1932

Abstract

Cooperation has fascinated biologists since Darwin. How did cooperative behaviors evolve despite the fitness cost to the cooperator? Bacteria have cooperative behaviors that make excellent models to take on this age-old problem from both proximate (molecular) and ultimate (evolutionary) angles. We delve into swarming, a phenomenon where billions of bacteria move cooperatively across distances of centimeters in a matter of a few hours. Experiments with swarming have unveiled a strategy called metabolic prudence that stabilizes cooperation, have showed the importance of spatial structure, and have revealed a regulatory network that integrates environmental stimuli and direct cooperative behavior, similar to a machine learning algorithm. The study of swarming elucidates more than proximate mechanisms: It exposes ultimate mechanisms valid to all scales, from cells in cancerous tumors to animals in large communities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-120033
2019-09-08
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-120033.html?itemId=/content/journals/10.1146/annurev-micro-020518-120033&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Allen RC, Popat R, Diggle SP, Brown SP 2014. Targeting virulence: can we make evolution-proof drugs?. Nat. Rev. Micro. 12:4300–8
    [Google Scholar]
  2. 2. 
    Andersen SB, Marvig RL, Molin S, Krogh Johansen H, Griffin AS 2015. Long-term social dynamics drive loss of function in pathogenic bacteria. PNAS 112:3410756–61
    [Google Scholar]
  3. 3. 
    Axelrod R, Hamilton WD. 1981. The evolution of cooperation. Science 211:44891390–96
    [Google Scholar]
  4. 4. 
    Baker AE, Diepold A, Kuchma SL, Scott JE, Ha DG et al. 2016. PilZ domain protein flgz mediates cyclic di-GMPdependent swarming motility control in Pseudomonas aeruginosa. J. Bacteriol 198:131837–46
    [Google Scholar]
  5. 5. 
    Biddle A, Liang X, Gammon L, Fazil B, Harper LJ et al. 2011. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res 71:155317–26
    [Google Scholar]
  6. 6. 
    Boyle KE, Heilmann S, van Ditmarsch D, Xavier JB 2013. Exploiting social evolution in biofilms. Curr. Opin. Microbiol. 16:2207–12
    [Google Scholar]
  7. 7. 
    Boyle KE, Monaco HT, Deforet M, Yan J, Wang Z et al. 2017. Metabolism and the evolution of social behavior. Mol. Biol. Evol. 34:92367–79
    [Google Scholar]
  8. 8. 
    Boyle KE, Monaco HT, van Ditmarsch D, Deforet M, Xavier JB 2015. Integration of metabolic and quorum sensing signals governing the decision to cooperate in a bacterial social trait. PLOS Comput. Biol. 11:5e1004279
    [Google Scholar]
  9. 9. 
    Brückner R, Titgemeyer F. 2002. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209:2141–48
    [Google Scholar]
  10. 10. 
    Caiazza NC, Merritt JH, Brothers KM, O'Toole GA 2007. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 189:93603–12
    [Google Scholar]
  11. 11. 
    Caiazza NC, Shanks RMQ, O'Toole GA 2005. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J. Bacteriol 187:217351–61
    [Google Scholar]
  12. 12. 
    Chen Y, Tong D, Wu C-I 2017. A new formulation of random genetic drift and its application to the evolution of cell populations. Mol. Biol. Evol. 34:82057–64
    [Google Scholar]
  13. 13. 
    Chong H, Li Q. 2017. Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb. Cell Fact. 16:1137
    [Google Scholar]
  14. 14. 
    Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips TC et al. 2014. Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. PNAS 111:114280–84
    [Google Scholar]
  15. 15. 
    Coyte KZ, Schluter J, Foster KR 2015. The ecology of the microbiome: networks, competition, and stability. Science 350:6261663–66
    [Google Scholar]
  16. 16. 
    Danziger S, Levav J, Avnaim-Pesso L 2011. Extraneous factors in judicial decisions. PNAS 108:176889–92
    [Google Scholar]
  17. 17. 
    Darch SE, Simoska O, Fitzpatrick M, Barraza JP, Stevenson KJ et al. 2018. Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model. PNAS 115:184779–84
    [Google Scholar]
  18. 18. 
    Dasgupta N, Arora SK, Ramphal R 2000. fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa. J. Bacteriol 182:2357–64
    [Google Scholar]
  19. 19. 
    Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:5361295–98
    [Google Scholar]
  20. 20. 
    de Vargas Roditi L, Boyle KE, Xavier JB 2013. Multilevel selection analysis of a microbial social trait. Mol. Syst. Biol. 9:684
    [Google Scholar]
  21. 21. 
    Deforet M, Carmona-Fontaine C, Korolev KS, Xavier JB 2019. Evolution at the edge of expanding populations. Am. Nat In press
    [Google Scholar]
  22. 22. 
    Deforet M, van Ditmarsch D, Carmona-Fontaine C, Xavier JB 2014. Hyperswarming adaptations in a bacterium improve collective motility without enhancing single cell motility. Soft Matter 10:142405–13
    [Google Scholar]
  23. 23. 
    Deng P, de Vargas Roditi L, van Ditmarsch D, Xavier JB 2014. The ecological basis of morphogenesis: branching patterns in swarming colonies of bacteria. New J. Phys. 16:015006
    [Google Scholar]
  24. 24. 
    Déziel E, Lépine F, Milot S, Villemur R 2003. RhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (haas), the precursors of rhamnolipids. Microbiology 149:Part 82005–13
    [Google Scholar]
  25. 25. 
    Diggle SP, Griffin AS, Campbell GS, West SA 2007. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:7168411–14
    [Google Scholar]
  26. 26. 
    Du H, Xu Z, Shrout JD, Alber M 2011. Multiscale modeling of Pseudomonas aeruginosa swarming. Math. Models Methods Appl. Sci. 21:Suppl. 1939–54
    [Google Scholar]
  27. 27. 
    Ericsson AC, Franklin CL. 2015. Manipulating the gut microbiota: methods and challenges. ILAR J 56:2205–17
    [Google Scholar]
  28. 28. 
    Foster KR. 2011. The sociobiology of molecular systems. Nat. Rev. Genet. 12:3193–203
    [Google Scholar]
  29. 29. 
    Figueroa-Bossi N, Lemire S, Maloriol D, Balbontín R, Casadesús J, Bossi L 2006. Loss of Hfq activates the σE-dependent envelope stress response in Salmonella enterica. Mol. Microbiol 62:3838–52
    [Google Scholar]
  30. 30. 
    Friedlander T, Mayo AE, Tlusty T, Alon U 2015. Evolution of bow-tie architectures in biology. PLOS Comput. Biol. 11:3e1004055
    [Google Scholar]
  31. 31. 
    Greenberg EP. 2010. Sociomicrobiology: a personal perspective on an emerging research area. Microbe Mag 5:5206–11
    [Google Scholar]
  32. 32. 
    Greig D, Travisano M. 2004. The prisoner's dilemma and polymorphism in yeast SUC genes. Proc. Biol. Sci. 271:Suppl. 3S25–26
    [Google Scholar]
  33. 33. 
    Griffin AS, West SA, Buckling A 2004. Cooperation and competition in pathogenic bacteria. Nature 430:70031024–27
    [Google Scholar]
  34. 34. 
    Guerra-Santos L, Käppeli O, Fiechter A 1984. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbiol. 48:2301–5
    [Google Scholar]
  35. 35. 
    Hamilton WD. 1964. The genetical evolution of social behaviour. I. J. Theor. Biol. 7:11–16
    [Google Scholar]
  36. 36. 
    Hamilton WD. 1964. The genetical evolution of social behaviour. II. J. Theor. Biol. 7:117–52
    [Google Scholar]
  37. 37. 
    Hengge R. 2009. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Micro. 7:4263–73
    [Google Scholar]
  38. 38. 
    Heurlier K, Williams F, Heeb S, Dormond C, Pessi G et al. 2004. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional rsmA/rsmZ system in Pseudomonas aeruginosa PAO1. J. Bacteriol. 186:102936–45
    [Google Scholar]
  39. 39. 
    Hibbing ME, Fuqua C, Parsek MR, Peterson SB 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8:115–25
    [Google Scholar]
  40. 40. 
    Hickman JW, Harwood CS. 2008. Identification of fleq from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69:2376–89
    [Google Scholar]
  41. 41. 
    Hmelo LR, Borlee BR, Almblad H, Love ME, Randall TE et al. 2015. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat. Protoc. 10:111820–41
    [Google Scholar]
  42. 42. 
    Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35:4322–32
    [Google Scholar]
  43. 43. 
    Huangyutitham V, Güvener ZT, Harwood CS 2013. Subcellular clustering of the phosphorylated wspr response regulator protein stimulates its diguanylate cyclase activity. mBio 4:3e00242–13
    [Google Scholar]
  44. 44. 
    Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A et al. 2004. Big questions, small worlds: microbial model systems in ecology. Trends Ecol. Evol. 19:4189–97
    [Google Scholar]
  45. 45. 
    Jiricny N, Molin S, Foster K, Diggle SP, Scanlan PD et al. 2014. Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis. PLOS ONE 9:1e83124
    [Google Scholar]
  46. 46. 
    Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC 2012. Experimental evolution. Trends Ecol. Evol. 27:10547–60
    [Google Scholar]
  47. 47. 
    Kearns DB. 2010. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8:9634–44
    [Google Scholar]
  48. 48. 
    Kearns DB. 2013. You get what you select for: better swarming through more flagella. Trends Microbiol 21:10508–9
    [Google Scholar]
  49. 49. 
    Klevens RM, Edwards JR, Richards CL, Horan TC, Gaynes RP et al. 2007. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 122:2160–66
    [Google Scholar]
  50. 50. 
    Köhler T, Curty LK, Barja F, van Delden C, Pechère JC 2000. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 182:215990–96
    [Google Scholar]
  51. 51. 
    Kümmerli R, Griffin AS, West SA, Buckling A, Harrison F 2009. Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc. Biol. Sci 276:16723531–38
    [Google Scholar]
  52. 52. 
    Kümmerli R, Schiessl KT, Waldvogel T, McNeill K, Ackermann M 2014. Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol. Lett. 17:121536–44
    [Google Scholar]
  53. 53. 
    Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A 1996. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol. 21:61137–46
    [Google Scholar]
  54. 54. 
    Lories B, Parijs I, Foster KR, Steenackers HP 2017. Meeting report on the ASM conference on mechanisms of interbacterial cooperation and competition. J. Bacteriol. 199:22e00403–17
    [Google Scholar]
  55. 55. 
    Lupp C, Ruby EG. 2005. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187:113620–29
    [Google Scholar]
  56. 56. 
    Mattingly AE, Kamatkar NG, Borlee BR, Shrout JD 2018. Multiple environmental factors influence the importance of the phosphodiesterase dipa upon Pseudomonas aeruginosa swarming. Appl. Environ. Microbiol 84:7e02847–17 Correction. 2018 Appl. Environ. Microbiol 84:e01674–18
    [Google Scholar]
  57. 57. 
    Mayr E. 1961. Cause and effect in biology. Science 134:34891501–6
    [Google Scholar]
  58. 58. 
    Mellbye B, Schuster M. 2014. Physiological framework for the regulation of quorum sensing-dependent public goods in Pseudomonas aeruginosa. J. Bacteriol 196:61155–64
    [Google Scholar]
  59. 59. 
    Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL 2017. The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLOS Pathog 13:7e1006504
    [Google Scholar]
  60. 60. 
    Mukherjee S, Moustafa DA, Stergioula V, Smith CD, Goldberg JB, Bassler BL 2018. The PqsE and RhlR proteins are an autoinducer synthase–receptor pair that control virulence and biofilm development in Pseudomonas aeruginosa. PNAS 115:E9411–18
    [Google Scholar]
  61. 61. 
    Murray TS, Kazmierczak BI. 2006. FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J. Bacteriol 188:196995–7004
    [Google Scholar]
  62. 62. 
    Nadell CD, Bucci V, Drescher K, Levin SA, Bassler BL, Xavier JB 2013. Cutting through the complexity of cell collectives. Proc. Biol. Sci. 280:175520122770
    [Google Scholar]
  63. 63. 
    Nadell CD, Xavier JB, Foster KR 2009. The sociobiology of biofilms. FEMS Microbiol. Rev. 33:1206–24
    [Google Scholar]
  64. 64. 
    Ng W-L, Bassler BL. 2009. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43:197–222
    [Google Scholar]
  65. 65. 
    Oda K, Kitano H. 2006. A comprehensive map of the Toll-like receptor signaling network. Mol. Syst. Biol. 2:2006.0015
    [Google Scholar]
  66. 66. 
    Overhage J, Lewenza S, Marr AK, Hancock REW 2007. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J. Bacteriol. 189:52164–69
    [Google Scholar]
  67. 67. 
    Özkaya Ö, Balbontín R, Gordo I, Xavier KB 2018. Cheating on cheaters stabilizes cooperation in Pseudomonas aeruginosa. Curr. Biol 28:132070–80.e6
    [Google Scholar]
  68. 68. 
    Parsek MR, Greenberg EP. 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:127–33
    [Google Scholar]
  69. 69. 
    Pennisi E. 2005. How did cooperative behavior evolve?. Science 309:573193
    [Google Scholar]
  70. 70. 
    Phillips BL, Brown GP, Webb JK, Shine R 2006. Invasion and the evolution of speed in toads. Nature 439:7078803
    [Google Scholar]
  71. 71. 
    Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P et al. 2001. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol. Microbiol. 40:3708–18
    [Google Scholar]
  72. 72. 
    Rainey PB, Rainey K. 2003. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425:695372–74
    [Google Scholar]
  73. 73. 
    Rashid MH, Kornberg A. 2000. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. PNAS 97:94885–90
    [Google Scholar]
  74. 74. 
    Reich PB, Oleksyn J, Tjoelker MG 1994. Seed mass effects on germination and growth of diverse European Scots pine populations. Can. J. For. Res. 24:2306–20
    [Google Scholar]
  75. 75. 
    Reis RS, Pereira AG, Neves BC, Freire DMG 2011. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa—a review. Bioresour. Technol. 102:116377–84
    [Google Scholar]
  76. 76. 
    Richardson DM, Cowling RM, Le Maitre DC 1990. Assessing the risk of invasive success in Pinus and Banksia in South African mountain fynbos. J. Vegetation Sci. 1:5629–42
    [Google Scholar]
  77. 77. 
    Rittschof CC, Grozinger CM, Robinson GE 2015. The energetic basis of behavior: bridging behavioral ecology and neuroscience. Curr. Opin. Behav. Sci. 6:19–27
    [Google Scholar]
  78. 78. 
    Robinson GE, Fernald RD, Clayton DF 2008. Genes and social behavior. Science 322:5903896–900
    [Google Scholar]
  79. 79. 
    Sánchez-Hevia DL, Yuste L, Moreno R, Rojo F 2018. Influence of the Hfq and Crc global regulators on the control of iron homeostasis in Pseudomonas putida. Environ. Microbiol 20:103484–503
    [Google Scholar]
  80. 80. 
    Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR 2006. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62:51264–77
    [Google Scholar]
  81. 81. 
    Siever LJ. 2008. Neurobiology of aggression and violence. Am. J. Psychiatry 165:4429–42
    [Google Scholar]
  82. 82. 
    Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR et al. 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. PNAS 103:228487–92
    [Google Scholar]
  83. 83. 
    Sonnleitner E, Valentini M, Wenner N, Haichar F el Z, Haas D, Lapouge K 2012. Novel targets of the CbrAB/Crc carbon catabolite control system revealed by transcript abundance in Pseudomonas aeruginosa. PLOS ONE 7:10e44637
    [Google Scholar]
  84. 84. 
    Strassmann JE, Zhu Y, Queller DC 2000. Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408:6815965–67
    [Google Scholar]
  85. 85. 
    Tremblay J, Richardson A-P, Lépine F, Déziel E 2007. Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ. Microbiol. 9:102622–30
    [Google Scholar]
  86. 86. 
    van Ditmarsch D, Boyle KE, Sakhtah H, Oyler JE, Nadell CD et al. 2013. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep 4:4697–708
    [Google Scholar]
  87. 87. 
    van Ditmarsch D, Xavier JB 2014. Seeing is believing: what experiments with microbes reveal about evolution. Trends Microbiol 22:12–4
    [Google Scholar]
  88. 88. 
    Velicer GJ, Kroos L, Lenski RE 2000. Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404:6778598–601
    [Google Scholar]
  89. 89. 
    Watson RA, Szathmáry E. 2016. How can evolution learn?. Trends Ecol. Evol. 31:2147–57
    [Google Scholar]
  90. 90. 
    West SA, Winzer K, Gardner A, Diggle SP 2012. Quorum sensing and the confusion about diffusion. Trends Microbiol 20:12586–94
    [Google Scholar]
  91. 91. 
    Xavier JB. 2016. Sociomicrobiology and pathogenic bacteria. Microbiol. Spectr. 4:3VMBF–0019-2015
    [Google Scholar]
  92. 92. 
    Xavier JB, Kim W, Foster KR 2011. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol. Microbiol 79:1166–79
    [Google Scholar]
  93. 93. 
    Xavier KB, Bassler BL. 2005. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol 187:1238–48
    [Google Scholar]
  94. 94. 
    Yan J, Deforet M, Boyle KE, Rahman R, Liang R et al. 2017. Bow-tie signaling in c-di-GMP: machine learning in a simple biochemical network. PLOS Comput. Biol. 13:8e1005677
    [Google Scholar]
  95. 95. 
    Yeung ATY, Torfs ECW, Jamshidi F, Bains M, Wiegand I et al. 2009. Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J. Bacteriol. 191:185592–602
    [Google Scholar]
  96. 96. 
    Zhang A, Schu DJ, Tjaden BC, Storz G, Gottesman S 2013. Mutations in interaction surfaces differentially impact E. coli Hfq association with small RNAs and their mRNA targets. J. Mol. Biol. 425:193678–97
    [Google Scholar]
  97. 97. 
    Zhu K, Rock CO. 2008. RhlA converts β-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the β-hydroxydecanoyl-β-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J. Bacteriol 190:93147–54
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-120033
Loading
/content/journals/10.1146/annurev-micro-020518-120033
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error