. 
    Shi H, Bratton BP, Gitai Z, Huang KC 2018. How to build a bacterial cell: MreB as the foreman of E. coli construction. Cell 172:1294–305
    [Google Scholar]
  87. 87. 
    Silva AJ, Pham K, Benitez JA 2003. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. Microbiology 149:1883–91
    [Google Scholar]
  88. 88. 
    Specht M, Schatzle S, Graumann PL, Waidner B 2011. Helicobacter pylori possesses four coiled-coil-rich proteins that form extended filamentous structures and control cell shape and motility. J. Bacteriol. 193:4523–30
    [Google Scholar]
  89. 89. 
    Stahl M, Frirdich E, Vermeulen J, Badayeva Y, Li X et al. 2016. The helical shape of Campylobacter jejuni promotes in vivo pathogenesis by aiding transit through intestinal mucus and colonization of crypts. Infect. Immunity 84:3399–407
    [Google Scholar]
  90. 90. 
    Stahl M, Ries J, Vermeulen J, Yang H, Sham HP et al. 2014. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection. PLOS Pathog 10:e1004264
    [Google Scholar]
  91. 91. 
    Su C, Padra M, Constantino MA, Sharba S, Thorell A et al. 2018. Influence of the viscosity of healthy and diseased human mucins on the motility of Helicobacter pylori. Sci. Rep 8:9710
    [Google Scholar]
  92. 92. 
    Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA et al. 2010. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization. Cell 141:822–33
    [Google Scholar]
  93. 93. 
    Sycuro LK, Rule CS, Petersen TW, Wyckoff TJ, Sessler T et al. 2013. Flow cytometry-based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology. Mol. Microbiol. 90:869–83
    [Google Scholar]
  94. 94. 
    Sycuro LK, Wyckoff TJ, Biboy J, Born P, Pincus Z et al. 2012. Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential. PLOS Pathog 8:e1002603
    [Google Scholar]
  95. 95. 
    Szabady RL, Yanta JH, Halladin DK, Schofield MJ, Welch RA 2011. TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. Microbiology 157:516–25
    [Google Scholar]
  96. 96. 
    Taniguchi Y, Kimura K, Satoh K, Yoshida Y, Kihira K et al. 1995. Helicobacter pylori detected deep in gastric glands: an ultrastructural quantitative study. J. Clin. Gastroenterol. 21:Suppl. 1S169–73
    [Google Scholar]
  97. 97. 
    Taylor C, Allen A, Dettmar PW, Pearson JP 2004. Two rheologically different gastric mucus secretions with different putative functions. Biochim. Biophys. Acta Gen. Subj. 1674:131–38
    [Google Scholar]
  98. 98. 
    Taylor JA, Bratton BP, Sichel SR, Blair KM, Jacobs HM et al. 2019. Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis of Helicobacter pylori. bioRxiv 545517. https://doi.org/10.1101/545517
    [Crossref] [Google Scholar]
  99. 99. 
    Terrana B, Newton A. 1975. Pattern of unequal cell division and development in Caulobacter crescentus. Dev. Biol 44:380–85
    [Google Scholar]
  100. 100. 
    Terry K, Williams SM, Connolly L, Ottemann KM 2005. Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect. Immunity 73:803–11
    [Google Scholar]
  101. 101. 
    Tsuda M, Karita M, Morshed MG, Okita K, Nakazawa T 1994. A urease-negative mutant of Helicobacter pylori constructed by allelic exchange mutagenesis lacks the ability to colonize the nude mouse stomach. Infect. Immunity 62:3586–89
    [Google Scholar]
  102. 102. 
    Typas A, Banzhaf M, Gross CA, Vollmer W 2012. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10:123–36
    [Google Scholar]
  103. 103. 
    Vasa S, Lin L, Shi C, Habenstein B, Riedel D et al. 2015. β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR. PNAS 112:E127–36
    [Google Scholar]
  104. 104. 
    Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE et al. 2004. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5:1166–74
    [Google Scholar]
  105. 105. 
    Vollmer W, Bertsche U. 2008. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim. Biophys. Acta Biomembr 1778:1714–34
    [Google Scholar]
  106. 106. 
    Waidner B, Specht M, Dempwolff F, Haeberer K, Schaetzle S et al. 2009. A novel system of cytoskeletal elements in the human pathogen Helicobacter pylori. PLOS Pathog 5:e1000669
    [Google Scholar]
  107. 107. 
    Wang S, Furchtgott L, Huang KC, Shaevitz JW 2012. Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. PNAS 109:E595–604
    [Google Scholar]
  108. 108. 
    Wiles TJ, Jemielita M, Baker RP, Schlomann BH, Logan SL et al. 2016. Host gut motility promotes competitive exclusion within a model intestinal microbiota. PLOS Biol 14:e1002517
    [Google Scholar]
  109. 109. 
    Wortinger MA, Quardokus EM, Brun YV 1998. Morphological adaptation and inhibition of cell division during stationary phase in Caulobacter crescentus. Mol. Microbiol 29:963–73
    [Google Scholar]
  110. 110. 
    Wucher BR, Bartlett TM, Persat A, Nadell CD 2018. Filamentation of Vibrio cholerae is an adaptation for surface attachment and biofilm architecture. bioRxiv 470815. https://doi.org/10.1101/470815
    [Crossref]
  111. 111. 
    Yang DC, Blair KM, Taylor JA, Petersen TW, Sessler T et al. 2019. A genome-wide Helicobacter pylori morphology screen uncovers a membrane spanning helical cell shape complex. J. Bacteriol. 201:e00724–18
    [Google Scholar]
  112. 112. 
    Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA et al. 2015. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17:385–91
    [Google Scholar]
  113. 113. 
    Young KD. 2006. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70:660–703
    [Google Scholar]
  114. 114. 
    Zielinska A, Billini M, Moll A, Kremer K, Briegel A et al. 2017. LytM factors affect the recruitment of autolysins to the cell division site in Caulobacter crescentus. Mol. Microbiol 106:419–38
    [Google Scholar]
  115. 115. 
    Zuckerman DM, Boucher LE, Xie K, Engelhardt H, Bosch J, Hoiczyk E 2015. The bactofilin cytoskeleton protein BacM of Myxococcus xanthus forms an extended β-sheet structure likely mediated by hydrophobic interactions. PLOS ONE 10:e0121074
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115919
Loading
/content/journals/10.1146/annurev-micro-020518-115919
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error